
Ontology-based Test Generation for MultiAgent Systems

(Short Paper)
Cu D. Nguyen, Anna Perini and Paolo Tonella

Fondazione Bruno Kessler
Via Sommarive, 18
38050 Trento, Italy

{cunduy, perini, tonella}@fbk.eu

ABSTRACT
This paper investigates software agents testing, and in par-
ticular how to automate test generation. We propose a novel
approach, which takes advantage of agent interaction on-
tologies that define content semantic of agent interactions
to: (i) generate test inputs; (ii) guide the exploration of
the input space during generation; and, (iii) verify messages
exchanged among agents with respect to the defined inter-
action ontology. We integrated the proposed approach into
a testing framework, called eCAT , which can generate and
evolve test cases automatically, and run them continuously.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Ontology-based test generation

1. INTRODUCTION
Testing of Multi-Agent Systems (MAS) is a challenging

task because these systems are distributed, they are often
programed to be autonomous and deliberative, and they op-
erate in an open world, which requires context awareness.
MAS face issues concerning communication and semantic in-
teroperability, as well as coordination with peers. All these
features are known to be hard not only to design and to
program [1], but also to test.

A few studies focused on MAS verification [2], debug-
ging [3, 10], and, more recently on MAS testing [4, 13].
Tiryaki et al. [13] and Coelho et al. [4] have proposed two
testing frameworks, working on different agent platforms,
both based on JUnit and sharing the idea of using mock
agents that interact with the agents under test by sending
messages to them, according to a given interaction proto-
col. The replies of the agents under test are then evaluated
against expected behaviors.

Cite as: Ontology-based Test Generation for MultiAgent Systems (Short
Paper), Cu D. Nguyen, Anna Perini and Paolo Tonella, Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16.,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Although existing approaches [4, 13] represent an impor-
tant step toward the automation of MAS testing, they mainly
address test case execution. Issues related to test cases gen-
eration, that concern how to effectively generate valid and
invalid input data to thoroughly exercise the agents’ behav-
ior, are still largely unexplored in MAS testing.

Agent behaviors are often influenced by messages received.
Hence, at the core of test case generation is the ability to
build sequences of messages that exercise the agent under
test so as to cover most of the possible running conditions.
Often, failures appear only after long execution periods and
under specific conditions and environmental contexts. A
key feature of agent testing is the possibility to carry on
long interactions with the agents under test. This demands
for automated approaches to test case production, so as to
overcome the necessarily limited number of cases considered
in a manually defined test suite.

Automated test case generation requires the ability to fill-
in message templates with input data that are both mean-
ingful and diverse enough to stimulate the alternative reac-
tions of the agent under test. Manual and purely random
input generation are deemed to cover a limited portion of
the input space for different reasons: manual input data are
necessarily a small set; random input data are generated
without taking the semantics of the messages into account.
For example, a string can be easily generated randomly, by
picking up a random sequence of characters, but such an au-
tomatically generated input is very unlikely to match, e.g.,
a valid airline name, which might be necessary to construct
a valid message processed by the agent under test.

We have developed a MAS testing framework, called eCAT ,
which supports continuous testing and automated test case
generation [8]. The algorithms used for test case genera-
tion are based on a fitness function for the selection of those
test cases that are most likely to reveal faults. However, no
guidance is provided for the selection of meaningful input
values.

In this paper, we address the problem of meaningful input
value generation, in the context of continuous, automated
MAS testing. We take advantage of agent interaction on-
tologies, which define the semantics of agent interactions, in
order to automatically generate both valid and invalid test
inputs, to provide guidance in the exploration of the input
space, and to obtain a test oracle against which to validate
the test outputs.

We implemented the ontology-based test case generation
approach within our framework eCAT , so that test cases
are generated and executed continuously, resulting in a fully

2008,Estoril,Portugal,pp.1315-1318.

automated testing process, which can run unattended for
long periods of time. On the one hand, continuous testing
enables extensive exploration of the space of MAS behaviors,
on the other hand, ontology-based test generation guides
this exploration toward the most interesting regions of the
space of input data that appear in meaningful messages.

In this paper, we describe our tool-supported test gen-
eration framework. Results of its evaluation on BDI case
studies can be found in [9].

2. ONTOLOGY-BASED TEST GENERATION

2.1 Agent interaction ontology
In order for a pair of agents to understand each other,

a basic requirement is that they speak the same language
and talk about the same things. This is usually achieved
by means of an ontology, namely an interaction ontology.
Popular multi-agent platforms like JADE [12], JADEX [11],
widely support the use of ontologies. They provide tools
for generating code from ontology documents, thus, reduc-
ing the development effort, and for runtime binding of the
message contents with concepts defined in an ontology.

A common structure of an interaction ontology involves
two main concepts (also known as Classes): Concept and
AgentAction. Sub-classes of AgentAction define actions
that can be performed by some agents (e.g., Propose), while
sub-classes of Concept define common concepts understand-
able by agents that interact (e.g., Book). These sub-classes
can have multiple properties of different type. For each class,
the user can define a number of individuals (or instances) of
the class. For example, Book can have title as a property,
and a particular book having the title“Testing Agents”may
be an instance of Book.

A specific agent action can now be built, based on the
shared understanding of the concept Book. For example, an
agent Buyer could send an ACL message of type REQUEST

to agent Seller, with the following content:

(Propose (Book :title “Testing Agents”) :price 135.7)

The message is understood by both agents thanks to the
shared interaction ontology. Let us consider a book-trading
multi-agent system in which Seller and Buyer agents nego-
tiate in order to sell and buy books.

Rules can be added to the ontology properties in order to
restrict admitted values. For example, the price property
of the Book (above) may be constrained to be within 0 and
2000. The related OWL rule is the following:

<owl:Restriction>
ă <owl:onProperty rdf:resource="#price"/>

ă ă <owl:hasValue ...>min 0 and max 2000</owl:hasValue>
</owl:Restriction>

Testing the Buyer and Seller agents accounts for generat-
ing instances of the messages that each agent is supposed to
be able to process and let the Tester Agent send them to the
proper agents. The Tester Agent continues the interaction
in accordance with the selected protocol and generates new
messages whenever needed. The Monitoring Agents observe
and record any deviation from the expected behavior of the
agents under test. Hence, the problem for the Tester Agent
is how to generate meaningful messages in the course of the
interaction. We take advantage of the interaction ontology
for this purpose.

2.2 Domain ontology and ontology alignment
By domain ontology we mean ontologies that exist in a

specific domain of interest, not necessarily being interaction
ontologies. For instance, there are ontologies that describe
books and all related information such as title, author, cat-
egory, year of publication and the like. A number of domain
ontologies are available on the Internet (a useful ontology
search service is available at: http://swoogle.umbc.edu).

Ontology alignment [5, 7] refers to techniques aimed at
finding relationships between elements of two ontologies. It
can be used to map classes, properties, rules etc. of one
ontology onto another one, and eventually to compare or
transfer data from one to the other. Several tools are avail-
able that support ontology mapping (e.g., Prompt, available
from: http://protege.stanford.edu/plugins/prompt/

prompt.html). For more details on ontology mapping, the
interested reader can refer to the paper by Euznat et al. [5].

In order to generate meaningful testing data, i.e., data
that represent real instances of ontology classes in the do-
main of interest, we use ontology alignment, so as to aug-
ment the agent interaction ontology with instances. This is
achieved by mapping an existing domain ontology onto the
MAS interaction ontology. Since domain ontology may come
with a large amount of associated data, by ontology align-
ment we can augment the interaction ontology with a rich
set of diverse data, that can be used for test case generation.

2.3 Ontology-based test generator
We develop an ontology-based input generator. It is inte-

grated with our testing framework eCAT to provide inputs.
Moreover, the generator takes care of input space explo-
ration.

Valid inputs.
The task of the ontology-based test generator consists of
completing the content part of the message the Tester Agent
is going to send to the agent under test. For each concept
to be instantiated in the message, the generator either picks
up an existing or creates a new instance of the required
concept. No input value is generated by the test generator
if the interaction protocol prescribes that a value from a
previously exchanged message must remain the same.

Then, the selected instance is encoded according to the
proper content codec (for the message content) and is made
available to the Tester Agent . As an example, the following
excerpt shows an XML-encoded content of a message that
contains information about a proposal for a book, including
the Propose action:

<root ... xmlns="jadex.examples.booktrading.ontology"/>
<Book n:id="2" title="Introduction to MultiAgent Systems"

author="Michael Wooldridge"/>
<Propose n:id="1" price="47.50" r:book="2"/>

</root>

When new instances are generated, the test generator se-
lects one from those available in the ontology based on the
number of usages of each instance, so as to increase diversity
and explore the input space more extensively.

In the case when no ontology instances are available, valid
test inputs can be still generated taking into account infor-
mation, such as rules and property datatypes, specified in
the interaction ontology. For example, based on the rule
about the price, the generator can generate any value in the
range from 0 to 2000 as a valid input value to be processed
by the Seller or Buyer agents.

Datatype Rule Description
Numeric RVN1 New value that has not been used be-

fore
from ontology instances

RVN2 Reused value from ontology instances
RVN3 Randomly generated value respecting

rules in ontology
RVN4 Default or template value defined in

ontology
Boolean RVB1 true

RVB2 false
String RVS1 New value that has not been used be-

fore
from ontology instances

RVS2 Reused value from ontology instances
RVS3 Randomly generated value respecting

rules in ontology
RVS4 Default or template value defined in

ontology

Table 1: Valid input generation rules

More generally, for the properties of Numeric datatype,
we can exploit the boundaries of the datatype, as well as the
rules that limit the values of the specific property, to gener-
ate valid input values. For the properties of string datatype,
we can only exploit the list of allowed values, if available.
Most of the times, meaningful values for properties of string
datatype are hardly generated without the help of an ontol-
ogy. The full list of valid input generation rules is provided
in Table 1.

Datatype Rule Description
Numeric RIN1 Value causing overflow (under-

flow)
RIN2 Value violating rules in ontology
RIN3 Value of different datatype
RIN4 null value

Boolean RIB1 Value of different datatype
RIB2 null value

String RIS1 Value violating rules in ontology
RIS2 Value of different datatype
RIS3 null value
RIS4 Empty string
RIS5 Randomly generated string
RIS6 Randomly mutated valid string

Table 2: Invalid input generation rules

Invalid input generation.
Invalid input generation is based on rules and datatypes that
appear in the interaction ontology. When boundaries are
specified for numeric properties, the generator goes beyond
them deliberately. For string properties, the generator pro-
duces null (or empty) strings as potentially invalid values.
Other options available to the generator are to randomly
modify a valid input (taken from the available ontology in-
stances) or to randomly generate a new one in order to try to
produce an invalid value. Another generation rule available
to the test generator involves the creation of an input value
of the wrong datatype (e.g., an alphabetic string where a nu-
meric is expected). The full list of invalid input generation
rules is provided in Table 2.

The generator aims at producing invalid inputs that are
as diverse as possible, in an attempt to test the robustness
of the agents under test, making sure that they still behave
correctly in most invalid circumstances. According to the
book-trading ontology described above, the test generator
knows that the property price is of datatype float and that
there is a rule stating that price must be between 0 and

2000. The generator may produce the invalid values -1, 2001
to test both sides of the boundaries. Values that are not of
type float may be also used to exercise the agents under test.

Message Rule Description
Valid message RVC1 All values valid

RVC2 All values valid and from the same in-
stance

Invalid message RIC1 All values invalid
RIC2 Invalid and valid values interleaved
RIC3 Just one invalid value
RIC4 All values valid but from different in-

stances

Table 3: Input combination rules

Message generation.
When generating the full message, the test generator applies
the input combination rules described in Table 3. For valid
messages, the only possibility is to use only valid input val-
ues. For invalid messages, the generator can choose either
to have only invalid values, or to have interleaved valid and
invalid values, or to have just one invalid value. Rule selec-
tion follows the general criteria of maximizing diversity, as
explained below.

When a valid message can only be formed with inputs
coming from a unique, existing instance, the more restric-
tive rule RVC2 must be applied instead of RVC1. If input
values from different instances can be freely combined, we
can use RVC1. When RVC2 must be used, one way to gen-
erate invalid inputs is mixing values from different instances,
as prescribed by RIC4.

Input space exploration.
The generator uses coverage information to decide how to
explore the input space. The test generator gives priority to
classes and instances never selected before. When instances
are reused, if possible the generator selects instances with
low reuse frequency. When invalid inputs are produced, the
generator chooses the so-far least-used invalid input genera-
tion rules.

Ontology as test oracle.
The expected behavior of the agents under test is checked,
not only, by a set of OCL constraints, but we can also en-
rich such constraints with a set of constraints automatically
derived from the interaction ontology. In fact, the message
content sent by the agents under test is expected to respect
the rules and datatypes specified in the ontology for each
concept instantiated in the message. Whenever the Tester
Agent receives a message content that is invalid according to
the interaction ontology, a fault is notified to the developer
team.

For example, when the Tester Agent sends a call for pro-
posal for a book, the Seller agent must reply with a message
whose content belongs to Propose and complies to its rules
and datatypes. Otherwise, an error is detected.

3. TOOL
We have integrated the ontology-based input generator

into eCAT , our continuous agent testing framework, pub-
licly available for download1. A testing technique has been
implemented for the Tester Agent , in which the Tester Agent

1Download URL not shown to ensure double blind review.

selects a test case template among those specified and in-
vokes the generator to generate appropriate inputs, and then
executes the test. This process is repeated continuously un-
til a desired number of test cycles has been executed or the
user stops it.

Envi ronment 1

Envi ronment N

Agent
A

Agent
 B

Agent Z

Host N

Host 1

O-based Generator

Tester agent

Central monitor ing
 agent

Remote moni tor ing agent

Interact ion ontology

Figure 1: eCAT architecture, including ontology-
based input generator

The architecture of the tool is depicted in Figure 1. The
Tester Agent uses the generator (O-based Generator) to con-
tinuously generate test cases and run them against the agents
under test while the Monitoring Agents observe their be-
haviors and informs the Tester Agent of faults, if any occur.
Moreover, the Tester Agent verifies whether the messages
received from the agents under test conform to the ontol-
ogy or not. In the latter case, the Tester Agent notifies the
developer team of the revealed fault.

A test case template specifies a test scenario, which could
follow a standard protocol like FIPA interaction protocols [6]
or a user-defined sequence of interactions. Test case tem-
plates are encoded in XML according to an XML schema
we defined for them. eCAT has also a plug-in which allows
developers to model test cases graphically.

eCAT has been implemented as an Eclipse2 plug-in. It
supports testing agents implemented in JADE [12] and JA-
DEX [11], and the input ontology formats are those sup-
ported by Protégé3 like OWL.

4. EXPERIMENTAL RESULTS AND CON-
CLUSIONS

In this paper, we presented a novel approach for auto-
mated test case generation using ontologies. The agent in-
teraction ontology is combined with domain ontologies by
means of ontology alignment techniques, so that domain on-
tology instances can be used to populate the agent inter-
action ontology with instances. Our test generator takes
advantage of such instances to produce valid and invalid in-
put messages that can be used to exercise the agents under
test continuously.

We applied this approach to two, different size, BDI agent
systems to evaluate its performance and capability to re-
veal faults. Experimental results, described in detail else-
where [9], show that whenever the interaction ontology has
non trivial size, the proposed method achieves a higher cov-
erage of the ontology classes than manual test case deriva-

2http://www.eclipse.org
3Available at http://protege.stanford.edu

tion. It also overcomes manual derivation in terms of re-
vealed faults, as well as portion of input space explored
during testing. The level of automation achieved by our
tool eCAT allows for test case generation at negligible extra
costs.

5. REFERENCES
[1] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors.

Methodologies and Software Engineering for Agent
Systems : The Agent-Oriented Software Engineering
Handbook. Springer, 2004.

[2] R. H. Bordini, M. Fisher, W. Visser, and
M. Wooldridge. Verifying multi-agent programs by
model checking. Autonomous Agents and Multi-Agent
Systems, 12(2):239–256, 2006.

[3] J. A. Bot́ıa, J. J. Gómez-Sanz, and J. Pavón.
Intelligent data analysis for the verification of
multi-agent systems interactions. In Intelligent Data
Engineering and Automated Learning - IDEAL 2006,
7th International Conference, Burgos, Spain,
September 20-23, 2006, Proceedings, pages 1207–1214,
2006.

[4] R. Coelho, E. Cirilo, U. Kulesza, A. von Staa,
A. Rashid, and C. Lucena. Jat: A test automation
framework for multi-agent systems. In 23rd IEEE
International Conference on Software Maintenance,
2007.

[5] J. Euzenat, T. L. Bach, J. Barrasa, P. Bouquet, J. D.
Bo, R. Dieng, M. Ehrig, M. Hauswirth, M. Jarrar,
R. Lara, D. Maynard, A. Napoli, G. Stamou,
H. Stuckenschmidt, P. Shvaiko, S. Tessaris, S. V.
Acker, and I. Zaihrayeu. State of the art on ontology
alignment. Knowledge Web Deliverable 2.2.3, August
2004.

[6] FIPA. Interaction protocols specifications.
http://www.fipa.org/repository/ips.php3, 2000-2002.

[7] Y. Kalfoglou and M. Schorlemmer. Ontology mapping:
the state of the art. The Knowledge Engineering
Review, 18(1):1–31, 2003.

[8] C. D. Nguyen, A. Perini, and P. Tonella. Automated
continuous testing of multi-agent systems. In The fifth
European Workshop on Multi-Agent Systems,
December 2007.

[9] C. D. Nguyen, A. Perini, and P. Tonella.
Ontology-based test generation for multi agent
systems. definition and evaluation. Technical Report
FBK-IRST0108, FBK, 2008.

[10] L. Padgham, M. Winikoff, and D. Poutakidis. Adding
debugging support to the Prometheus methodology.
Engineering Applications of Artificial Intelligence,
18(2):173–190, March 2005.

[11] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A BDI Reasoning Engine, chapter Multi-Agent
Programming. Kluwer Book, 2005.

[12] TILAB. Java agent development framework.
http://jade.tilab.com/.

[13] A. M. Tiryaki, S. Öztuna, O. Dikenelli, and R. C.
Erdur. Sunit: A unit testing framework for test driven
development of multi-agent systems. In
Agent-Oriented Software Engineering VII, 7th
International Workshop, AOSE 2006, 2006.

