Belief Operations for Motivated BDI Agents

Patrick Krimpelmann
Manuela Ritterskamp

Matthias Thimm
Gabriele Kern-Isberner

Information Engineering Group, Department of Computer Science, Dortmund University of Technology

ABSTRACT

The beliefs of an agent reflecting her subjective view of the
world constitute one of the main components of a BDI agent.
In order to incorporate new information coming from other
agents, or to adjust to changes in the environment, the agent
has to carry out belief change operations while taking meta-
logical information on time and reliabilities into account.
In this paper, we describe a framework for belief operations
within a BDI agent, sketching the interactions of beliefs with
desires and intentions, respectively. Furthermore, we illus-
trate how motivations and know-how come into play in our
agent model of this framework. We focus on the presenta-
tion of a complex setting for belief change that makes use of
techniques both from merging and update, and provides a
BDI agent with advanced reasoning capabilities. Extended
logic programs under the answer set semantics will serve as
the basic knowledge representation formalism.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence|: Intelligent
agents, Multiagent systems

General Terms

Design, Theory, Human Factors

Keywords
Multiagent System, BDI, Belief Revision, Motivation

1. INTRODUCTION

For realising agents, the BDI model [16] has become a lead-
ing paradigm of the field. This model distinguishes between
Beliefs, Desires, and Intentions as the main components of
an agent’s mind, the interactions of which determine her
behaviour. Roughly, Beliefs comprise (plausible) knowledge
the agent has concerning the current situation and how the
world works in general, Desires encode what she wishes to
achieve and hence represent possible goals, whereas Inten-
tions focus on the next actions the agent should undertake to
achieve the current goal. The role of Beliefs in this scenario
is to provide the agent with useful information to evaluate
Cite as: Belief Operations for Motivated BDI Agents, Patrick Kriim-
pelmann, Matthias Thimm, Manuela Ritterskamp, Gabriele Kern-Isberner,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Miiller and Parsons
(eds.),May,12-16.,2008,Estoril ,Portugal,pp. 421-428.

Copyright (C) 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

421

the current situation and to find reasonable and effective
ways to achieve her goals.

In this paper we introduce the KiMAS framework and
sketch the complete model of a KiMAS agent. The KiMAS
project (Knowledge in Multiagent Systems) [11] is a multi-
agent system, that focuses on the representation of beliefs
and on methods to process information exchanged among
the agents. It has been implemented in a student project
group using the Jadex framework [1] and DLV [3] as the un-
derlying answer set reasoner. The model of a KiMAS agent
bases on the BDI model. In addition it explicitly differ-
entiates between the logical belief about the world and the
beliefs about how specific goals can be achieved (know-how),
as the two types of belief influence the dynamics of the inter-
nal state of the agent differently. Furthermore, we introduce
motivations to emphasise the autonomy and personality of
the agents and to model the effect of their character on the
selection of new goals.

We focus the representation of the KiMAS framework on
the Beliefs component which may be quite complex in itself.
Besides the representation of generic and evidential beliefs,
it must also dispose of methods to process information, be
it for inference, updating, or merging beliefs. However, the
agent should not believe everything she is told, the reliability
of information depends on the reliability of the source that it
came from. Moreover, in a multiagent environment, pieces of
information coming from different agents can be conflicting,
so the agent should be provided with strategies to resolve
such conflicts.

In this paper, we present a complex picture of belief opera-
tions, taking prior beliefs, new information, and metalogical
information about time and credibility into account. We
distinguish between belief bases, epistemic states, and belief
sets, and realise dynamic belief changes via a combination of
base merging and inductive inference by the aid of an update
mechanism. Extended logic programs will serve as the basic
medium to represent beliefs, and belief sets, as collections
of most plausible beliefs, will be obtained via answer set se-
mantics. This epistemic component will endow our agent
with advanced reasoning capabilities.

The rest of this paper is organised as follows: In Sec. 2 we
start with some preliminaries for extended logic programs
under the answer set semantics. Sec. 3 covers the epistemic
capabilities of the agents and introduces an exemplary sce-
nario to be modeled using our multiagent framework. In
Sec. 4 we describe the environment and the communication
within the system. In Sec. 5 we introduce the extensions
we made to the BDI model and the operations used to alter

the internal state of the agent. Sec. 6 focuses on operations
for revising the belief base of agents, particularly on one of
our implemented belief base operators. Then we conclude
in Sec. 7 with perspectives for further work.

2. PRELIMINARIES

We are working with extended logic programs under the
answer set semantics [6] which are capable of dealing with
incomplete information in open environments. An extended
logic program consists of rules over a set of atoms ¥ using
strong negation — and default negation not. A literal L can
be an atom A or a negated atom —A. The complement of
a literal L is denoted by —L and is A if L = —-A and —A if
L = A. The set of literals is denoted by L.

A rule r is written as H(r) < B where the head of the rule
H (r) is either empty or consists of a literal L and the body B
is a set of literals {Lo, ..., Lm,not Lm41,...,not Ly}. The
body consists of a set of default negated literals denoted
by B~ = {not Lym+1,...,not Ly} and a set of not default
negated literals B" = {Lo, ..., L, }. Given this we can write
arule as H(r) «— B",B~. If B = §) we call 7 a fact. If
H(r) = () we call r a constraint.

A set of literals which is consistent, i. e. it does not contain
complementary literals L and —L, is called an interpretation
I. Aliteral L is true in I (I = L) iff L € I and false
otherwise. The body B of a given rule r is true in I iff each
L € BY is true in I and each L € B~ is false in I. A rule r
is true in I (I |=r) iff H(r) is true in I whenever B is true
in I. An interpretation is a model of a program P (I = P)
if I =rforallr e P.

The reduct P° of a program P relative to a set S of literals
is defined as: PS := {H(r) — BY(r)|r € P,B~(r)N S = 0}
An answer set of a program P is an interpretation I which
is a minimal model of P!. In our framework an agents epis-
temic state is represented by an extended logic program P.

3. AGENTS AND BELIEFS

3.1 The epistemic capabilities of agents

We assume our agents to be equipped with an epistemic
state in which both factual and conditional knowledge can
be represented and which is provided with a basic infer-
ence mechanism that allows the agent to draw logical and
plausible conclusions. From a conceptual point of view, the
distinction between evidential and generic beliefs is crucial.
Whereas evidential knowledge or belief is often volatile and
subject to changes, generic beliefs are usually deeper epis-
temically entrenched and can be applied to different situ-
ations. Mostly, generic beliefs have the form of rules that
establish meaningful relations between isolated pieces of in-
formation and hence determine the intellectual capability of
an agent.

Moreover, in order to judge information more adequately
and to solve conflicts between contradictory pieces of infor-
mation, some metalogical formalism to allow for qualitative
or quantitative comparisons must be provided. In belief re-
vision theory, often degrees of epistemic entrenchment or
degrees of disbelief [5] are used. For the evaluation of in-
coming information, the agent will find it quite useful to es-
timate the degree of reliability of the corresponding source
which will be the environment or another agent. We will
usually assume that the agents can not be completely sure

422

about the truth of information they get. Other agents may
be dishonest or simply stupid, observations from the envi-
ronment may be fallacious. Nevertheless, each agent (as in
reality) should be capable of judging incoming information
with regard to credibility, combining her currently held be-
liefs with the content and some meta-information about the
corresponding message.

The basic structure that we will use here to implement an
agent’s epistemic state is given by extended logic programs
under the answer set semantics [6]. Together with metalog-
ical information on both time and credibility and a change
mechanism, this framework will prove to be powerful enough
to satisfy the requirements sketched above. To comply with
the terminology of belief revision, logic programs will serve
as basic ingredients for belief bases. A metalogical formalism
will be provided by ranks of credibility that can be assigned
to both rules and facts and turn the logic program into a
ranked knowledge base. Any incoming information will also
be assigned a rank in dependence of the reliability of its
source. An update mechanism which is based on the ideas
of [4] will make use of these ranks to incorporate the new in-
formation. To be more precise, updating in this scenario will
mean to compare ranks and give way to the most credible
information which may yield quite a complex restructuring
of the logic program. In this way, all available information
is compiled into the resulting update logic program, which
will be used as an epistemic state. From this, we obtain
belief sets as representation of the most plausible beliefs via
(credulous) answer set inference.

The formal picture can be described as follows. Our up-
date mechanism ¢ takes any sequence of logic programs and
yields a logic program, which represents as much informa-
tion of the sequence as possible and solves conflicts by taking
the order of the sequence into consideration:

o:(P1,...,Py) — P*

We stick to the term “update” here, although this operation
may also be looked upon as a kind of inductive reasoning
for ranked knowledge bases. The update operator is the
most important element within our framework of belief op-
erations, as it tightens up loosely linked belief base informa-
tions to return an epistemic state P*. From this, the belief
set Bel(P™*) is computed by (credulous) answer set semantics
as a set of literals. Please note that we give up the demand
for deductive closure here which is usually imposed on belief
sets.

However, the result of update depends crucially on the
input sequence of logic programs. Basically, this sequence is
built up from the agent’s initial beliefs and from new pieces
of information that the agent receives over time. Prior belief
bases (represented as ranked logic program bases) and new
information are merged via a non-prioritized base revision
operation which yields a posterior ranked program base. In
this way, ideas from both revision and update formalisms are
used and interlaced in our approach, based on the unifying
belief change framework developed in [8].

We postpone further explanations and discussions to Sec-
tion 6. First, we will present an example that will illustrate
ideas and techniques and continue with a general represen-
tation of our multiagent system.

3.2 The Case of Evelyn

For our implemented system we used an adaptation of a
criminal story by Agatha Christie as a complex scenario.

The following typical fragment will be used to illustrate our
multiagent system throughout this paper:

Evelyn was murdered on Friday either by Bob
(her husband) or by Carl (her ex-lover). On Sat-
urday the police officer Alice is investigating this
crime and with her are Bob, Carl and Dave, Eve-
lyns brother, who lives in the same house as Eve-
lyn and Bob and serves as a witness throughout
the investigation.

This scenario yields to a multiagent system which consists
of four agents: Alice, Bob, Carl, and Dave. In this system,
the agent Alice tries to determine who is the murderer of
Evelyn. All agents have specific beliefs, which will influence
their behaviour in the system. The initial beliefs of the
agents are informally given by

o Alice’s beliefs:

— Between Tuesday and Thursday Bob found out,
that Evelyn had an affair with Carl.

— If someone threatens someone else to kill him and
this one got killed during the next few days and
the first one has no alibi for the time of crime,
then the first one is the murderer.

— Fvelyn was jogging on Wednesday and on Friday.

e Bob’s beliefs:
— FEwvelyn told Bob on Thursday, that she had an
affair with Clarl but quit the relationship.
— Bob was on a work trip the whole Wednesday.
— Bob was on a work trip the whole Friday.

e Carl’s beliefs:
— Carl murdered Evelyn on Friday.
— Bob was on a work trip the whole Wednesday.
— Carl had a quarrel with Evelyn on Wednesday.
He was angry, because she broke up with him.

e Dave’s beliefs:

— On Wednesday Dave overheard a quarrel between
Evelyn and (apparently) her husband. During
this quarrel (apparently) Bob told Evelyn, that
he hates her and wishes she would be dead.

— Each time Bob is on a work trip, FEvelyn goes
jogging that day in the morning (and only then).

— A quarrel between two persons is a disharmony
between them.

— On Wednesday Dave saw Carl in the house.

Figure 1 shows (informally) an exemplary dialog between
the participating agents that might happen in this scenario
(agent names are abbreviated by their first letters). This
dialog will be used in the upcoming sections to illustrate
important properties of our multiagent system.

We do not give a full representation of the beliefs as an
answer set program but exemplary for some fragments.

EXAMPLE 1. The initial (logical) beliefs of Dave can be
represented as:
quarrel(bob, evelyn). threatened(bob, evelyn).
jogging(evelyn, DAY') «— worktrip(bob, DAY').
worktrip(bob, DAY") «— jogging(evelyn, DAY).
disharmony(X,Y) <« quarrel(X,Y).

423

A asks C:
A asks B:

A asks D:

A asks B
B answers A
A asks D
D answers A

A answers D
D answers A

A asks B
B answers A
A asks D
D answers A

A answers D
D answers A
A asks C
C answers A
A asks D
D answers A

C answers A:

B answers A:

D answers A:

“Did you murder Evelyn?”

LLNO.W

“Did you murder Evelyn?”

“NO.”

“Did you notice any disharmony
between Evelyn and Bob

or Evelyn and Carl?”

“I overheard a quarrel on Wednesday,
where Bob wished Evelyn was dead.”
(Alice now thinks, that Bob

is the murderer)

“Where were you on Friday?”

“I was on a work trip.”

“Can you confirm this statement?”

“T could, if you can tell me, if
Evelyn was jogging on Friday.”
“Evelyn was jogging on Friday.”
“Then I can confirm this statement.”
(Bob has an alibi)

“Where were you on Wednesday?”

“I was on a work trip.”

“Can you confirm this statement?”

“I could, if you can tell me, if
Evelyn was jogging on Wednesday.”
“Evelyn was jogging on Wednesday.”
“Then I can confirm this statement.”
“Did you meet Evelyn on Wednesday?”
LLNO'”

“Is that true?”

LLNO.W

(Alice infers that Carl was the
one who threatened Evelyn
and therefore he is the murderer)

Figure 1: Exemplary dialog in the FEvelyn-scenario

4. COMMUNICATION/INTERACTION

Every action an agent performs in a given world situation
results in a specific event in this situation. As possibly many
different agents may be present at this event, they each per-
ceive it in a different way. In our system this is realised using
a special abstract entity as the environment, which monitors
the world evolvement and notifies present agents on occur-
ring events. In general agents may perform many different
kinds of actions. As we focus our work in this paper on the
belief component, we do not emphasise the description of a
situation calculus. Therefore we restrain the set of possible
actions to message actions, where one agent wants to com-
municate an information to one or more other agents. Our
communication protocol is loosely based on KQML[2] and
thus follows the directives of speech act theory [12]. Mes-
sage actions result in one or more messages which are sent
to the present agents.

DEFINITION 1 (MESSAGE). A Message is a quadruple
(S,R,T,C), where S is the sender, R is the set of receivers,
T is the type and C is the content of the message. The set
of all possible messages is denoted by M.

In our system, the content of a message is represented as an
extended logic program.

Once an agent performs a message action, the resulting
event is interpreted by the environment and translated into
one or more messages to specific agents. This way the eaves-
dropping of messages without notice of the participating
agents is made possible. Furthermore the environment can

alter the content of the message if appropriate, e.g remov-
ing the sender of the message if the communication channel
is somehow distorted.

Although speech act theory describes many types of mes-
sages, we only use two: query (¢) and general message (g).
If an agent poses a query to another agent, she expects an
answer from her which must be of type general message. In
general the type general message is used to exchange infor-
mation between agents.

We distinguish three subtypes of queries:

1. instantiate-queries: the querying agent wants the an-
swering agent to instantiate a given non-fully-grounded
predicate, e. g. the query of Alice to Bob, in which Alice
wants to know where Bob was on Friday can be repre-
sented as location(bob, X, friday) and then the answer
of Bob would be location(bob, worktrip, friday).

2. element-info-queries: the querying agent wants to ob-
tain some information about an individual or an ob-
ject, e.g. Alice asks Dave what he knows about Bob.
In this case the query would only contain the con-
stant “bob” and Dave could answer with honest(bob)
or loves(bob, evelyn) or both.

3. yes/no-queries: the querying agents wants to know if
the other agent believes the given ground instance of a
specific predicate, e.g. Alice asks Carl if he murdered
Evelyn, i.e. she asks murderer(carl, evelyn), and he
returns “no”.

ExXAMPLE 2. Consider the Evelyn-scenario of Section 3.
Dave overheard a quarrel between Evelyn and apparently
Bob. But the actual initiator of the message act was Carl.
The message action of Carl contained the information, that
he hates Evelyn (hate(carl, evelyn)). Then the environment
sends the message (carl, {evelyn}, g, hate(carl, evelyn)) to
Evelyn, because she was near Carl when he performed this
action. Dave was in a room next to the room of the mes-
sage action, so the communication channel has been dis-
torted. The environment attends this distortion by alter-
ing the message that is sent to Dave. Let x denote an
unknown constant, then Dave would receive the message
(z, {evelyn}, g, hate(zx, evelyn)). Internally Dave would as-
sume that x must be “bob” (perhaps because he thinks Bob is
at home) and appropriately update his beliefs.

S. AGENT MODEL

Our agent model is inspired by the commonly known BDI-
model, see [16] for an overview. The BDIl-model divides an
agent’s interior state into three components: Beliefs, Desires
and Intentions. We denote Des as the set of all desires or
possible goals an agent can have where a desire or a possible
goal is an atom that an agent wants to become true in her
beliefs. An agent maintains a subset D C Des of all possible
goals, e.g. agent Alice in the running example (informally)
has desires D = {murder_case_solved, being_healthy}. Ev-
ery agent has at each moment one selected goal, which he
currently pursuits, denoted selected(D). Thus agent Alice
has selected(D) = murder_case_solved. Similary an agent
maintains a set of abstract intentions I C Int, where Int de-
notes the set of all possible intentions. Intentions describe
the aims of the agent he currently pursuits in order to fulfill
her selected goal. They are represented as atoms as well
but are easier to fulfill than desires. Everytime an agent

424

selects a new goal to pursuit, this goal also becomes the
next intention. In general at any time the set I correlates
directly to the current pursuited goal selected(D) and con-
tains the next subgoals the agent wants to become true in
order to fulfill selected(D). Some intentions can be directly
fulfilled by performing an atomic action. These intentions
are called atomic intentions. The set I is often seen as a
stack [7], where the top element might be removed by an
atomic action or be split up into more concrete intentions
and stacked upon I. When the stack is empty, the selected
goal is fulfilled.

An agent in our framework interacts with her fellow agents
by means of messages as defined in Definition 1. In messages
our agents exchange extended logic programs. When inter-
acting they also keep track of the temporal order in which
they receive messages and internally build up information
objects.

DEFINITION 2 (INFORMATION OBJECT). An informa-
tion object is a tuple I = (P, S,T), where P is an extended
logic program, S is the source of P and T represents the
point in time P has been received.

These information objects are then used to represent an
agents belief base.

DEFINITION 3 (KiMAS BELIEF BASE). A KiMAS belief
base of an agent A is a set of information objects KB =
{Ig, ..., I2} containing all information objects maintained
from received messages and the initial beliefs represented by
a special information object I§* = (Pf;, A, to). Let KC be the
set of all KiMAS belief bases.

We further extend the agent model by introducing know-how
[15, 14] and motivation [9, 10] as explicit components in the
representation of an agent.

DEFINITION 4 (KiMAS AGENT). A KiMAS agent is a
tuple A = (KB, Kn,D,I,C,M,p), where KB € K 1is the
belief base of the agent, Ky is the know-how of the agent,
D C Des, I C Int, C is a set of atomic actions the agent
can perform, M is the (basic) motivation of the agent and
@ s a functional component.

The functional component of a KiMAS agent describes the
dynamics of the behaviour of the agent, e.g. belief revision
or goal generation. In the following subsections we further
discuss know-how, motivation and the functional component
of a KiMAS agent.

5.1 Know-How

While in the BDIl-model the whole belief of an agent is cap-
sulated in one component, we explicitly distinguish between
the logical belief, also called know-that, and know-how [14].

In [14] know-that is described as the belief an agent has
about the world, the current situation and her factual knowl-
edge. Besides that, a reasonable agent also has beliefs about
how to act to reach specific goals. For example, agent Al-
ice in our running example knows, that in order to deter-
mine the murderer of Evelyn she first has to determine the
suspects and find some evidence. Without some structural
knowledge on goals and subgoals an agent can not relate her
actions to her goals and therefore can not act goal-oriented.

While in [14] know-how is discussed under a very theoret-
ical point of view, we take here a more pragmatical view on

know-how, as we see it as a tool for an agent that gives him
the capability of fundamental planning routines. Know-how
structures intentions into hierarchies which helps an agent
to split up abstract intentions into more concrete intentions,
which can be fulfilled more easily, down to atomic intentions,
which can be fulfilled by an atomic action. For the next def-
inition let S™ denote all ordered sequences of elements of the
finite set S.

DEeFINITION 5 (KNow-How). Know-how K}, is a set of
pairs (a, B), s.t. a € Int and B € Int™. Let KH denote the
set of all possible know-how structures.

EXAMPLE 3. The intention murder_case_solved of Alice
could be split up into less abstract intentions
B = (suspects_found, evidences_found).
Thus (murder_case_solved, 3) might be in the know-how of
Alice.

Furthermore, there may be other pairs with the intention
solve_murder_case as the first component in the know-how
of Alice, which gives her the possibility to choose from dif-
ferent alternatives to pursue her goals. Moreover, as the
intentions suspects_found and evidences_found are proba-
bly not atomic intentions, these should be further split up
by appropriate pairs in the know-how of Alice.

Know-how in our model is not an active component of an
agent but a data structure. It is used by specific functions
of an agent to deliberate what to do next. These functions
will be presented in Section 5.3.

5.2 Motivation

The desires Des of autonomous agents correspond to the set
of possible goals. An agent maintains a subset D C Des,
but she might not be able to aim at several of these de-
sires simultaneously. Thus a mechanism is needed to de-
cide, which d € D will be taken into consideration next. In
this context we introduce motivations [9, 10]. The possible
motivations Mot are non-derivative components that char-
acterise the personality of an autonomous agent and provide
the agent with a higher-level control.

These components, e.g. greed or altruism, do not specify
a state of affairs to be achieved and can hardly be described
in logical terms. Therefore they are not equal to the notion
of goals in the classical sense of artificial intelligence. In-
stead motivations provide reasons for a goal, which could be
having someone else’s money or being generous. More pre-
cisely, in our system a motivation M induces a total preorder
< on the set of possible goals, which is a total, transitive
and reflexive relation. Let di, d2 € D be two desires, then
d1 <u dz iff the motivation M for d; is at least as strong
as for d2. Thus the set of the agent’s desires is partitioned
into several sets D = (D{’,..., D)) with

di € DM Ndy € D) A i< & di <urde

The next goal, selected(D), will be a randomly selected g €
D!, as the set DY contains the desires which are motivated
the most.

To simplify matters we let every agent be driven by only
one motivation M, which forms the personality of the agent.
In the case of Alice her motivation M is the sense of justice:

EXAMPLE 4. Let M = sense_of_justice be the basic mo-
tivation of Alice and let murder_case_solved and

425

being_healthy be her only desires. The set of desires will be
partitioned into D{' = {murder_case_solved} and D} =
{being_healthy}, as Alice’s motivation provides a reason to
solve the case while it does not amplify the volition to eat
healthy food. Thus murder_case_solved will be selected as
her next goal.

5.3 The functional component

Given an initial internal state of a KiMAS agent, namely
KB, Ky, D, I, C, M, the agent acts and evolves in her
environment and thus her internal state changes over time.
The procedures that determine how an agent uses her cur-
rent state to deliberate her next actions are described by
her functional component. The functional component of a
KiMAS agent is a set of functions, which revises her internal
state in a particular situation or outputs an action that the
agent wants to perform.

DEFINITION 6 (FUNCTIONAL COMPONENT). We call a
tuple © = (Qbel, Cgoals Asubgoal, Qaction) @ functional com-
ponent, if ave; s a belief operation, ogoar s a goal gener-
ation operation, Qsubgoal 1S @ Subgoal generation operation
and Qaction 18 an action selection operation.

At first an agent has to handle incoming messages by revis-
ing her beliefs of the world accordingly. A belief operation
is a function, that revises (in an abstract manner) the log-
ical belief base of an agent appropriately to a newly given
evidence, i.e. a newly received message.

DEFINITION 7 (BELIEF BASE OPERATION). A belief op-
eration is a function K x M — K.

A belief base operation incorporates a newly given evidence
into an agents belief base. In our approach this is done by
just merging the new information into the belief base and let
an epistemic belief operation do the actual belief operation,
e. g. revision or update. In the upcoming section we describe
our solution of an epistemic belief operator, which follows
the approach of causal rejection [4].

The main purpose of an agent is to act in her environment.
As our agents are goal-driven, they have to act according to
their current goals and intentions. Suppose an agent has
no intentions at a given time (I = (}). This means, that
the agent does not currently pursue any goal and therefore
there is no need to act in any way. In this case the agent
has to select a goal from her desires D and make it her next
intention. As described in Subsection 5.2 the motivation M
of the agent is used for the determination of a new selected
goal. A goal generation operation is a function, which uses
an agent’s motivation to generate the newly selected goal,
which is put onto her intentions stack. It is also influenced
by the current belief of an agent, as some goals might only
be triggered, if some outer circumstances hold.

DEFINITION 8 (GOAL GENERATION). A goal generation
operation is a function K x Mot x B(Des) — Int.

Intentions can be fulfilled directly by an atomic action or
must be split up in less abstract intentions by using the
agent’s know-how. So if the intentions of an agent are not
empty (I # () but there is no intention directly executable
by an atomic action, then a less abstract subgoal has to be
generated. A subgoal generation operation uses the agents
know-how to split up the current pursuited goal or the next
intentions into more concrete intentions.

DEFINITION 9 (SUBGOAL GENERATION). A subgoal
generation operation is a function K x KH x Int — B(Int).

Intentions are split up recursively down to atomic intentions.
If at least one intention is atomic, then the agent can select
the appropriate atomic action, execute it and remove the
intention from I. If in one situation more than one action is
possible, then an agent has to select one of these actions first.
An action-selection operation chooses one action to perform
from a set of actions. We abstract here from any preferences
that the agent might have in order to decide which action
to perform.

DEFINITION 10 (ACTION SELECTION). An action
selection operation is a function P(Int) X P(C) x K — C.

Figure 2 shows a graphical representation of a KiMAS agent.
In this representation the functional dependencies are rep-
resented by dashed lines and action flow is represented by
solid lines.

4{ Environment ‘47

ko ———
K

¥es [action selection
operation

;} i« I atomic?

subgoal generation | N0 —o2 yes newgoal |_
operation i operation

Figure 2: A graphical representation of a KiMAS-
Agent

EXAMPLE 5. In our example consider the situation, in
which Alice asks Dave if he could confirm that Bob was on
a work trip on Friday. At first Dave updates his beliefs KB
with the information, that Alice wants to know the truth
value of worktrip(bob, friday). As Dave does not pursue
any intentions at this time, he has to generate a new goal in
order to react to this change of beliefs accordingly. The basic
motivation of Dave here is family_bond and this motiva-
tion leads to the goal sisters_murderer_determined. Based
on this goal and the information that providing Alice with
the needed knowledge would help to fulfill that goal, Dave
needs to know, whether jogging(evelyn, friday) is true (be-
cause then he can apply the rule worktrip(bob, DAY) «—
jogging(evelyn, DAY)) in order to answer Alice’s query.
Observe that Dave could also just answer unknown (a valid
answer in this situation) instead of a useful answer, but this
is not compatible with Dave’s motivation. So Dave brings
up the new intentions was_evelyn_jogging_on_friday and
answer_to_alice. The first intention can be fulfilled by ask-
ing Alice about the truth value of jogging(evelyn, friday).
After getting the answer true from Alice and integrating

426

jogging(evelyn, friday) into his beliefs Dave now believes
that worktrip(bob, friday) is true. Now he can directly ful-
fill the intention answer_to_alice by confirming the original
statement.

6. BELIEF OPERATIONS

The epistemic capabilities of the agents in our framework
were introduced in Section 3.1. We will now describe the
actual belief operations. Each agent has her initial beliefs in
form of evidential knowledge and generic beliefs which are
deeper entrenched than knowledge acquainted from other
agents. The agent has to deal with messages received from
other agents and from the environment itself. As stated,
agents are not necessarily honest nor impeccable and thus
an agent has to be careful when dealing with information
obtained from such, more or less credible, sources.

Our agents obtain information by receiving and processing
messages, which contain the sender of the message. Thus,
for each piece of information the agents know its origin and
can use this to evaluate the truthfulness of this particular
information.

DEFINITION 11 (ASSESSMENT). An assessment c is a
function ¢ : A — {0,...,N} assigning a credibility value
from a linearly ordered scale to an agent.

An assessment is used to represent the credibilities an agent
gives to other agents known to her. These credibilities are
kept in a separate structure to allow for a dynamic change
of credibilities within time.

The belief bases of our agents are structured as stated
in Definition 3. If an agent wants to perform reasoning an
epistemic operator is applied to the belief base to get her
current epistemic state.

DEFINITION 12 (EpISTEMIC OPERATOR). A function
B : K — P which generates an extended logic program from
a KiMAS belief base is called an epistemic operator.

The resulting epistemic state of the epistemic operator is
given to an answer set reasoner e.g. DLV [3] or smodels [13]
which computes answer sets representing the belief sets of
the agent.

The belief base structure is based on information objects,
which include meta information about time and source of
information. The sources of information again are connected
to current credibility values by means of an assessment. This
structure enables epistemic operators to include credibility
and temporal information into the reasoning process. Our
framework can deal with a variety of epistemic operators
potentially varying between different agents.

In the following we will describe the epistemic operator we
developed and implemented. It is based on and extending
[4], utilizing the structure and possibilities of our framework.
We are working on a KiMAS belief base KB4 = {I&, ..., I}}
which consists of a set of extended logic programs with meta
information source s and time of reception t over the alpha-
bet £. We assume, that only one piece of information can
be received at each point in time. Our goal is to compile this
set into one single, consistent extended logic program P.,. In
the agents assessment a credibility is assigned to each source
known to her. A default credibility is assigned to unknown
sources. Initial information or information coming directly
from the perception of the environment can be modeled by

giving it the maximum credibility. These credibilities are,
augmented by the time information, used to give priorities to
the programs received from other agents. Instead of giving
priorities to rules in a static manner like other approaches
following the causal rejection principle we prioritize literals
and take the priorities of the body literals of a rule into con-
sideration to determine the priority of the associated head
literal, giving a more truthful priority to inferred literals.
The priority of the head literal is based on the body literals
which originate directly from sources with varying credibil-
ity, or are inferred within the program themselves. We use
a cautious reasoning approach giving the head literal the
minimum of the body literal priorities. However, we have
to take the priority of the respective rule into consideration.
We do this by not allowing the head literal to be prioritized
higher than the rule is prioritized itself. At last we have to
deal with the fact, that the same instances of literals can be
inferred in different ways or can come from different sources
and hence exist parallel with different priorities. To take
this into consideration in the determination of the head lit-
eral priority we use the maximal priority that we have for a
given literal. We accomplish this priority selection and prop-
agation solely using aggregate functions available in answer
set solvers but do not rely on them.

We will denote the set of programs of KB“ by P. The
original alphabet £ of P is extended to £’ by adding sev-
eral new predicates and atoms, which we will introduce now.
For each literal L(x7) occurring in P a prioritized version
ﬁ(:fL,u) is added. Here, the variable p represents the pri-
ority of the considered instance of the literal L. Let H(P)
denote the set of literals occurring in the head of a rule r
in P. Predicates named rejr(Zr, 1) are introduced for each
literal L € H(P). B(r) is the set of literals in the body of
the rule r. Let the priority of program P; be given by u(P;).

In a preprocessing step we sort the set P lexicographically
in s and t of KB respectively. Then we give priorities to
the individual programs according to this ordering obtaining
a sequence (P, ..., P,) of logic programs. Now we are able
to describe the construction of the program P, = Py¢...oP,
in four steps by generating the following rules:

1. for each rule r € P;,0 < i < n with head H(Zg):

H(Zg,p) <« B(r),min(MaxB(Zp,r)) = .

MaxB(Zp,7) = {{tmaz(B(ZB))]
B(@p,p') € BT (r)} U{n(Pi)}
maa(B(Es)) = max{|B(E, i) € H(P))

2. for each literal L € H(P):
L(Z1) «— L(Z1,), not rejr(Zr,).
3. for each literal L € H(P):
reju(EL, p) — L@, 1), ~L(&Fr, 1), p < 1.
4. all constraints from P;,0 <i<n

In the first construction step the original rules from P are
adopted. Their literals are replaced by their correspond-
ing prioritized versions and the rules are extended in a way
to support the propagation of priorities. To determine the
priority that should be propagated to the head literal the
minimum of the maximum priorities of the body literals is

427

used. A literal can be inferred in different rules with different
priorities. That is why we consider the maximum priority
of each literal. Only body literals are considered which are
not default negated. This is done as the priority of a default
negated literal should not give us any information about the
priority we should assign to the head literal.

The second construction step connects the prioritized to
the unprioritized layer of literals. A literal L holds if a prior-
itized version of it holds and is not blocked due to conflicts.

The third construction step introduces the rej predicates
which ensure that no prioritized literal is connected to its
unprioritized equivalent if this would lead to an inconsis-
tency. A literal is blocked if it is conflicting with a higher
prioritized instance of itself. Through this, more reliable
or more current information dominates less reliable or older
information.

The constructed program P, is given to an answer set
reasoner to compute answer sets for it. A resulting answer
set S’ for the program P, is defined over the alphabet £’
and has to be projected to the original alphabet L.

DEFINITION 13. S is an answer set of P = (P1,...P,) iff
S =8"NL for an answer set S of P,

We illustrate this mechanism in our running example.

ExXAMPLE 6. Consider the following belief base of Alice:

KB = {({murdered(evelyn).

suspect(X) « threatened(X,Y), murdered(Y).

threatened(X, evelyn) «— met(X, evelyn, wed).

murderer(X) «— suspect(X), not alibi(X).

}, Alice, to),

({—murderer(carl, evelyn)}, Carl, t1),

({—murderer(bob, evelyn)}, Bob, t2),

({alibi(bob)}, Dave, ts),

({met(carl, evelyn, wed)}, Dave, t4),

({—met(carl, evelyn, wed)}, Carl,ts), }

Looking at the belief base it is obvious that there are several
conflicts. In addition to the belief base Alice has an assess-
ment function ¢ : A — {0,...,10} (the interval might be any
other limited interval).
c(alice) = 10, ¢(carl) = 3, c(bob) = 3, c(dave) = 6

As Alice is self-confident she assigns the maximum credi-
bility to herself, her initial beliefs respectively, and only to
herself. Carl and Bob are suspects and get small credibility.
Dave, as Evelyn’s brother, is more credible.

Starting at this state the epistemic operator generates the
epistemic state. As described earlier the programs are or-
dered lexicographically in their assigned credibility and time.
In the example this leads to the following order:

Py . {—~murderer(carl, evelyn).}

P, . {—murderer(bob, evelyn).}

Ps . {—met(carl, evelyn,wed).}

Py : {alibi(bob).}

Ps . {met(carl, evelyn,wed).}

Ps . {murdered(evelyn).}

P; . {suspect(X) < threatened(X,Y), murdered(Y).
threatened(X, evelyn) «— met(X, evelyn, wed).
murderer(X) « suspect(X), not alibi(X).}

Note that we separated Alices initial beliefs into factual and
rule based knowledge. From these rules the program P, 1is
generated as described above and is given to an answer set
solver. The resulting answer set is the following:

S" = {-murderer(carl, 1), ~murderer(bob, 2),
—met(carl, evelyn, wed, 3), alibi(bob, 4),
met(carl, evelyn,wed, 5), murdered(evelyn, 6),
suspect(carl, 5), threatened(carl, evelyn, 5),
murderer(carl,5), murderer(carl), alibi(bob),
met(carl, evelyn, wed), ~murderer(bob),
murdered(evelyn), suspect(carl),
threatened(carl, evelyn), rej-murderer (carl, 1),

rej-met(carl, evelyn, wed, 3)}

Here we can see how the solving of conflicts on the prioritised
predicates worked. According to Definition 13 the projected
answer set looks like this:

S = {murderer(carl), alibi(bob), suspect(carl),
met(carl, evelyn, wed), ~“murderer(bob),

murdered(evelyn), threatened(carl, evelyn)}

Given this answer set Alice beliefs that Carl was the one who
met Evelyn on Wednesday and thus the one who threatened
Evelyn. Given this and the fact, that Bob has an alibi she
concludes, as desired, that Carl is the murderer of Evelyn.

7. CONCLUSION AND FUTURE WORK

The adequate processing of information received from the
environment is a principal prerequisite for intelligent be-
haviour. However, the agent should not simply believe what-
ever she is told, but should be able to judge each new piece
of information by its importance and reliability.

In this paper, we presented belief change operations within
a BDI agent in a multiagent setting. From the perspective
of each agent, the other agents are assigned degrees of re-
liability which determine the credibility of their utterances.
In combination with a time stamp, the credibility is used on
a meta-level to generate ranked knowledge bases as belief
bases for each agent. From this belief base, an epistemic
state is computed by update techniques for logic program-
ming, and answer sets are taken to represent most plausible
beliefs. In this way, a complete information processing mech-
anism is described, taking prior beliefs of the agent as well
as content and context of new information into account. We
also implemented a motivation for each agent via preference
relations on possible goals, helping her to pursue a personal
line of goals. All this is embedded into the BDI model, and
we made interactions between the different components ex-
plicit by specifying a functional component.

As part of our current work, we plan to extend the de-
scribed belief component in order to realise substantially
different belief change operations; for instance, the agents
should be able to distinguish between revision and update.
We will also investigate the formal properties of our epis-
temic operator according to well-known postulates for belief
change and show the advantages of the propagation of prior-
ities in comparison to other known mechanisms. As agents
may have more than one motivation, we will study possi-
ble interactions of different motivations within one and the
same agent, applying techniques from preference fusion.

428

Acknowledgments We are thankful to the anonymous re-
viewers for their helpful comments and to the students of
the Project Group 491 at the Dortmund University of Tech-
nology for their inspiring discussions.

8. REFERENCES

[1] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex:
A BDI agent system combining middleware and
reasoning. In R. Unland, M. Calisti, and M. Klusch,
editors, Software Agent-Based Applications, Platforms
and Development Kits. Birkhduser Book, 2005.

[2] H. Chalupsky, T. Finin, R. Fritzson, D. McKay,

S. Shapiro, and G. Weiderhold. An overview of
KQML. Technical report, KQML Advis. Group, 1992.

[3] T. Eiter, W. Faber, C. Koch, N. Leone, and G. Pfeifer.
DLV - A system for declarative problem solving. In
C. Baral and M. Truszczynski, editors, Proc. of the 8th
Int. Workshop on Non-Monotonic Reasoning, 2000.

[4] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On
properties of update sequences based on causal
rejection. Theory Pract. Log. Program., 2(6), 2002.

[5] P. Gérdenfors and H. Rott. Belief revision. In D. M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic
Programming. Oxford University Press, 1995.

[6] M. Gelfond and N. Leone. Logic programming and
knowledge representation — The A-Prolog
perspective. Artif. Intelligence, 138(1-2):3-38, 2002.

[7] F. Ingrand, M. Georgeff, and A. Rao. An architecture
for real-time reasoning and system control. IEEE
Expert, 7 (6), 1992.

[8] G. Kern-Isberner. Conditionals in nonmonotonic
reasoning and belief revision. Springer, Lecture Notes
in Artificial Intelligence LNAT 2087, 2001.

[9] M. Luck and M. d’Inverno. Motivated behaviour for
goal adoption. In Zhang and Lukose, editors, Proc. of
the 4th Australian Workshop on Distributed Artificial
Intelligence, pages 58—73. Springer, 1998.

[10] T. J. Norman and D. Long. Goal creation in motivated
agents. In M. Wooldridge and N. R. Jennings, editors,
Intelligent Agents: Theories, Architectures, and
Languages, pages 277-290. Springer, 1995.

[11] Projektgruppe 491. Endbericht der Projektgruppe
491. Technical report, University of Dortmund, 2007.

[12] J. R. Searle. Speech Acts: An Essay in the Philosophy
of Language. Cambrige University Press, 1969.

[13] P. Simons, I. Niemel4, and T. Soininen. Extending
and implementing the stable model semantics.
Artificial Intelligence, 134(1-2):181-234, 2002.

[14] M. Singh. Know-how. In A. Rao and M. Wooldridge,
editors, Foundations of Rational Agency, Applied
Logic Series, pages 105-132. Kluwer, 1999.

[15] M. Singh, A. Rao, and M. Georgeff. Formal methods
in DAI: Logic-based representation and reasoning. In
G. Weiss, editor, Multiagent Systems — A Modern
Approach to Distributed Artificial Intelligence, pages
331-376. MIT Press, Cambridge, Massachusetts, 1999.

[16] G. Weiss, editor. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1999.

