
A Model-driven, Agent-based Approach for the Integration
of Services into a Collaborative Business Process∗

Ingo Zinnikus, Christian Hahn, and Klaus Fischer
DFKI GmbH

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
{ingo.zinnikus, christian.hahn, klaus.fischer}@dfki.de

ABSTRACT
In cross-organisational business interactions, the most desirable

solution for integrating different partners would suggest to inte-

grate their processes and data on a rather low level. However, the

internal processes and interfaces of the participating partners are

often pre-existing and have to be taken as given. Furthermore,

in cross-organisational scenarios partners are typically very sen-

sitive about their product data and the algorithms that process

it. In many cases, private processes are only partially visible and

hidden behind public interface descriptions. This imposes restric-

tions on the possible solutions for the problems which occur when

partner processes are integrated. In this paper, we describe a so-

lution which supports rapid prototyping by combining a model-

driven framework for cross-organisational business processes with

an agent-based approach for flexible process execution. We show

how the model-driven approach can be combined with semantic

service discovery for flexible service composition.

Categories and Subject Descriptors
I.2.11 [Multiagent systems]; D.2.2 [Design Tools and
Techniques]; D.2.12 [Interoperability]

1. INTRODUCTION
Business process modelling and execution in a collabora-

tive environment requires a set of methodologies and tools
which support the transition from an analysis to an execu-
tion level and integrate the process with a pre-existing IT
infrastructure. In business-driven scenarios, a top-down ap-
proach is often applied [15]: a human-comprehensible analy-
sis model which is used for communication among analysts
is enriched with process and data details which yields a de-
sign model. For generating run-time artifacts, the design
model is enriched by technical details leading to a technical
model which in turn is transformed into executable code.
Due to the rather static nature of many business scenarios,
a rather fixed execution platform as e.g. BPEL4WS is used.

∗The work published in this paper is (partly) funded by the
E.C. through the ATHENA IP. It does not represent the
view of E.C. or the ATHENA consortium, and authors are
solely responsible for the paper’s content.

Cite as: A Model-driven, Agent-based Approach for the Integration of
Services into a Collaborative Business Process, Ingo Zinnikus, Christian
Hahn and Klaus Fischer,Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,
pp. 241-248.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

However, even in traditional collaborative settings, points or
situations of choice occur, where the specific partner which
delivers a specific task, can be selected even at execution
time, thus allowing a certain flexibility.

To enable flexible business process execution, the applica-
tion of agent-based systems has been proposed. Especially
in semi-open processes where additional partners are dy-
namically integrated in the sales process (e.g. non-OEM
manufacturers) the system needs to become robust against
temporary unavailable partners.

The European project ATHENA (Advanced Technologies
for interoperability of Heterogeneous Enterprise Networks
and their Applications) provides a comprehensive set of me-
thodologies and tools to address interoperability problems of
enterprise applications in order to realize seamless business
interaction across organizational boundaries.

We follow the approach outlined in [12] where business
processes are modelled on different abstraction levels and
transformed down from a business layer to a technical and
an execution level. An agent-based approach is applied for
modelling and transforming the technical layer to the ex-
ecution layer. In [12], for the technical level a platform-
independent metamodel for service-oriented architectures
(PIM4SOA, an ATHENA result [2]) was used. We replace
the PIM4SOA metamodel with a platform-independent meta-
model for agents (PIM4Agents) which is more expressive and
constitutes a generalization of the PIM4SOA.

In cross-organisational scenarios, the internal processes
and interfaces of the participating partners are often pre-
existing and have to be taken as given. Furthermore, part-
ners are typically very sensitive about their product data
and the algorithms that process it. In many cases, private
processes are only partially visible and hidden behind public
interface descriptions [23]. This imposes restrictions on the
possible solutions for the problems which occur when part-
ner processes are integrated. Since existing services have to
be integrated, the agents are situated in a service-oriented
and specifically, a Web service environment. Two tasks
which involve interoperability problems have to be tackled:

• integrate services which are ”fixed” i.e. known in ad-
vance when the process is specified.

• discovering/provisioning services at design time which
are additionally required or could be beneficial for im-
proving the overall result or reducing costs.

A model-driven approach is used for the integration of
existing services and dynamic service selection and compo-
sition (if feasible) for enhancing flexibility. For discovery,

241



Figure 1: Overview over the architecture of the so-
lution.

we support three of the most common Semantic Web Ser-
vice Description Frameworks, namely, OWL-S [17], WSMO
[5] and SAWSDL [8], which has just reached the status of a
proposed recommendation within W3C.

The paper is organized as follows. In Section 2 we will
sketch the business case of our pilot application which we
use as motivational background, containing static interac-
tions with dynamic features. Section 3 is devoted to our
technical approach. Here, we present the approach devel-
oped in ATHENA and used within our pilot for the inte-
gration of cross-organizational processes. We show how the
information contained in the PIM model can be used to dis-
cover required services using semantic web technologies in
Section 4. We evaluate the approach by discussing advan-
tages of agent-based SOAs in Section 5, related work in Sec-
tion 6 and conclude the paper by taking a look at the lessons
learned in Section 7.

2. SCENARIO
In 2002, due to new laws in EU legislation, the market

of car distribution changed fundamentally. Instead of being
limited to selling only one brand, vending vehicles of dif-
ferent brands under one roof was facilitated. Dealers now
can reach a broader audience and improve their business re-
lations for more competitiveness. As a consequence, many
so-called multi-brand dealers have appeared.

Today, multi-brand dealers are confronted with a huge set
of problems. Rather than having to use the IT system of one
specific car manufacturer, multi-brand dealers are now faced
with a number of different IT systems from their different
manufacturers. One specific problem is the integration of
configuration, customization and ordering functionality for
a variety of brands into the IT landscape of a multi-brand
dealer.

We describe an integrated scenario, where multi-brand
dealers use services provided by the different car and non-
OEM manufactures and plug them into an integrated dealer
system.

The desired to-be-scenario with its general architecture
is depicted in Figure 1. The systems of the different car
and non-OEM manufacturers are integrated via an integra-
tor component. This integrator enables the dealer to access
the software of the manufacturers in a uniform manner. The
paper will focus on the manufacturer integration (Section 3)
and present the model-driven, agent-based integration ap-
proach for cross-organizational processes modeling.

The dealer (software) interacts with the manufacturer sys-
tems by sending product information, configuration and or-
dering requests. The service integrator acts as an intermedi-
ary and adapts the dealer requests to the service interfaces
provided by the manufacturers. The interaction protocol
consists of either one-shot synchronous message exchanges
or contract-net style interactions where a supplier is chosen
based on non-functional criterias, thus introducing flexibility
into an otherwise rather static scenario. The car manufac-
turers are preassigned, whereas the different part suppliers
and non-OEM manufactures can eventually be selected at
run-time. However, since car parts must adhere to norms,
the list of potentially useful suppliers is based on a partner
list defined and contracted at design time.

For the service integrator, the process is modelled on a
PIM level and generated platform-specific models (PSM) are
executed as software agents on Jack [1], an agent platform
based on the BDI-agent theory (belief-desire-intention, [21]).
In the following, we will describe this approach in detail.

3. MEDIATING SERVICES FOR CROSS-OR-
GANISATIONAL BUSINESS PROCESSES

The scenario involves a complex interaction between the
partners. The design of such a scenario implies a number of
problems which have to be solved:

• changing the protocol and integration of a new partner
should be possible in a rapid manner (scalability)

• the execution of the message exchange should be flex-
ible, i.e. in case a partner is unavailable or busy, the
protocol should nevertheless proceed

• the different partners (may) expect different atomic
protocol steps (service granularity)

• the partners expect and provide different data struc-
tures

These are typical interoperability problems occuring in
cross-organisational scenarios which in our case have to be
tackled with solutions for agents and SOAs. A core idea
in the ATHENA project was to bring together different ap-
proaches and to combine them into a new framework: a
modelling approach for designing collaborative processes,
a model-driven development framework for SOAs and an
agent-based approach for flexible execution.

Hence, the first problem is solved by applying a model-
driven approach: the protocol is specified on a platform-
independent level so that a change in the protocol can be
made on this level and code generated automatically. Flex-
ibility is achieved by applying a BDI agent-based approach.
BDI agents provide flexible behaviour for exception-handling
in a natural way (compared to e.g. BPEL4WS where speci-
fying code for faults often leads to complicated, nested code).
The problem of different service granularities is envisaged by
specifying a collaborative protocol which allows adapting to
different service granularities. Finally, the mediation of the
data is tackled with transformations which are specified at
design-time and executed at run-time by transforming the
exchanged messages based on the design-time transforma-
tions. Two cases can be distinguished:

(i) integrating consortial partners and their services

242



(ii) integrating partners external to the collaboration and
their services

i) Partners define the shared process together. The com-
mon information/data model may also be defined together.
Roughly speaking, two alternatives are possible (analogous
to the local-as-view vs. global-as-view distinction, cf. [16]):
the common data structure is defined independently from
the local data model of each partner. Each partner then
defines a (local) mapping from the common data model to
the local model. The mapping in turn can be executed (at
run-time) either by the consumer of the service or the part-
ner service itself. The first solution is the one preferred by
Semantic Web service descriptions, e.g. OWL-S where the
service provider describes the grounding to e.g. WSDL. The
grounding is used by a service consumer who invokes the ser-
vice. The second solution means that the service consumer
always sends the same message (e.g. a SOAP message) to a
partner service and does not care about the local data model.
This is reasonable if specifying as well as testing the map-
ping is tedious and the mapping underlies many changes.

In a global-as-view approach, the common data model is
defined as view on the local data models of the partners.
A disadvantage of this approach is that the integration of a
new partner requires changing the common data model.

ii) For integrating external partners service discovery as
well as process and data mediation have to be realized.
Service discovery can be based on the service requirements
which are specified implicitly or explicitly for a service in-
vocation task. Integrating the discovered services requires
data transformations which are either provided by the ser-
vice descriptions or based on a mapping to the common
information model.

PIM4Agents: A Platform-Independent Model
for Agents
The PIM4Agents [10] is a visual platform-independent model
that specifies agent systems in a technology independent
manner. It represents an integrated view on agents in which
different components can be deployed on different execution
platforms. The PIM4Agents metamodel defines modelling
concepts that can be used to model six different aspects or
views of an agent system that are listed below:

Figure 2: PIM4Agents environment metamodel.

Agent aspect describes single autonomous entities, the ca-
pabilities they have to solve tasks and the roles they
play within the MAS. The agent aspect is centered on
the concept of Agent, the autonomous entity capable
of acting in the environment. An Agent has access to
a set of Resources from its surrounding Environment.
These Resources may include information or ontologies
the Agent has access to. Furthermore, the Agent can
perform particular Roles that define in which specific
context the Agent is acting and Behaviours that de-
fine how particular tasks are achieved. Furthermore,
the Agent may have certain Capabilities that represent
the set of Behaviours the Agent can possess. For the
purpose of interaction, an Agent could be member in
an Organization that represents the social structure
Agents can take part in.

Organization aspect describes how autonomous entities
cooperate within the MAS and how complex organi-
zational structures can be defined. The Organization
is a special kind of Cooperation that also has the same
characteristics of an Agent. Therefore, the Organiza-
tion can perform Roles and have Capabilities which can
be performed by its members, be it agents or subor-
ganizations. The multiple inheritance of the Organiza-
tion, from the Agent and the Cooperation, also allows it
to have its own internal Protocol that specifies (i) how
the Organization communicates with other Agents (ei-
ther atomic Agents or complex Organizations) and (ii)
how organizational members are coordinated.

Role aspect covers feasible specializations and how they
could be related to each other. Informally, a Role is
an abstraction of the social behaviour of the Agent in
a given social context, usually a Cooperation or Orga-
nization. The Role specifies the responsibilities of the
Agent in that social context. It refers to (i) a set of
Capabilities that defines the set of Behaviours it can
possess and (ii) a set of Resources an Agent has access
to.

Interaction aspect describes how the interaction between
autonomous entities or organizations takes place. Each
interaction specification includes the Actors involved
and in which order Messages are exchanged between
these Actors in a protocol-like manner. Furthermore, a
Protocol refers (i) to a set of TimeOuts that define the
time constraints for sending and receiving Messages,
(ii) to a set of MessageScopes that defines the Mes-
sages and their order how these arrive, and (iii) to a
set of MessageFlows that specify how the exchange of
Messages is proceed.

Behavioural aspect describes how Plans are composed by
complex control structures and simple atomic tasks
like sending a message and how information flows be-
tween those constructs. A Plan specifies the agents’
internal processes. It represents a super class connect-
ing the agent aspect with the behavioural aspect. In-
formally, a Plan refers to a set of Flows, be them Con-
trolFlows or InformationFlows, that are contained in
the plan description. These different specializations of
Flow link Activities to each other, either defining the
control flow or information flow.

243



Figure 3: PIM4Agents Model for Pilot (part).

Environment aspect (depicted in Figure 2) contains any
kind of Resource that is dynamically created, shared,
or used by the Agents or Organizations, respectively.

Via model-to-model transformations, PIM4Agents models
can be transformed into underlying platform-specific models
such as Jack or JADE1.

The business protocol between dealer (dealer software),
integrator and manufacturers is specified as PIM4Agents
model (see Figure 3 for the general collaboration between
roles). The interaction between the roles is defined by in-
teraction protocols (see Figure 4 and Figure 5). For the
interaction between service integrator and manufacturers,
a message flow MF which represents the action of sending
a message to a collaboration partner is assigned to an in-
teraction role (e.g. ServiceIntegrator). Specified messages
are sent in parallel to the partners (e.g. Manufacturer1 and
Manufacturer2 resp.) which reply by sending an answer mes-
sage.

The interaction protocol in Figure 5 represents a contract-
net style conversation between service integrator and part
provider(s). Note that a role can be instantiated by several
agents so that messages are actually send to all partners
which are instances of the role PartServiceProvider.

In order to execute collaborative processes specified on the
PIM level, the first step consists of transforming PIM4Agents
models to agent models that can be directly executed by spe-
cific agent execution platforms. In our case, the Jack Intelli-
gent agent framework is used for the execution of BDI-style
agents. The constructs of the PIM4Agents metamodel are
mapped to BDI-agents represented by the Jack metamodel
(JackMM). For detailed information on JackMM we refer to
[11].

The partner models are transformed to a Jack agent model
with the model-to-model transformation developed in the
ATHENA project. The following sketch outlines the meta-
model mappings (see Figure 6).

An Organization (i.e. ServiceIntegratorProvider in Fig-
ure 3) is assigned to a Team (which is an extension of an
Agent). The name of the Organization coincides with the
name of the Team, its roles are the roles the Team performs.
Furthermore, the Team makes use of the Roles required by
the Organization (i.e. Dealer and Manufacturer), in which
it participates. For each of these required Roles, we addi-

1for detailed information see http://jade.tilab.com/

Figure 4: PIM4Agents Interaction Model (Service
Integrator - Manufacturer part).

Figure 5: PIM4Agents Interaction Model (Service
Integrator - Parts Provider).

tionally introduce an atomic Team. The Plan of the Or-

ganization is mapped to the TeamPlan of the non-atomic
Team. This TeamPlan defines how a combined service is or-
chestrated by making use of the services the atomic Teams

(i.e. ManufacturerTeam in Figure 7) provide. Finally, Mes-

sages that are sent and received within Plans are mapped to
Events that are handled and sent in JackMM.

Figure 7: Jack Model generated from PIM4Agents
(part).

In this service-oriented setting, the partners provide and
exhibit services. Partner (manufacturer etc.) services are
described as WSDL interfaces. The WSDL files are used
to generate integration stubs for the integrator. We use
a model-driven approach for mapping WSDL concepts to

244



Figure 6: PIM4Agents and WSDLMM to JackMM transformation.

agent concepts, thereby integrating agents into an SOA and
supporting rapid prototyping.

The process integrator and the manufacturers are mod-
elled as Web services. Their interface is described by WSDL
descriptions publishing the platform as Web service. In the
pilot, only the process integrator is executed by Jack agents
which are wrapped by a Web service, whereas the manu-
facturers and other partner services are pure Web services.
For integrating Web services into the Jack agent platform,
we map a service as described by a WSDL file to the agent
concept Capability which can be conceived of as a module.
A capability provides access to the Web services via auto-
matically generated stubs. A capability comprises of plans
for invoking the operations as declared in the WSDL (it en-
capsulates and corresponds to commands such as invoke and
reply in BPEL4WS).

Applying these transformations, a PIM4Agents model can
be automatically transformed into a PSM model, e.g. the
Jack model illustrated in Figure 7. The PSM model is then
serialized into Jack artifacts, e.g. Teams, Events (Messages),
Team Plans (see Figure 8) and Beliefs which can be further
modified if necessary.

It should be stressed that these model transformations
and the respective code generation can be done automat-
ically if (i) the PIM4Agents model is defined properly and
(ii) the WSDL descriptions are available. The only interven-
tions necessary for a system designer are the insertion of the
proper XSLT transformations and the assignment of the ca-
pabilities to the agents/teams responsible for a specific Web
service invocation.

4. DERIVING SERVICE REQUIREMENTS
FROM THE PIM MODEL AND LOCAT-
ING EXTERNAL SERVICES

In order to discover and select additional services, we can
use the information contained in the PIM4Agents model, es-
pecially those of the process and environment aspect. The
environment aspect contains the data structure which is

Figure 8: Generated Jack Team Plan for ServiceIn-
tegrator.

commonly agreed upon among the collaborating partners
and amounts to or (ideally) conforms to a shared ontology.
It can furthermore be used to specify search requests for
potentially usable services.

In our automotive scenario, there are a number of stan-
dards which can form the basis for the environment model
(e.g. STAR standard for automotive retail industry2). The
concepts of the standard and their relation to each other are
either integrated into the common data model or used as
annotation of the data model. If the local data model of the
partners differs from the common model, the local partner is
responsible for defining a mapping from the common model
to the local model. If we assume that other external ser-
vices use the same vocabulary for their service description
(or their annotation), the concepts can be used to formulate

2www.starstandard.org/

245



service requests and search for relevant services which offer
the required functionality. This assumption of a shared vo-
cabulary among actors is reasonable, since in our scenario
product data underlies strong standardization pressure.

In order to do that, we have to collect the description
about a required service from the model, i.e. service oper-
ation, input and output of the service as well as pre- and
postconditions of the tasks. In fact, this information about
the service requirements is sufficient to formulate a query (at
design time) to a semantic matchmaker, e.g. for an OWL-S,
a WSMO, or a SAWSDL matchmaker.

Figure 9: PIM4Agents Process Metamodel (part).

If a plan step, e.g. a Task (see Figure 9) involves a mes-
sage exchange with an external partner, the requirements
which the external partner must fulfil can be derived from
the PIM model. The pre- and postconditions of a task and
the message refer to the input and output parameters which
the external service must provide. Since pre- and postcon-
ditions as well as input and output are the main features a
matchmaker uses for checking service compliance, the service
requirement contained in the PIM model can be transformed
into service requests by using the pre- and postconditions of
a task (for WSMO) or input and output concepts (for OWL-
S or SAWSDL) of a message sent to a specific service. For
matchmaking, we use the OWL-S [14] and WSMO match-
maker [13].

Figure 10: Generated OWL-S Service Profile for
Parts Order Service.

Since the OWL-S matchmaker [14] essentially takes the
service profile as requirement, we generate an OWL-S service

description with a profile (see Figure 10 for a requirement
definition for a part order service). An OWL-S matchmaker
request consists of an OWL-S service description, including
a service profile with input and output concepts referring to
a shared ontology.

In WSMO, a Goal describes the requested functionality of
a required service. Figure 11 shows an example of a goal
which specifies that a parts order service must be able to
provide parts of a specific type.

Figure 11: Generated WSMO Goal for Parts Order
Service.

Integrating discovered services at design time can be done
either by using the grounding contained in the service de-
scriptions or by directly integrating the service using its
WSDL description as described in Section 3.

5. ADVANTAGES OF AGENT-BASED SOAS
The similarities between agent architectures and SOAs

have already been recognized (e.g. [24]). In the following we
will briefly discuss advantages of applying BDI-agents in a
service-oriented environment.

In order to compare an agent-based approach with other
standards for Web service composition, the distinction in-
troduced in [27] between fixed, semi-fixed, and explorative

composition is useful. Fixed composition can be done with
e.g. BPEL4WS, but also by applying BDI agents. Semi-
fixed composition might also be specified with BPEL4WS:
partner links are defined at design-time, but the actual ser-
vice endpoint for a partner might be fixed at run-time, as
long as the service complies with the structure defined at
design-time. Late binding can also be done with the Jack

framework. The service endpoint needs to be set (at the lat-
est) when the actual call to the service is done. Explorative
composition is beyond of what BPEL4WS and a BDI-agent
approach offer (at least if they are used in a ’normal’ way).
To enable explorative composition, a general purpose plan-
ner might be applied which dynamically generates, based
on the service descriptions stored in a registry, a plan which
tries to achieve the objective specified by the consumer [25].

It might seem as if BPEL4WS and BDI-style agents offer
the same features. However, there are several advantages of
a BDI-style agent approach. An important question is how
the availability of a partner service is detected. This might
be checked only by actually calling the service. If the service
is not available or does not return the expected output, an
exception will be raised. BPEL4WS provides a fault handler

246



which allows specifying what to do in case of an exception.
Similarly, an agent plan will fail if a Web service call raises
an exception, and execute some activities specified for the
failure case.

However, the difference is that a plan is executed in a
context which specifies conditions for plan instances and also
other applicable plans. The context is implicitly given by
the beliefs of an agent and can be made explicit. If for a
specific goal several options are feasible, an agent chooses
one of these options and, in case of a failure, immediately
executes the next feasible option to achieve the desired goal.
This means that in a given context, several plan instances
might be executed, e.g. for all known services of a specific
type, the services are called (one after another), until one
of the services provides the desired result. An exception in
one plan instance then leads to the execution of another plan
instance for the next known service. Additionally, BDI-style
agents permit ’meta-level reasoning’ which allows choosing
the most feasible plan according to specified criteria.

In our car configuration scenario, agents have to react to
service unavailability and the protocols for e.g. selecting
a non-OEM supplier involve auctions or first come - first

served mechanisms which can be modelled in an very el-
egant manner with a BDI-agent approach. The BDI-agent
approach supports this adaptive behaviour in a natural way,
whereas a BPEL4WS process specification which attempts
to provide the same behaviour would require awkward cod-
ing such as nested fault handlers etc.

Furthermore, since it is in many cases not possible to fully
specify all necessary details on the PIM level, a system en-
gineer must add these details on the PSM level. Hence,
customizing the composition is facilitated since the different
plans clearly structure the alternatives of possible actions.
Since the control structure is implicit, changes in a plan
do not have impact on the control structure, reducing the
danger of errors in the code. Another advantage is that ex-

tending the behaviour by adding a new, alternative plan for
a specific task is straightforward. The new plan is simply
added to the plan library and will be executed at the next
opportunity.

Finally, business process notations allow specifying un-
structured processes. To execute these processes with BPEL,
unstructured business process descriptions normally are trans-
formed to block-structured BPEL processes. In doing so,
most approaches restrict the expressiveness of processes by
only permitting acyclic or already (block-) structured graphs
[18]. In the case that any unstructured processes shall be ex-
ecuted, an approach like described in [19] has to be followed.
The idea is to translate processes with arbitrary topologies
to BPEL by making solely use of its Event Handler concept.
The result is again cumbersome BPEL code, whereas the
Jack agent platform naturally supports event-based behav-
iour.

6. RELATED WORK
Apart from the wealth of literature about business process

modelling, enterprise application integration and SOAs, the
relation between agents and SOAs has already been investi-
gated. [24] cover several important aspects, [26] propose the
application of agents for workflows in general.

[4] provide an overview of agent-based modelling approa-
ches for enterprises. [20] describe the TROPOS methodol-
ogy for a model-driven design of agent-based software sys-

tems. However, the problems related to integration of agent
platforms and service-oriented architectures are beyond their
focus. [7] map BPMN models to BDI agents but do not con-
sider an integration of agents and Web services.

[9] and [6] present a technical and conceptual integra-
tion of an agent platform and Web services. [22] integrate
Web services into agent-based workflows, [3] integrate BDI
agents and Web services. However, the model-driven ap-
proach and the strong consideration of problems related to
cross-organisational settings have not been investigated in
this context. Furthermore, our focus on a tight and light-
weight integration of BDI-style agents fits much better to a
model-driven, process-centric setting than the Web service
gateway to a JADE agent platform considered by e.g. [9].
The single agents interact directly with a service, without
an intermediate gateway converting messages into Web ser-
vice calls (and vice versa).

7. CONCLUSIONS AND SUMMARY
From a research transfer point of view, the following lessons

could be learned:

• Evidently, a model based approach is a step in the
right direction as design-time tasks are separated from
run-time tasks which allows performing them graphi-
cally. Moreover, it is easier to react to changes of the
different interacting partners as only the models have
to be adapted but not the run-time environment.

• A model-driven, agent-based approach offers additional
flexibility and advantages (in general and in the sce-
nario discussed) when agents are tightly integrated
into a service-oriented framework.

• The PIM4Agents metamodel is expressive enough for
modelling service requirements which can be used for
semantic service discovery.

In this paper, we presented a pilot developed within the
EU project ATHENA in the area of multi-brand automo-
tive dealers. For its realization, several integration prob-
lems on different levels had to be solved. We described
a solution which supports rapid prototyping by combining
a model-driven framework for cross-organisational service-
oriented architectures with an agent-based approach for flex-
ible process execution. The model-driven approach can be
combined with semantic service discovery for flexible service
composition. We finally argued that agent-based SOAs pro-
vide additional advantages over standard process execution
environments.

8. REFERENCES
[1] JACK Intelligent Agents, The Agent Oriented

Software Group (AOS).
http://www.agent-software.com/shared/home/, 2006.

[2] G. Benguria, X. Larrucea, B. Elvesæ ter, T. Neple,
A. Beardsmore, and M. Friess. A platform
independent model for service oriented architectures.
In 2nd International Conference on Interoperability of
Enterprise Software and Applications (I-ESA 2006),
2006.

[3] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta.
Coows: Adaptive bdi agents meet service-oriented

247



computing – extended abstract. In Proceedings of the
Third European Workshop on Multi-Agent Systems
(EUMAS’05), 2005.

[4] G. Cabri, L. Leonardi, and M. Puviani.
Service-Oriented Agent Methodologies. In 5th IEEE
International Workshop on Agent-Based Computing
for Enterprise Collaboration (ACEC-07), 2007.

[5] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel,
M. Hepp, U. Keller, M. Kifer, B. König-Ries,
J. Kopecky, R. Lara, H. Lausen, E. Oren, A. Polleres,
D. Roman, J. Scicluna, and M. Stollberg. Web Service
Modeling Ontology (WSMO). W3C Member
Submission, 3 June 2005. Available from
http://www.w3.org/Submission/WSMO/.

[6] I. Dickinson and M. Wooldridge. Agents are not (just)
web services: Considering BDI agents and web
services. In AAMAS 2005 Workshop on
Service-Oriented Computing and Agent-Based
Engineering (SOCABE), 2005.

[7] H. Endert, T. Küster, B. Hirsch, and S. Albayrak.
Mapping BPMN to Agents: An Analysis. In First
international Workshop on Agents, Web-Services, and
Ontologies Integrated Methodologies (AWESOME’07),
page 164, 2007.

[8] J. Farrell and H. Lausen. Semantic Annotations for
WSDL and XML Schema. W3C Proposed
Recommendation, 05 July 2007. Available from
http://www.w3.org/TR/sawsdl/.

[9] D. Greenwood and M. Calisti. Engineering web service
- agent integration. In 2004 IEEE International
Conference on Systems, Man and Cybernetics,
volume 2, pages 1918–1925, 2004.

[10] C. Hahn, C. Madrigal-Mora, and K. Fischer.
Interoperability through a platform-independent
model for agents. In 3rd International Conference on
Interoperability for Enterprise Software and
Applications (I-ESA 2007), 2007.

[11] C. Hahn, C. Madrigal-Mora, K. Fischer, B. Elvesæter,
A.-J. Berre, and I. Zinnikus. Meta-models, models,
and model transformations: Towards interoperable
agents. In MATES, pages 123–134, 2006.

[12] T. Kahl, I. Zinnikus, S. Roser, C. Hahn, J. Ziemann,
J. Müller, and K. Fischer. Architecture for the design
and agent-based implementation of
cross-organizational business processes. In 3rd
International Conference on Interoperability for
Enterprise Software and Applications (I-ESA 2007),
2007.

[13] F. Kaufer and M. Klusch. WSMO-MX: A Logic
Programming Based Hybrid Service Matchmaker. In
4th European Conference on Web Services (ECOWS
’06), pages 161–170, 2006.

[14] M. Klusch, B. Fries, and K. Sycara. Automated
semantic web service discovery with OWLS-MX. In
AAMAS ’06: Proceedings of the fifth international
joint conference on Autonomous agents and
multiagent systems, pages 915–922, New York, NY,
USA, 2006. ACM Press.

[15] J. Koehler, R. Hauser, J. Küster, K. Ryndina,
J. Vanhatalo, and M. Wahler. The role of visual
modeling and model transformations in
business-driven development. In Fifth International

Workshop on Graph Transformation and Visual
Modeling Techniques, April 2006.

[16] M. Lenzerini. Data integration: a theoretical
perspective. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
233–246, New York, NY, USA, 2002. ACM Press.

[17] D. Martin, M. Burstein, J. Hobbs, O. Lassila,
D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-S: Semantic
Markup for Web Services. W3C Member Submission.
Available from
http://www.w3.org/Submission/OWL-S/, 22
November 2004.

[18] J. Mendling, K. Lassen, and U. Zdun. Transformation
strategies between blockoriented and graph-oriented
process modelling languages. Technical Report
JM-200510 -10, TU Vienna, 2005.

[19] C. Ouyang, M. Dumas, S. Breutel, and A. H. M. ter
Hofstede. Translating Standard Process Models to
BPEL. In CAiSE, pages 417–432, 2006.

[20] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos.
From stakeholder intentions to software agent
implementations. In CAiSE, pages 465–479, 2006.

[21] A. S. Rao and M. P. Georgeff. Modeling rational
agents within a BDI-architecture. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the
2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR’91),
pages 473–484. Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA, 1991.

[22] B. T. R. Savarimuthu, M. Purvis, M. Purvis, and
S. Cranefield. Agent-based integration of web services
with workflow management systems. In Fourth
international joint conference on Autonomous agents
and multiagent systems (AAMAS 05), pages
1345–1346, 2005.

[23] K. Schulz and M. Orlowska. Facilitating
cross-organisational workflows with a workflow view
approach. Data & Knowledge Engineering,
51(1):109–147, 2004.

[24] M. P. Singh and M. N. Huhns. Service-oriented
Computing - Semantic, Processes, Agents. John Wiley
& Sons, Ltd, 2005.

[25] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau.
HTN planning for Web Service composition using
SHOP2. In International Semantic Web Conference
2003, volume 1, pages 377–396, October 2004.

[26] J. Vidal, P. Buhler, and C. Stahl. Multiagent systems
with workflows, 2004.

[27] J. Yang, W. Heuvel, and M. Papazoglou. Tackling the
Challenges of Service Composition in e-Marketplaces.
In Proceedings of the 12th International Workshop on
Research Issues on Data Engineering: Engineering
E-Commerce/E-Business Systems (RIDE-2EC 2002),
San Jose, CA, USA, 2002.

248


