
Flexible Service Provisioning with Advance Agreements

Sebastian Stein, Nicholas R. Jennings and Terry R. Payne

Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
{ss2,nrj,trp}@ecs.soton.ac.uk

ABSTRACT
In this paper, we develop a novel algorithm that allows service con-
sumer agents to automatically select and provision service provider
agents for their workflows in highly dynamic and uncertain compu-
tational service economies. In contrast to existing work, our algo-
rithm reasons explicitly about the impact of failures on the over-
all feasibility of a workflow, and it mitigates them by proactively
provisioning multiple providers in parallel for particularly critical
tasks and by explicitly planning for contingencies. Furthermore,
our algorithm provisions only part of its workflow at any given
time, in order to retain flexibility and to decrease the potential for
missing negotiated service time slots. We show empirically that
current approaches are unable to achieve a high utility in such un-
certain and dynamic environments; whereas our algorithm consis-
tently outperforms them over a range of environments. Specifically,
our approach can achieve up to a 27-fold increase in utility and suc-
cessfully completes most workflows within a strict deadline, even
when the majority of providers do not honour their contracts.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation, Reliability

Keywords
Service-oriented computing, service provisioning, workflows

1. INTRODUCTION
Large-scale and open, distributed systems, including the Web, peer-
to-peer systems and computational Grids, enable participants to
share resources and services with each other (e.g., complex data-
processing services running on expensive hardware or traditional
business services that are accessed through software interfaces).To
facilitate such interactions, service-oriented computing is emerging
as a popular approach for allowing service consumers to dynami-
cally select and provision service providers for complex workflows
that often require many interdependent services to achieve some
overall aim. In doing so, the consumers may need to choose from a
number of competing providers that offer the same type of service
at different levels of quality.

A key challenge in many of these systems is that participants
are autonomous, self-interested agents that act according to their
own decision-making mechanisms. This means the behaviour of
service providers is inherently uncertain — they may de-commit
from contractual agreements if this increases their utility (possi-
bly paying an agreed penalty), and some may even default on the
Cite as: Flexible Service Provisioning with Advance Agreements, Se-
bastian Stein, Nicholas R. Jennings and Terry R. Payne,Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp.249-256.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agreements and leave the system without providing their service or
any form of compensation. Furthermore, these systems are often
highly dynamic as service availability constantly changes. Given
this, we believe this uncertainty and dynamism must be considered
in provisioning algorithms, especially when providers demand fi-
nancial remuneration and when the consumer seeks to complete its
workflow in a timely manner.

However, most current research on the selection and provision-
ing of providers for service workflows has not addressed this un-
certainty in a satisfactory manner. Specifically, some existing ap-
proaches use local constraints or simple preferential orderings to
select a service for a given task [5], and consequently make myopic
decisions without considering their impact on the overall workflow.
This can lead to overspending and missed deadlines, especially
when services fail frequently. To some extent, this myopia can be
addressed by selecting service providers in advance to maximise
an overall aggregated quality-of-service measure, subject to con-
straints (e.g., a deadline or budget constraint). Typically, this aggre-
gated measure is a weighted sum of various qualities, such as the
overall reliability, duration and cost of the workflow [9, 1]. A sim-
ilar approach is taken in [2], which proposes a decision-theoretic
measure to guide the provisioning. While these approaches con-
sider service uncertainty by including qualities such as the relia-
bility and availability of services, they tend to be vulnerable to fail-
ures. As they provision only single providers for each task, one fail-
ure may result in the loss of the complete workflow or require ex-
pensive and time-consuming replanning [9]. Finally, provisioning
a complete workflow in advance is risky in environments where ex-
plicit service level agreements are negotiated [2], as the consumer
may lose its initial reservation costs if parts of the workflow fail.

In this paper, we extend the state of the art in service provisioning
by proposing a novel strategy that uses decision theory as a prin-
cipled approach for reasoning about service uncertainty and taking
actions to maximise the consumer’s expected utility. In particular,
we build on our previous work on provisioning multiple providers
in parallel for particularly unreliable tasks [8], but significantly ex-
tend it to cover dynamic environments where service availability
changes over time and where service provisions are negotiated us-
ing a market mechanism. To address these environments, our strat-
egy provisions only part of a workflow at a given time (e.g., it may
provision only immediately executable tasks to retain high flexi-
bility, or it may identify and provision a number of highly critical
tasks, if providers offer more reliable services when provisioned
further in advance). It also constructs contingency plans where out-
comes are uncertain (to predict the impact of failures and the cost
of recovering from them) and refines initial high-level decisions at
run-time to incorporate new information about the performance and
availability of services (e.g., when a highly reliable service fails, it
will re-provision the task immediately and adjust its strategies for
later tasks in the workflow, in order to get back on schedule).

By conducting a thorough empirical evaluation, we show that
existing approaches are unsuitable for such dynamic and uncertain
environments, and we demonstrate that our proposed strategy out-

249

performs the state of the art in most environments when services are
unreliable (and achieves good results even when services are de-
terministic). During these experiments, we show that these trends
hold over a range of environments, including where providers fail
maliciously (i.e., do not pay compensation). In certain environ-
ments, we show that our strategy achieves a 27-fold improvement
in average utility compared to current approaches and successfully
completes up to 50 times as many workflows within its deadline.

The remainder of this paper is organised as follows. In Section
2, we begin by formalising our model of a service-oriented system.
Then, in Section 3, we outline our flexible provisioning strategy,
and in Section 4, we evaluate it. Finally, in Section 5, we conclude.

2. SERVICE-ORIENTED SYSTEM MODEL
To allow us to devise a generic and principled approach to service
provisioning, we base our work on an abstract system model, rather
than any particular service standard or implementation. To this end,
our model builds closely on previous work in the area [2, 9, 8]. In
the following, we first describe the types of workflows we consider
(Section 2.1), then detail the provisioning process (Section 2.2) and
finally discuss how services are invoked (Section 2.3).

2.1 Workflows
In this paper, we are interested in the execution of a single work-
flow, which is selected by the agent at timet = 0 (we assume that
time passes in discrete integer time steps). Formally, we define a
workflowas a tuple,W = (T, E, τ, u), whereT = {t1, t2, t3, . . . ,
tn} is a set ofn tasksandE : T ↔ T is a set ofprecedence con-
straints — a strict partial order overT , where(t1 7→ t2) ∈ E
means that taskt1 must be completed before startingt2. The func-
tion τ : T → S maps each task inT to an abstractservice type,
whereS = {s1, s2, s3, . . .} is the set of all service types. Finally,
u : Z

+
0 → R describes thereward of completing the workflow at

a given point in timet. It is defined by amaximum reward, umax, a
deadline, td, and a cumulativepenaltyfor late completion,δ:

u(t) =

umax if t ≤ td

umax − δ(t − td) if t > td ∧ t < td + umax/δ
0 if t ≥ td + umax/δ,

(1)

We treat a workflow ascompletedwhen all tasks inT have been
executed successfully in the order prescribed byE. The overall
profit of a workflow execution is the difference between the agent’s
reward (or0 if none has been obtained before time steptzero =
⌈td + umax/δ⌉) and the total cost it has incurred by provisioning
and invoking services.

2.2 Service Provisioning
To complete its workflow, the service consumer needs to discover
and enter contracts with (i.e.,provision) suitable service providers
for each task in the workflow. We have adopted the contract-net
protocol to model this process, as it is simple and has been widely
used in distributed multi-agent systems [6]. In more detail, the con-
sumer may send acall for proposals, ϕ : S × Z

+
0 , to the service

market to request a particular service type at a given time step. For
example,ϕ = (s1, 2) indicates that the consumer requires a service
of types1 to start at time step2.

In response to each call, the market returns a set ofoffers, Cϕ.
These are potential contracts that the service providers participating
in the system are willing to offer to the consumer. Each offerc ∈
Cϕ contains a number of terms, as given in Table 1.

This process of requesting services and receiving responses may
be repeated arbitrarily often during a given time step, but we as-
sume that the offers returned for two requests with the same service

Term Description
s(c) : S Theservice typeoffered (equal to the requested type).
t(c) : Z

+
0 The starting timeat which the service can be invoked

(equal to the requested time).
cr(c) : R The reservation cost, which must be paid immediately

by the consumer when entering the contract.
ce(c) : R The execution cost, which is the remaining cost (after

the reservation cost) that the consumer must pay when
invoking the service.

d(c) : Z
+ Theduration, i.e., the number of time steps it will take

for the service to complete.
δf (c) : R Thefailure penalty, which is paid to the consumer when

the service fails to complete successfully within the
agreed duration.

Table 1: Service contract terms.

Prob. Description
Pf (c) Thefailure probabilityis the probability that the service will

not complete successfully within the agreed duration and
pay the failure penaltyδf (c).

Pd(c) Thedefection probabilityis the probability that the provider
will fail to provide the service and also fail to pay the agreed
penaltyδf (c) (e.g., if the provider crashes, leaves the market
or maliciously disregards the market rules).

Ps(c) The success probabilityis the probability that the provider
will successfully complete the requested service within the
agreed duration.

Table 2: Performance information (outcome probabilities).

types and times are always identical. Furthermore, we assume that
the consumer has some information about the probabilities of the
possible outcomes of each offer, as shown in Table 2. In practice,
this may be obtained through a trust and reputation mechanism and
may be based on the past behaviour of individual providers (but we
are agnostic about its origin in this paper). Together, these probabil-
ities describe all possible, mutually exclusive outcomes of an offer,
such thatPf (c) + Pd(c) + Ps(c) = 1. To retain a simple, generic
model, and in line with related work mentioned earlier, we assume
that the outcomes of any two distinct offers are independent.

During the same time step as receiving offers from the market,
the consumer may provision any number (or none) of these offers
for the tasks of its workflow. To do this, it sends a single acknowl-
edgement to the market,a : C → T , that maps offers to the cor-
responding tasks of the workflow, whereC is the set of all offers
received during the time step. At this point, the consumer must pay
the reservation costs of all provisioned offers, and any offers not
in the domain ofa are implicitly assumed to be rejected. We also
assume that the consumer may provision several offers for a single
task (e.g., to increase its overall success probability).

2.3 Service Invocation
At the end of any time step, the consumer may invoke its pro-
visioned offers, provided that all relevant precedence constraints
given byE have been satisfied and that the agreed starting time
matches the current time. The outcome of the invocation is one of
the outcomes listed in Table 2, but we assume that it is not known
until the beginning of the time step at which the service is sched-
uled to end (e.g., if invoking offerc with t(c) = 15 andd(c) = 10,
the consumer will only be notified of the outcome at the beginning
of time stept = 25).

3. FLEXIBLE PROVISIONING
In this section, we detail our novel provisioning strategy. We begin
in Section 3.1 with a brief overview of our strategy, which is then
elaborated upon in Sections 3.2–3.4.

250

3.1 Strategy Overview
As outlined in Section 1, we are interested in building a rational
agent that acts to maximise its expected utility. For the purpose of
this paper, we assume that the agent is risk-neutral and therefore
that the utility it gains from executing a workflow is equal to the
profit it makes. Hence, we want our agent to adopt astrategy(an
appropriate mapping from observed system states to actions) that
maximises the expected difference between the reward and cost of
following it. Formally, given a workflowW and some probabilis-
tic beliefs about the behaviour of the market, we are interested in
finding strategyS∗:

S∗ = argmax
S

E(R(S) − C(S)) (2)

whereR(S) andC(S) are random variables describing the final
reward and cost, respectively, of using strategyS to execute the
workflow, and E(X) denotes the expected value ofX.

However, findingS∗ is intractable for the same reasons as de-
scribed in [8]. First, selecting service providers for the tasks of the
workflows we consider is a combinatorial, NP-hard problem, even
when all offers are known in advance and service behaviour is de-
terministic. Second, calculating the probability distribution for the
duration of a workflow with uncertain task durations is known to be
#P -complete and this makes it difficult to calculate E(R(S)). Fi-
nally, encoding a potential strategy is far from trivial due to the po-
tentially huge decision space. For these reasons, we adopt a heuris-
tic approach in our work, which allows us to find good solutions
in a reasonable amount of time. More specifically, we use local
search techniques to find a strategy that maximises the expected
profit, we rely on fast approximations where analytical solutions
are too costly, and we search a subset of potential strategies that
consider only a limited number of contingencies.

In the remainder of this section, we first discuss the types of
high-level provisioning decisions and contingent strategies we con-
sider for each task of a workflow (Section 3.2). Then, we describe
how these are used to define an overall strategyS for a complete
workflow (Section 3.3). Finally, we outline our overall provision-
ing algorithm that finds a good strategy and continuously adapts it
during workflow execution (Section 3.4).

3.2 High-Level Task Strategies
We believe that it is generally inefficient for a consumer agent to
provision offers for all workflow tasks in advance. Doing so would
restrict the agent unnecessarily, as it must commit to particular ser-
vices and execution times, and is therefore inflexible when services
fail. On the other hand, some providers may offer better service
terms when provisioned in advance, and the consumer should de-
cide automatically whether it is appropriate to trade off a higher
quality with decreased flexibility. To this end, our agent initially
considers simple high-levelprovisioning strategiesthat determine
when and how it intends to submit a call for proposals for a given
task, and how it will select from the returned offers. In this section,
we formalise these strategies and discuss how they can be extended
to express task strategies with contingencies.

3.2.1 Task Library
High-level provisioning strategies are available to the consumer
as a library,S → P(Ω), that maps service types to strategies.
Each strategyω ∈ Ω is described by a number of parameters,
as shown in Table 3. The first two prescribe how the consumer
will formulate its call for proposals, e.g., ifta(ω) = 100 and
ti(ω) = 3, it will request services 100 time steps in advance and
for 3 consecutive time steps. The latter two describe how it will
select from the returned offers. Here, we consider four simple se-

Parameter Description
ta(ω) : Z

+
0 Number of time steps to provision offers in advance.

ti(ω) : Z
+ Time interval to request services for.

n(ω) : Z
+ Maximum number of offers to provision.

s(ω) Strategy for choosing offers to provision when more
thann(ω) offers are available.

Table 3: Task strategy parameters.

Statistic Description
c̄r(ω) : R Average of the reservation cost.
c̄e(ω) : R Average of the expected execution cost.
c̄(ω) : R Overall expected cost (c̄r(ω) + c̄e(ω)).
p̄(ω, ǫ) : [0, 1] Average of the probability of outcomeǫ.
d̄(ω, ǫ) : R Average of the expected time until outcomeǫ is

known (measured from first time step that call for
proposals was submitted for).

d̄2(ω, ǫ) : R Average of the expected squared time.
ṽ(ω, ǫ) : R Variance of time (̃v(ω, ǫ) = d̄2(ω, ǫ)− d̄(ω, ǫ)2).

Table 4: Strategy performance statistics.

lection strategies for parameters(ω): {cost, unreliability,
end_time, balanced}. The first three indicate that the consumer
will always choose the offers with, respectively, the lowest ex-
pected cost (cr(c)+ ce(c)−Pf (c)δf (c)), the lowest probability of
not succeeding (1 − Ps(c)), or the lowest end time (t(c) + d(c)).
The selection strategybalanced will pick the offers that minimise
a sum of these parameters, each normalised to the interval[0, 1],
so that0 corresponds to the offer with the lowest parameter and1
to the highest. We also assume that there is a strategy not to do
anything,ωnull (i.e., the agent will stop executing the task).

Furthermore, we assume that the consumer has some perfor-
mance information about each of the strategies, which it previously
learnt by observing the response of the market to various calls for
proposals. Specifically, we assume that it has repeatedly submitted
calls of proposals corresponding to its known strategies to the mar-
ket. Then, using simple calculations1, it has recorded a number of
statistical averages for the probabilities of various outcomes, for the
expected costs and for the durations associated with the different
provisioning decisions (based on its trust information and without
necessarily provisioning and invoking any offers). This informa-
tion is summarised in Table 4. Here,ǫ denotes the overall outcome
of the strategy, withǫ ∈ {success, unavailable, failed} (re-
ferring, respectively, to the events where at least one provisioned
offer is successful, where no suitable offers were found and where
some offers were provisioned but failed).

3.2.2 Planning for Contingencies
The simple provisioning strategies discussed so far allow the con-
sumer agent to make some predictions about the likely outcomes,
the cost and duration for completing a task, given that it adopts a
certain strategy. However, assigning a single strategy to each task is
unlikely to be sufficient in uncertain environments as the consumer
needs some capabilities to plan for contingencies and predict their
impact on the cost and feasibility of the workflow. Hence, we de-
cided to include several contingent strategies that the consumer will
use if its primary strategy was not successful.

These are shown in Figure 1. Here,sp is the main strategy the
consumer will use to provision the task, but it also has several
strategies to fall back on ifsp was not successful:

• sl is used to re-provision offers when the preceding tasks in
the workflow have not been completed by the time the initial
offers are available for invocation. In this case, the consumer
will wait until the preceding tasks have completed and then
provision new offers usingsl.

1Full details are omitted for space reasons, but can be found in[7].

251

Figure 1: Task contingencies.

• su is used when the initial strategy did not result in any pro-
visioned offers at all (e.g., if there were none available on the
market). In this case, the agent waits until all preceding tasks
have been completed and adoptssu.

• sf is adopted when the initial offers were invoked, but did
not complete successfully. It is carried out as soon as the last
offer completes unsuccessfully.

To further extend the number of strategies we consider, we note
that the consumer might continue to repeat certain strategies until
a task is completed (e.g., when the consumer does not have a tight
deadline, it may decide to select the cheapest offer on the market,
attempt it, and, in case of failure, simply try another cheap offer un-
til the task is eventually completed). Hence, we extend the space of
possible strategies forsl, su andsf by adding a repeated strategy,
ωr for eachω ∈ Ω. The statistics for a repeated strategyωr can be
directly derived from those for the non-repeatedω (see [7]).

Now, when the service consumer plans to provision a given task
further in advance (indicated by a largeta(sp)), it is often desir-
able for it to do so earlier in the workflow, when some predecessors
of the task may still be executing. This means that the consumer
will waste less time waiting to invoke tasks after their predeces-
sors have been completed, but it also increases the risk of conflicts
with preceding tasks if these take longer than expected (e.g., due to
failures or uncertainty about the offers that will be available). To
express the risk the agent is willing to take, and to determine the
time of provisioning, we attach alate probability, pl, to each task.
This is the largest acceptable probability when provisioning taskti

that one of the predecessors ofti will still not have been completed
successfully by the time stepti was provisioned for. More for-
mally, the consumer will provision taskti with primary strategysp

at the earliest possible time stept wherepp(ti, t + ta(sp)) ≤ pl,
andpp(ti, x) is the probability that at least one of the predeces-
sors ofti has still not been completed successfully at time stepx.
Expressing the starting time of a task in such a way allows us to
succinctly express when to start provisioning relative to other tasks
in the workflow.

To conclude, we note that, given a primary strategy,sp, the con-
tingency strategies,sl, sf andsu, as well as the late probability,pl,
it is straight-forward to generalise the statistics from Table 4 to the
whole task by considering the possible outcomes of Figure 1. Fur-
thermore, depending onpl, we predict when provisioning will start
for each task, estimate the expected waiting time between the start
of the task and the completion time of its predecessors and produce
a more accurate estimate of the late probability that depends on the
expected duration and variance of the preceding tasks2. Combining
these statistics, we can estimate the expected completion time and
its variance for each task. Finally, once a task has been provisioned
2For details, see [7]. Briefly, we use a normal approximation along the
critical path [4] that leads to the task in question. Workingbackwards from
the task, we then identify a predecessor during which provisioning will take
place and use the probability density function of a normal distribution to
estimate the time of provisioning (relative to that predecessor), the actual
late probability and an expected waiting time.

(i.e., sp has been carried out), it is easy to refine the expected out-
comes of a task, considering the actual offers.

3.3 Workflow Provisioning Strategy
Given the high-level task strategies described in the previous sec-
tion, we now outline how they are used to express the overall work-
flow strategy,S, that our agent seeks to maximise in Equation 2. In
particular, we describe the strategy as a tuple:

S = (α, β, γ, dβ , dγ , E′) (3)

whereα, β andγ are a set partition ofT , describing the current
state of each workflow task. Here,α contains the tasks that have
been completed successfully,β contains the tasks for which some
offers have been negotiated, andγ contains the tasks for which no
offers are currently provisioned. The functionsdβ anddγ provide
further information about the agent’s high-level decisions for the
members ofβ andγ, respectively. Based on the discussion of the
previous section,dβ(ti) of a provisioned taskti ∈ β is:

dβ(ti) = (cpi, sli, sui, sfi) (4)

wherecpi is the set of offers already provisioned forti, while the
other objects refer to the contingent strategies. Similarly,dγ(tj) of
a tasktj ∈ β is:

dγ(tj) = (spj , slj , suj , sfj , plj) (5)

wherespj is the primary provisioning decision andplj is the late
probability. Finally,E′ : T ↔ T , is a set of temporary edges, so
that E ∪ E′ is still a strict partial order overT . This allows the
agent to express additional precedence constraints between tasks
where this increases the overall expected utility — for example,
to indicate that a cheap and unreliable task should be completed
before attempting a particularly expensive one.

Using the performance statistics outlined in the previous section,
we can estimate the overall expected cost and reward of a strategy
S (see [7]), which we use to calculate the objective function that
is maximised in Equation 2. In the next section, we describe how
this information is used in the context of our overall provisioning
strategy.

3.4 Adaptive Optimisation Algorithm
The overall behaviour of our flexible service consumer is shown in
Algorithm 1. At time t = 0, the consumer first selects an appro-
priate workflow for its current objective (line 2). In practice, this
may come from a plan library, it may be provided by a user or even
synthesised at run-time using a planner. The agent then adopts an
initial strategy for executing the workflow,S = (∅, ∅, T, ∅, dγ , ∅),
wheredγ is some initial allocation of task provisioning strategies
that the agent will improve later3 (line 3).

This is followed by the main loop of the algorithm (lines 5–19),
which is repeated every time step. First, the consumer receives all
service outcomes (line 6) and updates its current strategy accord-
ingly (line 7). During this update, the consumer removes any failed
or missed offers and moves successful tasks fromβ to α. If nec-
essary, it also updates its high-level task strategies, for example by
adopting the strategysfi as the primary strategy of taskti if the
last remaining provisioned offer for that task has just failed (in this
case, the task is also moved toγ).

3In our work, we start with a simple allocationdγ(tj) = (ω, ω, ω,
ω, 0.01) for all tasks, withta(ω) = 0, ti(ω) = 10, n(ω) = 1 and
s(ω) = unreliability. This already constitutes a feasible strategy
in most environments and leads to a quicker convergence duringthe initial
optimisation stage than a completely random initial strategy.

252

Algorithm 1 Summary of flexible provisioning strategy
1: t← 0
2: W ← SELECTWORKFLOW

3: S ← CREATEINITIAL (W)
4: abandoned← false
5: repeat
6: O ← RECEIVEINVOCATIONOUTCOMES

7: S ← UPDATEWITHOUTCOMES(S,O)
8: repeat
9: S ← OPTIMISE(S)

10: S ← REALISESTRATEGIES(S)
11: until S was not altered in line 10
12: if PREDICTUTILITY (S) > 0 then
13: PROVISIONSERVICES(S)
14: INVOKEDUESERVICES(S)
15: else
16: abandoned← true
17: end if
18: t← t + 1
19: until abandoned= true or workflow completed

Next, the algorithm attempts to improve its current strategy (line
9). We use a local search for this, as such an approach is well-
suited for the high-dimensional decision space and the non-linear
objective function we consider. It also deals naturally with updated
information at run-time and has any-time properties that mean it
can be adapted for environments where limited time is available at
each time step. Specifically, we adopt simulated annealing, which
is less prone to suffer from local maxima than deterministic local
search techniques [3]. Briefly, our search generates new neighbours
of a strategyS by: changing a single provisioning strategy of any
task; changing late probabilities; and altering the temporary edges
in E′. It also attempts to add or remove offers from an already
provisioned task, without performing the associated provisioning.

When the optimisation procedure concludes, the consumer next
identifies each taskti ∈ γ that is ready to be provisioned (as indi-
cated by its late probabilitypli, or if all its predecessors have been
completed). For these tasks, the consumer simply follows the as-
sociated strategyspi and updates its strategy with new offers that
are currently on the market (line 10). As before, the consumer does
not perform the actual provisioning yet, as it may still improve its
initial selection. To this end, if any offers were added, the con-
sumer again optimises the workflow — on one hand, this allows
it to refine the selected offers, and on the other hand, it can adapt
the remainder of the workflow to the newly selected offers. This
continues until no more new tasks are provisioned.

After this, the consumer checks if it still expects to receive a pos-
itive utility from following the workflow (line 12). If so, it finalises
its provisioning decisions by agreeing to the offers selected during
the time step, and it invokes any executable tasks that are due at
the current time step. During this, the consumer also removes from
its current strategy all reservation and invocation costs it has just
incurred (this is important because the consumer has now paid for
parts of the workflow, effectively raising its overall value).

This overall behaviour continues until the consumer either does
not expect to gain any utility from its current strategy or if the work-
flow is completed. To test the performance of this flexible strategy,
we conduct a detailed empirical evaluation in the next section.

4. EMPIRICAL EVALUATION
As our methodology is a heuristic technique and due to the diffi-
culty of finding an analytical solution (as described in Section 3.1)
we have conducted a thorough empirical study of our algorithm
in a simulated environment and compared it to a number of cur-
rent approaches. The primary focus of this section is to investigate

the feasibility of our approach in environments of varying uncer-
tainty (i.e., where services are more or less likely to fail) and also
in environments where the market favours certain provisioning ap-
proaches (e.g., where early provisioning is rewarded by more reli-
able services). In the following, we first describe how we simulate
the market (Section 4.1), then we detail the strategies we test (Sec-
tion 4.2) and finally describe our results (Section 4.3).

4.1 Market Setup
In our experiments, we assume that there are five different types
of services (S = {s1, s2, s3, s4, s5}). To simulate the market, we
keep a list of currently available offers associated with each time
step, from the current step̂ti to t̂i+250 (hence, the consumer may
provision services up to 250 time steps in advance). During the
simulation, at the beginning of each time step, we first generate new
offers that become available in the market by drawing the number
of new offers and their parameters from random distributions. More
specifically, for each time step in the list (t̂i, t̂i+1, . . . , t̂i+250), we
generate offers using the distributions in each row of Table 5. First,
we generate the number of offers by drawing a sample from a Pois-
son distribution with a mean given by the birth rate in that row4.
Then, for each such generated offer, we assign it the service type
given in the table and draw a value for the reservation cost, execu-
tion cost and service duration from the specified distributions5. All
other offer parameters, such as the failure probability and penalties,
are determined according to our experimental parameters detailed
below. At the end of each time step, we remove offers in a similar
way by drawing a random sample from a Poisson distribution with
its mean given by the death rate. This models the demand for such
services and we remove the generated number of offers from that
time step (or all offers if the number exceeds the current supply).

Row Type Reserv. Exec. Time Birth Death
Cost Cost Rate Rate

1 s1 Uh(25) Uh(25) Uh(5) rb/2 rd/2
2 s1 Uh(5) Uh(5) Uh(40) rb/2 rd/2
3 s2 Uh(1) Uh(5) Uh(50) rb rd

4 s3 Uh(10) Uh(10) Uh(35) rb rd

5 s4 Uh(50) Uh(1) Uh(25) rb rd

6 s5 Uh(1) Uh(50) Uh(25) rb rd

Table 5: Service type parameters.

In our simulations, a consumer is rewarded a maximum utility of
umax = 2000 for completing a workflow, with penaltyδ = 40 and
deadlinetd = 200. Each workflow consists of 8 tasks (with types
chosen randomly fromS) and we generate them by randomly fill-
ing an adjacency matrix until at least a quarter of the total number
of possible edges have been added, thus ensuring that there are sev-
eral parallel and sequential tasks in the workflow.

We chose these parameters to represent a realistic and challeng-
ing scenario with a relatively short deadline, but a sufficient maxi-
mum utility to allow the agent to afford a number of failed service
invocations in uncertain environments. The workflows we test here
are small, because the two strategies that rely on integer program-
ming techniques were unable to deal with larger cases. However,
we compared our approach to the remaining strategy in other en-
vironments, including larger workflows with up to 50 tasks, and
obtained the same broad trends as presented in this paper.

4This is a common distribution for modelling random arrival events. We
userb = rd = 0.005, unless noted otherwise.
5We useUh(m) to refer to a uniform distribution with meanm that varies
aroundm by a proportion of at mosth, i.e.,Uh(m) is a uniform distribution
on the interval[(1− h) ·m, (1 + h) ·m]. We useh = 0.2 in all our
experiments, indicating a fairly high heterogeneity of offers.

253

4.2 Strategies
We evaluate the performance of four strategies: the first three are
based closely on the work presented in [9], but, more generally,
represent common provisioning approaches that are widely used in
the literature, such as [1]. The fourth is the flexible provisioning
strategy proposed in this paper. We briefly describe each below.

4.2.1 LocalWeighted Optimisation
This strategy provisions services completely on demand (i.e., when
the respective task becomes available). During provisioning, the
consumer considers all offers in the nextn time steps (we setn =
20 as this produces good results for the environments we consider)
and then provisions the offerc∗ that maximises a weighted sum:

c∗ = argmax
c

3
∑

i=1

wi · Qi(c) (6)

Qi(c) =

{

0 if qmax,i = qmin,i
qmax,i−qi(c)

qmax,i−qmin,i
otherwise

(7)

whereq1(c) = ce(c)+cr(c) is the combined total cost of the offer,
q2(c) = 1 − Ps(c) is the probability that the task will not succeed
andq3(c) = t(c) + d(c) is the end time of the offer. The values
for qmax,i andqmin,i are the largest and smallest of these parameters
among the offers that are considered, and each weightwi ∈ [0, 1]
attaches a relative importance to the associated parameter (with
∑

i wi = 1). We also assume that the strategy will immediately
attempt to re-provision any failed offers.

For the purpose of our experiments, we setw1 = w2 = w3 = 1
3
,

which strikes a balance between the various qualities (in most en-
vironments, we did not observe a significant difference in perfor-
mance when adopting other weight distributions).

4.2.2 GlobalWeighted Optimisation
This is perhaps the most widely adopted approach for provisioning
services in the literature [1, 9]. Here, the agent observes the market
once, then selects and provisions one offer for each task, so that a
weighted sum similar to Equation 6 is maximised. This sum now
aggregates the quality parameters over the entire workflow and may
contain constraints, such as an overall budget or time limit.

Compared to the work in [9], we have added suitable exten-
sions to deal with explicit time slots for services and we use ILOG
CPLEX to solve the associated integer programming problem. We
again usew1 = w2 = w3 = 1

3
and set the overall cost constraint

to umax and the time limit totzero− 1.

4.2.3 Adaptive GlobalWeighted Optimisation
This strategy is similar to the previous, but it re-provisions services
when they fail.

4.2.4 FlexibleProvisioning
This is our flexible provisioning approach as presented in the previ-
ous section. As learning and trust are not the focus of this paper, we
assume that the agent has access to accurate trust information (i.e.,
it knows the outcome probabilities of a given offer). We also build
a task strategy library by taking 2000 independent observations of
the market over time and recording the predicted outcomes of each
of a set of possible strategies, which we generate by considering the
combinations of the advance timesta(ω) ∈ {0, 10, 20, . . . , 250},
the provisioning intervalsti(ω) ∈ {1, 10, 20, . . . , 100}, the num-
ber of parallel providersn(ω) ∈ {1, 2, 3, . . . , 10} and all selection
strategies. Considering that each strategy may be repeated, this re-
sults in 22880 possible high-level strategies for each service type.

Due to the time required to build the library, we do this once for
every environment in this section and then re-use the same library
when repeating our experiments (we have verified that there is no
significant difference in our results when using a different library).

4.3 Results
In the following, we discuss the results of our experiments. Where
appropriate, we have carried out ANOVA followed by pairwise t-
tests to ascertain the statistical significance of the results (at the
p = 0.005 level) and we give 95% confidence intervals for all data.
We decided to test the four strategies over a number of different en-
vironments, where providers fail maliciously without paying com-
pensation (Section 4.3.1), where providers give refunds when they
fail (Section 4.3.2), and where providers offer better services when
provisioned with varying advance notice periods (Section 4.3.3).

4.3.1 Environment 1: Malicious Providers
During our first set of experiments, we evaluated the performance
of the four strategies in environments where service providers are
increasingly unreliable. To this end, we varied an overall average
defection probabilityd̄ across several experiments and used this to
generate the defection probability of offers6. We also assume that
services either succeed or defect (i.e., the failure penalty is irrele-
vant). This case is challenging for consumers, as they do not get
compensation for failures, but it is realistic in highly dynamic dis-
tributed systems, where some providers may act maliciously and
simply fail to perform the service they were paid to do. Exam-
ples include peer-to-peer systems, where providers may frequently
leave the system and where it is difficult to enforce contracts.

The results of our experiments are shown in Figure 2, which
plots the average defection probability of an environment against
the average profit (as a proportion ofumax) that each strategy gains7.
When providers never defect (d̄ = 0), all strategies perform well,
achieving between 70–90% of the maximum reward, and there is no
significant difference between either of the global optimisation ap-
proaches and the flexible strategy. Intuitively, both global strategies
are equivalent here, because there is no need to re-provision failed
tasks, and they both perform well due to the certain information
they have about the cost and duration of the complete workflow.
The flexible strategy similarly performs well — although it does
not provision the complete workflow in advance, it makes accurate
predictions at the start (with little uncertainty) and provisions ser-
vices as it proceeds through the workflow. The local optimisation
approach performs worse than the other strategies, as it takes my-
opic decisions and therefore occasionally exceedstd or eventmax.

As d̄ increases, all strategies generally perform worse, because
they increasingly have to pay for services that do not perform as
promised. The non-adaptive global optimisation strategy is most
affected as̄d begins to rise, due to it only attempting one execution
of the workflow before giving up. If it succeeds, it gains a relatively
high reward, but if it fails, it loses its initial investment. Hence, the
performance trend closely follows the average success probability
of a single execution, i.e., the probability that all eight workflow
tasks succeed:(1 − d̄)8.

In contrast to this, the adaptive optimisation strategy performs
considerably better than the non-adaptive one as the defection prob-
ability begins to rise, up tōd = 0.4. On this interval, failures oc-
cur occasionally and the adaptive consumer is generally able to re-

6Again, we draw from a distributionUh(d̄), whereh = min(0.2, h′) and
h′ is the largest real number with(1 + h′) · d̄ ≤ 1.
7We average the profit over 750 runs for the flexible and the local ap-
proaches, while we average it over 250 runs for the global optimisation
approaches due to their more time-intensive nature.

254

−50
−40
−30
−20
−10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 P
ro

fit
 (

%
 o

f m
ax

im
um

)

Defection Probability

Flexible
Global

Adaptive Global
Local

Figure 2: Performance of strategies in environments where
providers increasingly defect.

provision the workflow to meet its deadline. However, atd̄ = 0.5,
failures become too numerous (the consumer now fails to complete
69.0% of its workflows withintzero) and the consumer begins to
make an overall loss. As the defection probability rises further,
this loss increases, eventually levelling off towardsd̄ = 1.0. This
considerable loss occurs because the consumer lacks the capability
of predicting the overall cost it will incur by re-provisioning and
whether this investment is rational, given the defection probabili-
ties of services. Rather, it will persist in retrying more services and
making further investments, despite a high failure probability.

Next, the average profit of the local strategy initially drops less
quickly than the global strategies. This occurs because it is less
affected by a small a number of failures than the global approach,
which may need to re-provision its workflow completely upon a
single failure. In some environments, when the defection probabil-
ity is d̄ = 0.2 andd̄ = 0.3, it even outperforms the adaptive global
approach for the same reason. Beyond that, it follows a broadly
similar trend to the adaptive global strategy, as it also invests heav-
ily in services without ever completing the workflow.

Finally, we consider the performance of the flexible strategy. At
low defection probabilities, it performs as well as the global ap-
proaches. However, at̄d = 0.2, it begins to dominate all other
strategies. Unlike the other strategies, it reasons explicitly about
failures and their impact on the workflow cost and execution time,
and so at higher failure probabilities, the flexible strategy is able
to deal proactively with failures (e.g., by provisioning them redun-
dantly or by favouring more reliable providers). In more detail,
this means that the flexible approach is able to achieve an approx-
imately 100% improvement over the best-performing non-flexible
strategy atd̄ = 0.4 and it still makes a positive profit at̄d = 0.5
andd̄ = 0.6 when all other strategies make a loss (in fact, the flex-
ible strategy successfully completes over 96%, 93% and 84% of its
workflows beforetzero in these environments, respectively).

However, atd̄ = 0.7, we notice that the flexible strategy makes
a small net loss. This loss is not entirely surprising, due to our re-
liance on fast heuristic techniques to estimate the expected utility of
a workflow. These techniques make some simplifying assumptions,
which generally result in slightly optimistic utility estimates. For
example, we use the critical path to estimate task durations, but this
ignores tasks outside that path, which might become critical at run-
time. Hence, the consumer will expect to achieve a small positive
utility in these extremely challenging environments, but then dis-
cover at run-time that it needs to re-provision more often than ex-
pected in order to complete the workflow in time. Nevertheless, the

−50
−40
−30
−20
−10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 P
ro

fit
 (

%
 o

f m
ax

im
um

)

Failure Probability

Flexible
Global

Adaptive Global
Local

Figure 3: Performance of strategies in environments where
providers fail, but give refunds.

flexible strategy outperforms or is comparable to the other strate-
gies we tested. Averaged over all values ford̄ we tested, the flex-
ible approach achieves a profit of612.34 ± 16.09, while the non-
adaptive and adaptive global approaches achieve only173.80 ±
26.85 and183.60±37.83, respectively. The local strategy achieves
an average profit of212.30 ± 20.58.

4.3.2 Environment 2: Failures with Refunds
In our next experiments, we were interested in environments where
providers are not malicious, but offer full refunds to the consumer
in case of failure. Hence, the setup is similar to the previous exper-
iment, but we now assume that when providers fail, they immedi-
ately refund both the reservation and the execution cost of the ser-
vice. This is a more realistic scenario when services are offered by
reputable companies, when some central entity monitors the sys-
tem or when contracts are easily enforceable. Examples of such
systems may include Web services or scientific Grids.

The results are shown in Figure 3 and clearly highlight similar
trends as in the previous experiments for the non-flexible strategies
(all achieve slightly higher profits and tolerate higher failure prob-
abilities). The local strategy now performs better than before as it
will pay at most once for each task, and it even achieves a small
positive average profit when the failure probability isf̄ = 0.6.

The flexible strategy performs significantly better in this environ-
ment, achieving a high positive profit even at failure probabilities
of up to f̄ = 0.8. More specifically, atf̄ = 0.6, our strategy
achieves an average profit of930.86, with 95.7% of workflows ex-
ecuted successfully beforetzero, compared to the best non-flexible
profit of only 34.34 with 19.1% of workflows successful (an ap-
proximately 27-fold improvement in average utility). At̄f = 0.8,
the flexible approach still completes80.1% of workflows success-
fully, while the most successful non-flexible strategy completes
1.6%. This good performance is due to the considerably lower
cost of invoking services redundantly, as now the consumer ef-
fectively pays for only those services that succeeded rather than
all invoked services. Nevertheless, as before, we notice a small
loss when the failure probability reaches̄f = 0.9. For all val-
ues forf̄ tested, the flexible approach achieves an average profit
of 901.31 ± 14.84, the global approaches achieve200.60 ± 26.07
(non-adaptive) and335.80 ± 34.30 (adaptive), while the local ap-
proach achieves473.68 ± 17.13.

4.3.3 Environment 3: Different Market Conditions
Finally, we tested the performance of the strategies in environments

255

−30

−20

−10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 P
ro

fit
 (

%
 o

f m
ax

im
um

)

Discount Factor

Flexible
Global

Adaptive Global
Local

Figure 4: Performance of strategies when advance provisioning
is preferred (negative discount) and when on demand is pre-
ferred (positive discount).

where either advance or on demand (just-in-time) provisioning is
preferred and results in a discount in execution cost and a higher re-
liability. Such conditions might occur, respectively, when providers
prefer to be given early notice by consumers, so that they can plan
their resource availability in advance, or when they find their re-
sources under-utilised and therefore offer discounted services at the
last minute. To express this preference, we vary a discount factor,
ď, from -1 to 1. When negative, this indicates a preference for early
(advance) provisioning and when positive, on demand provision-
ing is preferred. In more detail, we use it during offer generation
to adjust the distribution means for the execution cost and failure
probability by a proportion given by

∣

∣ď
∣

∣. We consider all offers
generated for the current time step,ti, as provisioned on demand,
and any offers generated forti+40 and beyond as provisioned in
advance. Between these two, we vary the discount factor linearly.
For example, wheňd = −0.6, f̄ = 0.5 and we generate an of-
fer for ti+30, then the corresponding mean failure probability is
(1 − 3/4 · 0.6) · 0.5 = 0.275. We use all other experimental pa-
rameters as in our first experimental setup, but keepf̄ at 0.5, and
now setrb = 0.5 andrd = 5, to ensure that discounted offers are
available only at their respective time steps.

Figure 4 shows the results in these environments. Here, we note
that the non-flexible strategies perform well only in extreme con-
ditions — the global approaches excel when advance provisioning
is preferred, while the local strategy performs well asď tends to 1.
When neither advance nor on demand provisioning is strongly pre-
ferred, none of the non-flexible strategies do well, as most of the
services in the market are unreliable. In fact, atď = −0.1, these
strategies all make a net loss. In contrast to this, the flexible strat-
egy manages to achieve a high profit over all environments, and,
in most cases, significantly outperforms all other strategies. This
is because the flexible strategy adjusts its provisioning strategies
to the environment: aťd = −1, it provisions services, on aver-
age,47.40 ± 1.46 time steps in advance, aťd = 0, this drops to
23.04 ± 0.67 and atď = 1, it provisions only6.36 ± 0.41 time
steps ahead. However, we also note that the flexible strategy is now
outperformed in two cases: aťd = −0.9 and ď = −1. In these
cases, it suffers from not provisioning all offers in advance (and
thereby producing a tight-fitting but reliable schedule). Instead, the
strategy continues to provision only parts of the workflow (although
now provisioning further ahead) and hence sometimes exceedstd.
Nevertheless, when averaging over all values forď considered here,
the flexible strategy achieves an average utility of953.87 ± 9.56,

while the global approaches achieve only109.69 ± 17.78 (non-
adaptive) and428.40 ± 24.70 (adaptive), and the local approach
achieves516.37 ± 15.17.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a novel provisioning strategy that
extends the state of the art in several ways. First, our approach
provisions only part of a workflow at a time and adapts its deci-
sions at run-time, making the strategy more robust in uncertain en-
vironments. Second, we consider highly dynamic systems, where
service availability changes over time and where the consumer typ-
ically does not know what services will be available in the future.
We address this by learning high-level strategies to predict the typ-
ical performance of certain workflow tasks. Finally, our approach
proactively considers contingencies to deal with service failures
and conflicts, but does so by exploring only a limited number of
outcomes and by considering each workflow task in isolation, thus
increasing the efficiency of our approach.

We believe our proposed strategy is highly relevant in a wide
range of application areas, and we have adopted an abstract system
model that can be easily applied to Web services, Grid services and
peer-to-peer systems. Although we use the contract net protocol,
our approach should be applicable to other market mechanisms. In
particular, the high-level decisions discussed in Section 3.2 could
refer to strategies for participating in auctions, to carry out bilateral
negotiations or simply for selecting services published on a registry.

There are several ways in which we plan to extend our work.
First, we plan to improve our utility estimation technique, which
sometimes overestimates the expected utility of a workflow. Sec-
ond, we will extend our contract model to cover more complex us-
age models, such as subscriptions for repeated service invocations.
Finally, we will consider workflows with conditional branches.

6. ACKNOWLEDGEMENTS
This work was funded by the Engineering and Physical Sciences
Research Council (EPSRC) and a BAE Systems studentship.

7. REFERENCES
[1] R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint driven

web service composition in METEOR-S. InProc. IEEE Int. Conf. on
Services Computing, China, pages 23–30, 2004.

[2] J. Collins, C. Bilot, M. Gini, and B. Mobasher. Decision processes in
agent-based automated contracting.IEEE Internet Comput.,
5(2):61–72, 2001.

[3] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing.Science, 220(4598):671–680, 1983.

[4] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar.
Application of a technique for research and development program
evaluation.Oper. Res., 7(5):646–669, 1959.

[5] E. Sirin, B. Parsia, and J. Hendler. Template-based composition of
semantic web services. InAAAI Fall Symposium on Agents and the
Semantic Web, USA, pages 85–92, 2005.

[6] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver.IEEE Trans. Comput.,
29(12):1104–1113, 1980.

[7] S. Stein.Flexible Service Provisioning in Multi-Agent Systems. PhD
thesis, School of Electronics and Computer Science, University of
Southampton, 2008.

[8] S. Stein, N. R. Jennings, and T. R. Payne. Provisioning heterogeneous
and unreliable providers for service workflows. InProc. 22nd AAAI
Conf. on AI, Canada, pages 1452–1458, 2007.

[9] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. QoS-aware middleware for web services composition.
IEEE Trans. Softw. Eng., 30(5):311–327, 2004.

256

