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ABSTRACT agreements and leave the system without providing their service or
In this paper, we develop a novel algorithm that allows service con- any form of compensation. Furthermore, these systems are often
sumer agents to automatically select and provision service providerhighly dynamic as service availability constantly changes. Given
agents for their workflows in highly dynamic and uncertain compu- this, we believe this uncertainty and dynamism must be considered
tational service economies. In contrast to existing work, our algo- in provisioning algorithms, especially when providers demand fi-
rithm reasons explicitly about the impact of failures on the over- nancial remuneration and when the consumer seeks to complete its
all feasibility of a workflow, and it mitigates them by proactively ~Workflow in a timely manner.

provisioning multiple providers in parallel for particularly critical However, most current research on the selection and provision-
tasks and by explicitly planning for contingencies. Furthermore, ing of providers for service workflows has not addressed this un-
our algorithm provisions only part of its workflow at any given Certainty in a satisfactory manner. Specifically, some existing ap-
time, in order to retain flexibility and to decrease the potential for Proaches use local constraints or simple preferential orderings to
missing negotiated service time slots. We show empirically that selecta service for a given task [5], and consequently make myopic
current approaches are unable to achieve a high utility in such un- decisions without considering their impact on the overall workflow.
certain and dynamic environments; whereas our algorithm consis- This can lead to overspending and missed deadlines, especially
tently outperforms them over a range of environments. Specifically, When services fail frequently. To some extent, this myopia can be
our approach can achieve up to a 27-fold increase in utility and suc- addressed by selecting service providers in advance to maximise
cessfully completes most workflows within a strict deadline, even an overall aggregated quality-of-service measure, subject to con-

when the majority of providers do not honour their contracts. straints (e.g., a deadline or budget constraint). Typically, this aggre-
gated measure is a weighted sum of various qualities, such as the
Categories and Subject Descriptors overall reliability, duration and cost of the workflow [9, 1]. A sim-
1.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence ilar approach is taken in [2], which proposes a decision-theoretic
measure to guide the provisioning. While these approaches con-
General Terms sider service uncertainty by including qualities such as the relia-
Algorithms, Experimentation, Reliability bility and availability of services, they tend to be vulnerable to fail-
ures. As they provision only single providers for each task, one fail-
Keywords ure may result in the loss of the complete workflow or require ex-
Service-oriented computing, service provisioning, workflows pensive and time-consuming replanning [9]. Finally, provisioning
a complete workflow in advance is risky in environments where ex-
1. INTRODUCTION plicit service level agreements are negotiated [2], as the consumer

Large-scale and open, distributed systems, including the Web, peer-may lose its initial reservation costs if parts of the workflow fail.
to-peer systems and computational Grids, enable participants to In this paper, we extend the state of the artin service provisioning
share resources and services with each other (e.g., complex databy proposing a novel strategy that uses decision theory as a prin-
processing services running on expensive hardware or traditionalcipled approach for reasoning about service uncertainty and taking
business services that are accessed through software interfeees). actions to maximise the consumer’s expected utility. In particular,
facilitate such interactions, service-oriented computing is emerging we build on our previous work on provisioning multiple providers
as a popular approach for allowing service consumers to dynami- in parallel for particularly unreliable tasks [8], but significantly ex-
cally select and provision service providers for complex workflows tend it to cover dynamic environments where service availability
that often require many interdependent services to achieve somechanges over time and where service provisions are negotiated us-
overall aim. In doing so, the consumers may need to choose from aing a market mechanism. To address these environments, our strat-
number of competing providers that offer the same type of service egy provisions only part of a workflow at a given time (e.g., it may
at different levels of quality. provision only immediately executable tasks to retain high flexi-
A key challenge in many of these systems is that participants bility, or it may identify and provision a number of highly critical
are autonomous, self-interested agents that act according to theitasks, if providers offer more reliable services when provisioned
own decision-making mechanisms. This means the behaviour of further in advance). It also constructs contingency plans where out-
service providers is inherently uncertain — they may de-commit comes are uncertain (to predict the impact of failures and the cost
from contractual agreements if this increases their utility (possi- of recovering from them) and refines initial high-level decisions at
bly paying an agreed penalty), and some may even default on therun-time to incorporate new information about the performance and
Cite as: Flexible Service Provisioning with Advance Agreements, Se- availability of services (e.g., when a highly reliable service fails, it
bastian Stein, Nicholas R. Jennings and Terry R. Pafgtec. of 7th will re-provision the task immediately and adjust its strategies for
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS|ater tasks in the workflow, in order to get back on schedule).
égt%ﬂ Eiiﬂgg?“bppgggssé'w””er and Parsons (eds.), May, 12-168, 20 By conducting a thorough empirical evaluation, we show that
' ! : 4 €xisting approaches are unsuitable for such dynamic and uncertain

Copyright(©) 2008, International Foundation for Autonomous Agents an .
Multiagent Systems (www.ifaamas.org). Al rights reserved. environments, and we demonstrate that our proposed strategy out-
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Term Description

performs the state of the artin most environments when services are '
s(e): S Theservice typeffered (equal to the requested type).

unreliable (and achieves good results even when services are de- i) 7+ | Thestarting fimeat which the service can be invokdd
terministic). During these experiments, we show that these trends () Zg (equal to thge requested time)
hold over a range of environments, including where providers fail er(c) : R | Thereservation costwhich must be paid immediatel

maliciously (i.e., do not pay compensation). In certain environ- by the consumer when entering the contract.
ments, we show that our strategy achieves a 27-fold improvement | cc(c) : R | Theexecution costwhich is the remaining cost (after
in average utility compared to current approaches and successfully the reservation cost) that the consumer must pay when

completes up to 50 times as many workflows within its deadline. invoking the service. _ o
d(c) : ZT | Theduration i.e., the number of time steps it will take

The remamder of thl_s paper is organised as folloyvs. In Section for the service to complete.
2, we begin by formalising our model of a service-oriented system. d¢(c) : R | Thefailure penalty which is paid to the consumer when
Then, in Section 3, we outline our flexible provisioning strategy, the service fails to complete successfully within the
and in Section 4, we evaluate it. Finally, in Section 5, we conclude. agreed duration.

2. SERVICE-ORIENTED SYSTEM MODEL

To allow us to devise a generic and principled approach to service | Prob. | Description . _ -
provisioning, we base our work on an abstract system model, rather Ps(c) | Thefailure probabilityis the probability that the service will

than any particular service standard or implementation. To this end, not complete successfully within the agreed duration and
pay the failure penalty s (c).

our model builds closely on previous work in the area [2, 9, 8]. In | p (o) | Thedefection probabilitys the probability that the provide

Table 1: Service contract terms.

the following, we first describe the types of workflows we consider will fail to provide the service and also fail to pay the agtee
(Section 2.1), then detail the provisioning process (Section 2.2) and penaltyd s (c) (e.g., if the provider crashes, leaves the market
finally discuss how services are invoked (Section 2.3). or maliciously disregards the market rules).

Ps(c) | Thesuccess probabilitys the probability that the provide|
2.1 Workflows will successfully complete the requested service within the

agreed duration.

In this paper, we are interested in the execution of a single work-

flow, which is selected by the agent at time= 0 (we assume that Table 2. Performance information (outcome probabilities).

time passes in discrete integer time steps). Formally, we define a

workflowas a tupleW = (T, E, 7,u), whereT = {t1,t2, ts3, ..., types and times are always identical. Furthermore, we assume that
tn} is a set ofn tasksandE : T' < T is a set ofprecedence con-  the consumer has some information about the probabilities of the

straints— a strict partial order ovetl’, where(t; — t2) € E possible outcomes of each offer, as shown in Table 2. In practice,

means that task must be completed before starting The func- this may be obtained through a trust and reputation mechanism and
tion 7 : T'— S maps each task i’ to an abstracservice type may be based on the past behaviour of individual providers (but we

whereS = {s1, s2, s3, ...} is the set of all service types. Finally, are agnostic about its origin in this paper). Together, these probabil-
u : Z¢ — R describes theeward of completing the workflow at ities describe all possible, mutually exclusive outcomes of an offer,

a given point in time. It is defined by anaximum rewargumax, a such thatPy (c) + Ps(c) + Ps(c) = 1. To retain a simple, generic
deadling tq, and a cumulativpenaltyfor late completion: model, and in line with related work mentioned earlier, we assume
. that the outcomes of any two distinct offers are independent.
tmax !f b< ta During the same time step as receiving offers from the market,
ut) = umax— 0t —ta) > ta At <td+uma/0 (1) the consumer may provision any number (or none) of these offers
0 |f t Z td“y‘U/max/(s7

for the tasks of its workflow. To do this, it sends a single acknowl-
We treat a workflow asompletedvhen all tasks if” have been edgement to the market,: C' — T, that maps offers to the cor-

executed successfully in the order prescribedFby The overall responding tasks of the workflow, wheteis the set of all offers
profit of a workflow execution is the difference between the agent’s received during the time step. At this point, the consumer must pay
reward (or0 if none has been obtained before time stap, = the reservation costs of all provisioned offers, and any offers not
[ta + umax/d]) and the total cost it has incurred by provisioning in the domain ofu are implicitly assumed to be rejected. We also
and invoking services. assume that the consumer may provision several offers for a single

. L task (e.g., to increase its overall success probability).

2.2 Service Provisioning
To complete its workflow, the service consumer needs to discover 2.3 Service Invocation
and enter contracts with (i.gorovisior) suitable service providers At the end of any time step, the consumer may invoke its pro-
for each task in the workflow. We have adopted the contract-net visioned offers, provided that all relevant precedence constraints
protocol to model this process, as it is simple and has been widely given by F have been satisfied and that the agreed starting time
used in distributed multi-agent systems [6]. In more detail, the con- matches the current time. The outcome of the invocation is one of
sumer may send eall for proposals  : S x Z], to the service  the outcomes listed in Table 2, but we assume that it is not known
market to request a particular service type at a given time step. Foruyntil the beginning of the time step at which the service is sched-
exampleyp = (s1,2) indicates that the consumer requires a service yled to end (e.g., if invoking offer with ¢(c) = 15 andd(c) = 10,
of type s, to start at time step. the consumer will only be notified of the outcome at the beginning

In response to each call, the market returns a seffefs C.,. of time stept = 25).
These are potential contracts that the service providers participating
in the system are willing to offer to the consumer. Each offer
C,, contains a number of terms, as given in Table 1. 3. FLEXIBLE PROVISIONING

This process of requesting services and receiving responses mayn this section, we detail our novel provisioning strategy. We begin
be repeated arbitrarily often during a given time step, but we as- in Section 3.1 with a brief overview of our strategy, which is then
sume that the offers returned for two requests with the same serviceelaborated upon in Sections 3.2-3.4.
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3.1 Strategy Overview Parameter | Description

. . . . . I . to(w) : Z7 | Number of time steps to provision offers in advance
As outlined in Section 1, we are interested in building a rational ti(w) : ZSE Time interval to request services for.

agent that acts to maximise its expected utility. For the purpose of | ;) . z+ | Maximum number of offers to provision.

this paper, we assume that the agent is risk-neutral and therefore s(w) Strategy for choosing offers to provision when mdre
that the utility it gains from executing a workflow is equal to the thann (w) offers are available.
profit it makes. Hence, we want our agent to adoptrategy(an Table 3: Task strategy parameters.
appropriate mapping from observed system states to actions) that _ _
maximises the expected difference between the reward and cost of|_Statistic Description _
following it. Formally, given a workflowl/” and some probabilis- ?EZ; E ﬁxz:gg: g; :EZ Lispirgfééogxiﬁtﬁ on cost
tic beliefs about the behaviour of the market, we are interested in Ezw) ‘R Overall expected costf(«) + ce(w)).
finding strategyS™: pw,€) : [0,1] | Average of the probability of outcome
* d(w,€) : R Average of the expected time until outcomds

s = argfgnax E(R(S) - C(5)) @ () knowrgJ (measured Ff)rom first time step that call for

where R(S) and C(S) are random variables describing the final 2 ) proposals was submitted for).
. - w,€) 1 R Average of the expected squared time.

reward and cost, respectively, of using stratéyo execute the B(w,e) : R Variance of time §(w, €) = d(w, €) — d(w, €)2).

workflow, and EX') denotes the expected valuet —
However, findingS* is intractable for the same reasons as de- Table 4: Strategy performance statistics.
scribed in [8]. First, selecting service providers for the tasks of the |oc4ign strategies for parametefw):
workflows we consider is a combinatorial, NP-hard problem, even ¢,y ¢ ye bal anced}. The first three indicate that the consumer
when all offers are known in advance and service behaviour is de- Will_alway’s choose the offers with, respectively, the lowest ex-
terministic. Second, calculating the probability distribution for the pected costd,(c) + ce(c) — Py(c)ds(c)), the lowest probability of
duration of aworkflov_v with unc_ertz_aip task durations is known_to be not succeedingl(— P, (c)), or the lowest end timet(c) + d(c)).
# P-complete and this makes it difficult to calculater&s)). Fi- The selection strategyal anced will pick the offers that minimise
nally, encoding a potential strategy is far from trivial due to the po- 5 sm of these parameters, each normalised to the interva|
tentially huge decision space. For these reasons, we adopt a heurisg thato corresponds to the offer with the lowest paramet;ar and
tic approach in our work, which allows us to find good solutions , the highest. We also assume that there is a strategy not to do
in a reasonable amount of time. More specifically, we use local anything wnai (i-€., the agent will stop executing the task).
search techniques to find a strategy that maximises the expected Fyrthermore, we assume that the consumer has some perfor-
profit, we rely on fast approximations where analytical SOlUtions 4,ce information about each of the strategies, which it previously
are too costly, and we search a subset of potential strategies thajgant by observing the response of the market to various calls for
consider only a limited number of contingencies. proposals. Specifically, we assume that it has repeatedly submitted
_In the remainder of this section, we first discuss the types of 45 of proposals corresponding to its known strategies to the mar-
h_|gh-level provisioning decisions and c_ontlngent strategies we CON- ket Then, using simple calculatidnst has recorded a number of
sider for each task of a workflow (Section 3.2). Then, we describe giatisical averages for the probabilities of various outcomes, for the
how these are used to define an overall stra®dyr a complete  gynected costs and for the durations associated with the different
workflow (Section 3.3). Finally, we outline our overall provision-  ,oyisioning decisions (based on its trust information and without
ing algorithm that finds a good strategy and continuously adapts it ecessarily provisioning and invoking any offers). This informa-
during workflow execution (Section 3.4). tion is summarised in Table 4. Hekegenotes the overall outcome
ik : of the strategy, witke € {success,unavai |l abl e,fail ed} (re-
3.2 ngh Level Task Strategles ferring, respectively, to the events where at least one provisioned

We believe that it is generally inefficient for a consumer agent to offer is successful, where no suitable offers were found and where
provision offers for all workflow tasks in advance. Doing so would  some offers were provisioned but failed).

restrict the agent unnecessarily, as it must commit to particular ser- . . .
vices and execution times, and is therefore inflexible when services 3-2.2 Planning for Contingencies
fail. On the other hand, some providers may offer better service The simple provisioning strategies discussed so far allow the con-
terms when provisioned in advance, and the consumer should de-sumer agent to make some predictions about the likely outcomes,
cide automatically whether it is appropriate to trade off a higher the cost and duration for completing a task, given that it adopts a
quality with decreased flexibility. To this end, our agent initially certain strategy. However, assigning a single strategy to each task is
considers simple high-leverovisioning strategieshat determine unlikely to be sufficient in uncertain environments as the consumer
when and how it intends to submit a call for proposals for a given needs some capabilities to plan for contingencies and predict their
task, and how it will select from the returned offers. In this section, impact on the cost and feasibility of the workflow. Hence, we de-
we formalise these strategies and discuss how they can be extendedided to include several contingent strategies that the consumer will
to express task strategies with contingencies. use if its primary strategy was not successful.

. These are shown in Figure 1. Hegg, is the main strategy the
3.2.1 Task lerary consumer will use to provision the task, but it also has several
High-level provisioning strategies are available to the consumer strategies to fall back on if, was not successful:
as a library,S — P(Q), that maps service types to strategies.
Each strategyw €  is described by a number of parameters,
as shown in Table 3. The first two prescribe how the consumer
will formulate its call for proposals, e.g., if,(w) = 100 and
t;(w) = 3, it will request services 100 time steps in advance and
for 3 consecutive time steps. The latter two describe how it will
select from the returned offers. Here, we consider four simple se- Full details are omitted for space reasons, but can be fouf.in

{cost, unreliability,

e s; is used to re-provision offers when the preceding tasks in
the workflow have not been completed by the time the initial
offers are available for invocation. In this case, the consumer
will wait until the preceding tasks have completed and then
provision new offers using;.
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O repeat? (i.e., sp has been carried out), it is easy to refine the expected out-
comes of a task, considering the actual offers.

task conflict?
s

‘ LR > O wer 3.3 Workflow Provisioning Strategy

DI > Su
! \ Given the high-level task strategies described in the previous sec-
all offers failed? O repeat? tion, we now outline how they are used to express the overall work-
flow strategy,S, that our agent seeks to maximise in Equation 2. In
particular, we describe the strategy as a tuple:

‘S:(avﬁaVadﬁvdW7E/) (3)

wherea, 8 and~ are a set partition of’, describing the current
state of each workflow task. Hera,contains the tasks that have
been completed successfully,contains the tasks for which some
offers have been negotiated, andontains the tasks for which no
e sy is adopted when the initial offers were invoked, but did  offers are currently provisioned. The functiofis andd., provide
not complete successfully. Itis carried out as soon as the last fyrther information about the agent's high-level decisions for the
offer completes unsuccessfully. members ofy and~, respectively. Based on the discussion of the

To further extend the number of strategies we consider, we note Previous sections (¢;) of a provisioned task; € 3 is:
that the consumer might continue to repeat certain strategies until Ao (t) = (o S14, Suss 514 )
a task is completed (e.g., when the consumer does not have a tight 8(t) = (cpi 513, Suis 51:)
deadline, it may decide to select the cheapest offer on the market,Wherecpi is the set of offers already provisioned fior while the
attemptit, and, in case of failure, simply try another cheap offer un- other objects refer to the contingent strategies. Similalyt;) of
til the task is eventually completed). Hence, we extend the space ofg taskt, € §is:
possible strategies fot, s, ands; by adding a repeated strategy,

w, for eachw € Q. The statistics for a repeated strategycan be dy(t5) = (Spjs S155 Sujy 8555 Pl5) 5)
directly derived from those for the non-repeate@see [7]).

Now, when the service consumer plans to provision a given task
further in advance (indicated by a largg(s,)), it is often desir-
able for it to do so earlier in the workflow, when some predecessors
of the task may still be executing. This means that the consumer

will waste less time waiting to invoke tasks after their predeces- 1o indicate that a cheap and unreliable task should be completed
sors have been completed, but it also increases the risk of conflicts - P . p
before attempting a particularly expensive one.

with preceding tasks if these take longer than expected (€.g., due to Using the performance statistics outlined in the previous section,

failures or uncertainty about the offers that will be available). To ;
we can estimate the overall expected cost and reward of a strategy

express the risk the agent is willing to take, and to determine the ) S .
time of provisioning, we attach late probability, p;, to each task. S (see_ [7.])’ W.h'Ch we use to calculate the o_bjectlve functl_on that
is maximised in Equation 2. In the next section, we describe how

This is the largest acceptable probability when provisioning task this information is used in the context of our overall provisionin
that one of the predecessorsipfvill still not have been completed strategy P 9

successfully by the time stefp was provisioned for. More for-

mally, the consumer will provision tagk with primary strategy,, 3.4 Adaptive Optimisation Algorithm

at the earliest possible time stepvherep, (t;,t + ta(sp)) < pi, ) . - ) .
andp,(t;, z) is the probability that at least one of the predeces- The qverall behaylour of our flexible service consumer is shown in
Algorithm 1. At timet¢ = 0, the consumer first selects an appro-

sors oft; has still not been completed successfully at time step ; ) o X . ;
priate workflow for its current objective (line 2). In practice, this

Expressing the starting time of a task in such a way allows us to A | i

succinctly express when to start provisioning relative to other tasks My come from a plan library, it may be provided by a user or even

in the workflow. synthesised at run-time using a planner. The agent then adopts an
initial strategy for executing the workflow§ = (0,0, 7,0, d~, 0),

To conclude, we note that, given a primary strategythe con- . - . SRS .
tingency strategies;, s ; ands.,, as well as the late probability;, whered, is some !nltlal aIIocathn of task provisioning strategies
that the agent will improve laté(line 3).

it is straight-forward to generalise the statistics from Table 4 to the L ) . .

whole task by considering the possible outcomes of Figure 1. Fur- 1 1is is followed by the main loop of the algorithm (lines 5-19),
thermore, depending gn, we predict when provisioning will start whlc_h is repeated every time step. First, the consumer receives all
for each task, estimate the expected waiting time between the starS€Tvice outcomes (line 6) and updates its current strategy accord-
of the task and the completion time of its predecessors and produced!Y (line 7). During this update, the consumer removes any failed
a more accurate estimate of the late probability that depends on the®" Missed offers and moves successful tasks ffoto a. If nec-
expected duration and variance of the preceding fagsmbining essary, it also updates its hlgh-le\_/el task strategies, for gxample by
these statistics, we can estimate the expected completion time anddOPting the strategy;; as the primary strategy of task if the

its variance for each task. Finally, once a task has been provisionedlaSt remaining .provisioned offer for that task has just failed (in this
case, the task is also movedh

Figure 1: Task contingencies.

e s, is used when the initial strategy did not result in any pro-
visioned offers at all (e.g., if there were none available on the
market). In this case, the agent waits until all preceding tasks
have been completed and adopis

wheres,; is the primary provisioning decision ang; is the late
probability. Finally,E’ : T « T, is a set of temporary edges, so
that £ U E’ is still a strict partial order ovef". This allows the
agent to express additional precedence constraints between tasks
where this increases the overall expected utility — for example,

2For detalils, see [7]. Briefly, we use a normal approximatiomglthe

critical path [4] that leads to the task in question. Workiragkwards from 3In our work, we start with a simple allocatiohy () = (w, w, w,
the task, we then identify a predecessor during which piaisg will take w, 0.01) for all tasks, witht,(w) = 0, t;(w) = 10, n(w) = 1 and
place and use the probability density function of a normatitistion to s(w) = unreliability. This already constitutes a feasible strategy
estimate the time of provisioning (relative to that predescgsshe actual in most environments and leads to a quicker convergence dilmnigitial
late probability and an expected waiting time. optimisation stage than a completely random initial strategy
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Algorithm 1 Summary of flexible provisioning strategy

t—20
W « SELECTWORKFLOW
: 8§ « CREATEINITIAL (W)
: abandoned— false
repeat
O «— RECEIVEINVOCATIONOUTCOMES
S «— UPDATEWITHOUTCOMESS, O)
repeat
S — OPTIMISE(S)
S < REALISESTRATEGIEYS)
until S was not altered in line 10
if PREDICTUTILITY (S) > 0 then
PROVISIONSERVICEYS)
INVOKEDUESERVICESS)
else
abandoned— true
end if
18: te—t+1
19: until abandoned-= true or workflow completed

RPRRRPRRRRE
NOORWNRPOORNRARXNE

Next, the algorithm attempts to improve its current strategy (line
9). We use a local search for this, as such an approach is well-

the feasibility of our approach in environments of varying uncer-
tainty (i.e., where services are more or less likely to fail) and also
in environments where the market favours certain provisioning ap-
proaches (e.g., where early provisioning is rewarded by more reli-
able services). In the following, we first describe how we simulate
the market (Section 4.1), then we detail the strategies we test (Sec-
tion 4.2) and finally describe our results (Section 4.3).

4.1 Market Setup

In our experiments, we assume that there are five different types
of services § = {s1, s2, s3, sS4, s5}). To simulate the market, we
keep a list of currently available offers associated with each time
step, from the current stdp to 54250 (hence, the consumer may
provision services up to 250 time steps in advance). During the
simulation, at the beginning of each time step, we first generate new
offers that become available in the market by drawing the number
of new offers and their parameters from random distributions. More
specifically, for each time step in the ligt (fi11, . . ., fi1250), we
generate offers using the distributions in each row of Table 5. First,
we generate the number of offers by drawing a sample from a Pois-
son distribution with a mean given by the birth rate in that%ow

suited for the high-dimensional decision space and the non-linear Then, for each such generated offer, we assign it the service type
objective function we consider. It also deals naturally with updated given in the table and draw a value for the reservation cost, execu-
information at run-time and has any-time properties that mean it tion cost and service duration from the specified distribufioAd

can be adapted for environments where limited time is available at other offer parameters, such as the failure probability and penalties,
each time step. Specifically, we adopt simulated annealing, which are determined according to our experimental parameters detailed
is less prone to suffer from local maxima than deterministic local pelow. At the end of each time step, we remove offers in a similar
search techniques [3]. Briefly, our search generates new neighbou way by drawing a random sample from a Poisson distribution with
of a strategyS by: changing a single provisioning strategy of any its mean given by the death rate. This models the demand for such
task; changing late probabilities; and altering the temporary edgesservices and we remove the generated number of offers from that
in E. It also attempts to add or remove offers from an already time step (or all offers if the number exceeds the current supply).
provisioned task, without performing the associated provisioning.

When the optimisation procedure concludes, the consumer next ["Row | Type | Reserv. | Exec. | Time Birth | Death
identifies each task, € ~ that is ready to be provisioned (as indi- Cost Cost Rate | Rate
cated by its late probability;;, or if all its predecessors have been 1 81 Up(25) | Un(25) | Up(5) [ mo/2 | ra/2
completed). For these tasks, the consumer simply follows the as- | 2 51 Up(5) | Un(5) | Up(40) | 1p/2 | Ta/2
sociated strategy,; and updates its strategy with new offers that 3 52 Up(L) | Un(5) | Un(50) | 7o Td

- 4 s3 Up(10) | Up(10) | Uk(35) | 7 rd
are currently on the market (line 10). As before, the consumer does | 4 Un(50) | Un(1) | Un(25) | s y
not perform the actual provisioning yet, as it may still improve its 6 s5 Un(1) | Un(50) | Up(25) | mp ry

initial selection. To this end, if any offers were added, the con-
sumer again optimises the workflow — on one hand, this allows
it to refine the selected offers, and on the other hand, it can adapt |, our simulations, a consumer is rewarded a maximum utility of
the remainder of the workflow to the newly selected offers. This umax = 2000 for completing a workflow, with penalty = 40 and

continues until no more new tasks are provisioned. _ deadlinetq = 200. Each workflow consists of 8 tasks (with types
After this, the consumer checks if it still expects to receive a pos- pgsen randomly fron$) and we generate them by randomly fill-
itive utility from following the workflow (line 12). If so, it finalises ing an adjacency matrix until at least a quarter of the total number

its provisioning decisions by agreeing to the offers selected during ¢ possible edges have been added, thus ensuring that there are sev-
the time step, and it invokes any executable tasks that are due aty 4 parallel and sequential tasks in the workflow.

the current time step. During this, the consumer also removes from  \ye chose these parameters to represent a realistic and challeng-
its current strategy all reservation and invocation costs it has just ing scenario with a relatively short deadline, but a sufficient maxi-
incurred (this is important because the consumer has now paid for ym ytility to allow the agent to afford a number of failed service
parts of the workflow, effectively raising its overall value). invocations in uncertain environments. The workflows we test here
This overall behaviour continues until the consumer either does 4, small, because the two strategies that rely on integer program-
not expect to gain any utility from its current strategy or if the work- ming techniques were unable to deal with larger cases. However,
flow is completed. To test the performance of this flexible strategy, e compared our approach to the remaining strategy in other en-
we conduct a detailed empirical evaluation in the next section. vironments, including larger workflows with up to 50 tasks, and
obtained the same broad trends as presented in this paper.

Table 5: Service type parameters.

4. EMPIRICAL EVALUATION

As our methodology is a heuristic technique and due to the diffi-
culty of finding an analytical solution (as described in Section 3.1)
we have conducted a thorough empirical study of our algorithm  416undy, by a proportion of at most, i.e.,u4s (m) is a uniform distribution
in a simulated environment and compared it to a number of cur- on the interval[(1 — k) - m, (1 + h) - m]. We useh = 0.2 in all our
rent approaches. The primary focus of this section is to investigate experiments, indicating a fairly high heterogeneity of ofe

“This is a common distribution for modelling random arrival egeriWe
user, = rq = 0.005, unless noted otherwise.

Swe useldy, (m) to refer to a uniform distribution with mean that varies
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4.2 Strategies Due to the time required to build the library, we do this once for
We evaluate the performance of four strategies: the first three are€very environment in this section and then re-use the same library
based closely on the work presented in [9], but, more generally, When repeating our experiments (we have verified that there is no
represent common provisioning approaches that are widely used inSignificant difference in our results when using a different library).
the literature, such as [1]. The fourth is the flexible provisioning

strategy proposed in this paper. We briefly describe each below. 4.3 Results
) o In the following, we discuss the results of our experiments. Where
4.2.1 LocaWeighted Optimisation appropriate, we have carried out ANOVA followed by pairwise t-

This strategy provisions services completely on demand (i.e., when tests to ascertain the statistical significance of the results (at the
the respective task becomes available). During provisioning, the P = 0.005 level) and we give 95% confidence intervals for all data.

consumer considers all offers in the nextime steps (we set = We decided to test the four strategies over a number of different en-
20 as this produces good results for the environments we consider)vironments, where providers fail maliciously without paying com-
and then provisions the offef that maximises a weighted sum: pensation (Section 4.3.1), where providers give refunds when they

fail (Section 4.3.2), and where providers offer better serviceswhe

; 3 provisioned with varying advance notice periods (Section 4.3.3).
¢ = argmax Z w; - Qi(c) (6)
¢ =l 4.3.1 Environment 1: Malicious Providers
‘ B 0 if gmaxi = Gmin,i 7 During our first set of experiments, we evaluated the performance
Qie) = W otherwise ™ of the four strategies in environments where service providers are
'max, i 'min, 7

increasingly unreliable. To this end, we varied an overall average
whereg: (¢) = c.(c) + ¢ (c) is the combined total cost of the offer,  defection probabilityl across several experiments and used this to
¢2(c) = 1 — Py(c) is the probability that the task will not succeed generate the defection probability of offéraVe also assume that
andgs(c) = t(c) + d(c) is the end time of the offer. The values services either succeed or defect (i.e., the failure penalty is irrele-
for gmax: @andgmin,; are the largest and smallest of these parameters vant). This case is challenging for consumers, as they do not get
among the offers that are considered, and each weigh [0, 1] compensation for failures, but it is realistic in highly dynamic dis-
attaches a relative importance to the associated parameter (withtributed systems, where some providers may act maliciously and
>, ws = 1). We also assume that the strategy will immediately simply fail to perform the service they were paid to do. Exam-
attempt to re-provision any failed offers. ples include peer-to-peer systems, where providers may frequently
For the purpose of our experiments, wedet= w; = w3 = 1, leave the system and where it is difficult to enforce contracts.

which strikes a balance between the various qualities (in most en- The results of our experiments are shown in Figure 2, which
vironments, we did not observe a significant difference in perfor- plots the average defection probability of an environment against

mance when adopting other weight distributions). the average profit (as a proportiomofax) that each strategy gaihs
. L When providers never defeai & 0), all strategies perform well,
4.2.2 GlobaMeighted Optimisation achieving between 70-90% of the maximum reward, and there is no

This is perhaps the most widely adopted approach for provisioning significant difference between either of the global optimisation ap-
services in the literature [1, 9]. Here, the agent observes the marketproaches and the flexible strategy. Intuitively, both global strategies
once, then selects and provisions one offer for each task, so that sare equivalent here, because there is no need to re-provision failed
weighted sum similar to Equation 6 is maximised. This sum now tasks, and they both perform well due to the certain information
aggregates the quality parameters over the entire workflow and maythey have about the cost and duration of the complete workflow.
contain constraints, such as an overall budget or time limit. The flexible strategy similarly performs well — although it does
Compared to the work in [9], we have added suitable exten- not provision the complete workflow in advance, it makes accurate
sions to deal with explicit time slots for services and we use ILOG predictions at the start (with little uncertainty) and provisions ser-
CPLEX to solve the associated integer programming problem. We vices as it proceeds through the workflow. The local optimisation
again usaw; = wy = w3 = % and set the overall cost constraint approach performs worse than the other strategies, as it takes my-

to umax and the time limit tafzero — 1. opic decisions and therefore occasionally excegds eventmax.
As d increases, all strategies generally perform worse, because
4.2.3 Adaptive GlobalVeighted Optimisation they increasingly have to pay for services that do not perform as
This strategy is similar to the previous, but it re-provisions services Promised. The non-adaptive global optimisation strategy is most
when they fail. affected asl begins to rise, due to it only attempting one execution
of the workflow before giving up. If it succeeds, it gains a relatively
4.2.4 FlexibleProvisioning high reward, but if it fails, it loses its initial investment. Hence, the

This is our flexible provisioning approach as presented in the previ- Pérformance trend closely follows the average success probability
ous section. As learning and trust are not the focus of this paper, we©f @ single executhns, i.e., the probability that all eight workflow
assume that the agent has access to accurate trust information (i.e{asks succeedl — d)°. . L

it knows the outcome probabilities of a given offer). We also build !N contrast to this, the adaptive optimisation strategy performs
a task strategy library by taking 2000 independent observations of cOnsiderably better than the non-adaptive one as the defection prob-
the market over time and recording the predicted outcomes of each@Pility begins to rise, up td = 0.4. On this interval, failures oc-

of a set of possible strategies, which we generate by considering theCUr occasionally and the adaptive consumer is generally able to re-

Combma.t'pns. of Fhe advance times(w) € {0’ 10,20, ..., 250}‘ GAgain, we draw from a distributiotyy, (d), whereh = min (0.2, ') and
the provisioning intervalg; (w) € {1, 10,20, ...,100}, the num- 1’ is the largest real number with + ) - d < 1.

ber of parallel providers(w) € {1,2,3,...,10} and all selection  7\we ayerage the profit over 750 runs for the flexible and thel lapa
strategies. Considering that each strategy may be repeated, this reproaches, while we average it over 250 runs for the globamogation
sults in 22880 possible high-level strategies for each service type. approaches due to their more time-intensive nature.

254



100 . . . . . . — . 100 . . . . . . — .
90 L Flexible —— | 90 + Flexible —— |
— \ Global --&-- — \ Global --&--
e 80p Adaptive Global-- - - g 80N Adaptive Global--= -
2 70 Local --v-- 1 2 TOF4_ Local --v-- A
£ E P Sy
% 60 b % 60 b
E 50 . E 50 .
S 40t 1 S 40t 1
& 30t ~ & 30t ~
g 20°F . g 20°F .
£ 10t ] 2 10} ]
I — — —
% 18 e ¥ e w4 % 13 “?"“é*‘f:;—--\-svv—-*—’-‘ -
© - r . b = - r B S 1
2 2071 L 1 2 20 e
-30 | ooy -30 1
-40 + . -40 + .
_50 1 1 1 1 1 1 1 1 1 _50 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Defection Probability Failure Probability
Figure 2: Performance of strategies in environments where Figure 3: Performance of strategies in environments where
providers increasingly defect. providers fail, but give refunds.
provision the workflow to meet its deadline. Howeverdat 0.5, flexible strategy outperforms or is comparable to the other strate-

failures become too numerous (the consumer now fails to completegies we tested. Averaged over all values dowe tested, the flex-
69.0% of its workflows withintzerg) and the consumer begins to  ible approach achieves a profit ®f2.34 + 16.09, while the non-
make an overall loss. As the defection probability rises further, adaptive and adaptive global approaches achieve try80 +
this loss increases, eventually levelling off towadds- 1.0. This 26.85 and183.60+37.83, respectively. The local strategy achieves
considerable loss occurs because the consumer lacks the capabilityn average profit af12.30 £ 20.58.
of predicting the overall cost it will incur by re-provisioning and . . .
whether this investment is rational, given the defection probabili- 4.3.2 Environment 2: Failures with Refunds
ties of services. Rather, it will persist in retrying more services and In our next experiments, we were interested in environments where
making further investments, despite a high failure probability. providers are not malicious, but offer full refunds to the consumer
Next, the average profit of the local strategy initially drops less in case of failure. Hence, the setup is similar to the previous exper-
quickly than the global strategies. This occurs because it is lessiment, but we now assume that when providers fail, they immedi-
affected by a small a number of failures than the global approach, ately refund both the reservation and the execution cost of the ser-
which may need to re-provision its workflow completely upon a vice. This is a more realistic scenario when services are offered by
single failure. In some environments, when the defection probabil- reputable companies, when some central entity monitors the sys-
ity is d = 0.2 andd = 0.3, it even outperforms the adaptive global tem or when contracts are easily enforceable. Examples of such
approach for the same reason. Beyond that, it follows a broadly systems may include Web services or scientific Grids.
similar trend to the adaptive global strategy, as it also invests heav- The results are shown in Figure 3 and clearly highlight similar
ily in services without ever completing the workflow. trends as in the previous experiments for the non-flexible strategies
Finally, we consider the performance of the flexible strategy. At (all achieve slightly higher profits and tolerate higher failure prob-
low defection probabilities, it performs as well as the global ap- abilities). The local strategy now performs better than before as it
proaches. However, at = 0.2, it begins to dominate all other  will pay at most once for each task, and it even achieves a small
strategies. Unlike the other strategies, it reasons explicitly about positive average profit when the failure probabilityfis= 0.6.
failures and their impact on the workflow cost and execution time,  The flexible strategy performs significantly better in this environ-
and so at higher failure probabilities, the flexible strategy is able ment, achieving a high positive profit even at failure probabilities
to deal proactively with failures (e.g., by provisioning them redun- of up to f = 0.8. More specifically, atf = 0.6, our strategy
dantly or by favouring more reliable providers). In more detail, achieves an average profit@$0.86, with 95.7% of workflows ex-
this means that the flexible approach is able to achieve an approx-ecuted successfully befotg.,, compared to the best non-flexible
imately 100% improvement over the best-performing non-flexible profit of only 34.34 with 19.1% of workflows successful (an ap-
strategy atd = 0.4 and it still makes a positive profit at = 0.5 proximately 27-fold improvement in average utility). At= 0.8,
andd = 0.6 when all other strategies make a loss (in fact, the flex- the flexible approach still complet88.1% of workflows success-
ible strategy successfully completes over 96%, 93% and 84% of its fully, while the most successful non-flexible strategy completes
workflows before,er in these environments, respectively). 1.6%. This good performance is due to the considerably lower
However, atd = 0.7, we notice that the flexible strategy makes cost of invoking services redundantly, as now the consumer ef-
a small net loss. This loss is not entirely surprising, due to our re- fectively pays for only those services that succeeded rather than
liance on fast heuristic techniques to estimate the expected utility of all invoked services. Nevertheless, as before, we notice a small
aworkflow. These techniques make some simplifying assumptions, loss when the failure probability reachgs= 0.9. For all val-
which generally result in slightly optimistic utility estimates. For ues for f tested, the flexible approach achieves an average profit
example, we use the critical path to estimate task durations, but thisof 901.31 4 14.84, the global approaches achie2@).60 + 26.07
ignores tasks outside that path, which might become critical at run- (non-adaptive) and35.80 & 34.30 (adaptive), while the local ap-
time. Hence, the consumer will expect to achieve a small positive proach achieve$73.68 + 17.13.
utility in these extremely challenging environments, but then dis- .
cover at run-time that it needs to re-provision more often than ex- 4.3.3 Environment 3: Different Market Conditions

pected in order to complete the workflow in time. Nevertheless, the Finally, we tested the performance of the strategies in environments
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Figure 4: Performance of strategies when advance provisioning
is preferred (negative discount) and when on demand is pre-
ferred (positive discount).

while the global approaches achieve onl§9.69 + 17.78 (non-
adaptive) andi28.40 + 24.70 (adaptive), and the local approach
achieve$16.37 + 15.17.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel provisioning strategy that
extends the state of the art in several ways. First, our approach
provisions only part of a workflow at a time and adapts its deci-
sions at run-time, making the strategy more robust in uncertain en-
vironments. Second, we consider highly dynamic systems, where
service availability changes over time and where the consumer typ-
ically does not know what services will be available in the future.
We address this by learning high-level strategies to predict the typ-
ical performance of certain workflow tasks. Finally, our approach
proactively considers contingencies to deal with service failures
and conflicts, but does so by exploring only a limited number of
outcomes and by considering each workflow task in isolation, thus
increasing the efficiency of our approach.

We believe our proposed strategy is highly relevant in a wide
range of application areas, and we have adopted an abstract system

where either advance or on demand (just-in-time) provisioning is model that can be easily applied to Web services, Grid services and
preferred and results in a discount in execution cost and a higher re-peer-to-peer systems. Although we use the contract net protocol,
liability. Such conditions might occur, respectively, when providers oyr approach should be applicable to other market mechanisms. In

prefer to be given early notice by consumers, so that they can plan
their resource availability in advance, or when they find their re-
sources under-utilised and therefore offer discounted services at th
last minute. To express this preference, we vary a discount factor,
d, from -1 to 1. When negative, this indicates a preference for early
(advance) provisioning and when positive, on demand provision-
ing is preferred. In more detail, we use it during offer generation
to adjust the distribution means for the execution cost and failure
probability by a proportion given bjd]. We consider all offers
generated for the current time step, as provisioned on demand,
and any offers generated foy, 40 and beyond as provisioned in
advance. Between these two, we vary the discount factor linearly.
For example, whed = —0.6, f = 0.5 and we generate an of-
fer for ¢,430, then the corresponding mean failure probability is
(1—-3/4-0.6)-0.5 = 0.275. We use all other experimental pa-
rameters as in our first experimental setup, but kéegp 0.5, and
now setr, = 0.5 andrq = 5, to ensure that discounted offers are
available only at their respective time steps.

Figure 4 shows the results in these environments. Here, we note

that the non-flexible strategies perform well only in extreme con-
ditions — the global approaches excel when advance provisioning
is preferred, while the local strategy performs welkiaends to 1.
When neither advance nor on demand provisioning is strongly pre-
ferred, none of the non-flexible strategies do well, as most of the
services in the market are unreliable. In factdat —0.1, these
strategies all make a net loss. In contrast to this, the flexible strat-
egy manages to achieve a high profit over all environments, and,
in most cases, significantly outperforms all other strategies. This
is because the flexible strategy adjusts its provisioning strategies
to the environment: af = —1, it provisions services, on aver-
age,47.40 + 1.46 time steps in advance, dt= 0, this drops to
23.04 + 0.67 and atd = 1, it provisions only6.36 + 0.41 time

steps ahead. However, we also note that the flexible strategy is nowt’]

outperformed in two cases: dt= —0.9 andd = —1. In these
cases, it suffers from not provisioning all offers in advance (and
thereby producing a tight-fitting but reliable schedule). Instead, the
strategy continues to provision only parts of the workflow (although
now provisioning further ahead) and hence sometimes excgeds
Nevertheless, when averaging over all valuesifoonsidered here,
the flexible strategy achieves an average utilitp®3.87 4+ 9.56,
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particular, the high-level decisions discussed in Section 3.2 could
refer to strategies for participating in auctions, to carry out bilateral
negotiations or simply for selecting services published on a registry.
There are several ways in which we plan to extend our work.
First, we plan to improve our utility estimation technique, which
sometimes overestimates the expected utility of a workflow. Sec-
ond, we will extend our contract model to cover more complex us-
age models, such as subscriptions for repeated service invocations.
Finally, we will consider workflows with conditional branches.
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