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ABSTRACT
In the last few years, argumentation frameworks have been
successfully applied to multi agent systems. Recently, argu-
mentation has been used to provide a framework for reason-
ing about coalition formation. At the same time alternating-
time temporal logic has been used to reason about the be-
havior and abilities of coalitions of agents. However, ATL
operators account only for the existence of successful strate-
gies of coalitions. They do not consider whether coalitions
can be actually formed.

This paper is an attempt to combine both frameworks and
to develop a logic through which we can reason at the same
time (1) about abilities of coalitions of agents and (2) about
the formation of coalitions. We provide a formal extension
of ATL, ATLc, in which the actual computation of the
coalition is modelled in terms of argumentation semantics.
We show that ATLc’s proof theory can be understood as a
natural extension of the model checking procedure used in
ATL.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic, Temporal logic

General Terms
Theory, Logical foundations

Keywords
multi-agent systems, argumentation, coalition formation, game
theory, temporal logic

1. INTRODUCTION AND MOTIVATIONS
In the context of multiagent systems, argumentation frame-

works [18, 8] have proven to be useful for several purposes,
such as joint deliberation, persuasion, negotiation, and con-
flict resolution [21, 19, 20, 16]. In particular, it has been
shown recently that argumentation provides a sound setting
to model reasoning about coalition formation in multi-agent
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systems [3, 4]. In this approach, conflict and preference re-
lationships among coalitions are used to define which coali-
tions should be adopted by the agents. This is done accord-
ing to a particular argumentation semantics, which can then
be computed using a suitable proof theory.

Alternating-time temporal logic (ATL) [2] is a temporal
logic that is used for reasoning about the behavior and abil-
ities of agents under various rationality assumptions [6, 13,
14]. The key construct in ATL has the form 〈〈A〉〉φ, which
expresses that a coalitionA of agents can enforce the formula
φ. Under a model theoretic viewpoint, 〈〈A〉〉φ holds when-
ever the agents in A have a winning strategy for ensuring
the satisfiability of φ, independently of the behavior of A’s
opponents. However, this operator accounts only for the the-
oretical existence of such a strategy as it does not take into
account whether the coalition A can be actually formed. In-
deed, in order to join a coalition, agents usually require some
kind of incentive (i.e. sharing common goals or getting re-
wards), since forming a coalition does not come for free (fees
have to be paid, communication costs occur, etc.). Several
possible coalition structures among agents may arise, from
which the best ones should be adopted according to some
rationally justifiable procedure.

This paper presents a first approach towards extending
ATL for modelling coalitions through argumentation. We
provide a formal extension of ATL, ATLc, by including
a new construct 〈|A|〉φ which denotes that the group A of
agents is able to build a coalition B, A ⊆ B, such that B
can enforce φ. That is, it is assumed that agents in A work
together, inviting other agents to join and form a coalition
B. This intuition is in accordance with ATL where larger
coalitions are more powerful than smaller ones. The actual
computation of the coalition is modelled in terms of a given
argumentation semantics [10] in the context of coalition for-
mation [3]. We show that the proof theory for modelling
coalitions in our framework can be embedded as a natural
extension of the model checking procedure used in ATL.

The rest of the paper is structured as follows. Section
2 summarizes the main concepts of alternating-time tem-
poral logic (ATL). In Section 3 we introduce the notion
of coalitional framework [3] as well as some fundamental
concepts from argumentation theory. Section 4 provides an
argumentation-based view of coalition formation by merging
ATL and the coalitional framework introduced in Sections 2
and 3. In Section 5 we turn to model checking and in Section
6 we give an outlook to other alternative semantics. Finally,
we discuss related work and conclude.
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2. ATL
Alternating-time temporal logic (ATL) [2] enables rea-

soning about temporal properties and strategic abilities of
agents. The language of ATL is defined as follows.

Definition 1 (LATL [2]). Let Agt = {a1, . . . , ak} be a
nonempty finite set of all agents, and Π be a set of propo-
sitions (with typical element p). We denote by “a” a typi-
cal agent, and by “A” a typical group of agents from Agt.
LATL(Agt,Π) is defined by the following grammar: ϕ ::= p |
¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 fϕ | 〈〈A〉〉2 ϕ | 〈〈A〉〉ϕU ϕ.

Informally, 〈〈A〉〉ϕ expresses that agents A have a collective
strategy to enforce ϕ. ATL formulae include the usual tem-
poral operators: f (“in the next state”), 2 (“always from
now on”) and U (strict “until”). Additionally, 3 (“now or
sometime in the future”) can be defined as 3 ϕ ≡ >U ϕ.

The semantics of ATL is defined by concurrent game
structures.

Definition 2 (CGS [2]). A concurrent game structure
(CGS) is a tuple M = 〈Agt,Q ,Π, π, Act, d, o〉, consisting
of: a set Agt = {a1, . . . , ak} of agents; set Q of states;
set Π of atomic propositions; valuation of propositions
π : Q → P(Π); set Act of actions. Function d : Agt×Q →
P(Act) indicates the actions available to agent a ∈ Agt in
state q ∈ Q. We often write da(q) instead of d(a, q), and use
d(q) to denote the set da1(q)×· · ·×dak (q) of action profiles
in state q. Finally, o is a transition function which maps
each state q ∈ Q and action profile ~α = 〈α1, . . . , αk〉 ∈ d(q)
to another state q′ = o(q, ~α).

A path λ = q0q1 · · · ∈ Q+ is an infinite sequence of states
such that there is a transition between each qi, qi+1.We de-
fine λ[i] = qi to denote the i-th state of λ. The set of all
paths starting in q is defined by ΛM(q).

A (memoryless) strategy of agent a is a function sa : Q →
Act such that sa(q) ∈ da(q) We denote the set of such func-
tions by Σa. A collective strategy sA for team A ⊆ Agt
specifies an individual strategy for each agent a ∈ A; the set
of A’s collective strategies is given by ΣA =

∏
a∈A Σa and

Σ := ΣAgt.
The outcome of strategy sA in state q is defined as the set

of all paths that may result from executing sA: out(q, sA) =
{λ ∈ ΛM(q) | ∀i ∈ N0 ∃~α = 〈α1, . . . , αk〉 ∈ d(λ[i]) ∀a ∈
A (αa = sa

A(λ[i]) ∧ o(λ[i], ~α) = λ[i+ 1])}, where sa
A denotes

agent a’s part of the collective strategy sA.
The semantics of ATL is as follows.

Definition 3 (ATL Semantics). Let a CGS M =
〈Agt,Q ,Π, π, Act, d, o〉 and q ∈ Q be given. The semantics
is given by a satisfaction relation |= as follows:

M, q |= p iff p ∈ π(q)

M, q |= ¬ϕ iff M, q 6|= ϕ

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ

M, q |= 〈〈A〉〉 fϕ iff there is sA ∈ ΣA such thatM, λ[1] |= ϕ
for all λ ∈ out(q, sA)

M, q |= 〈〈A〉〉2 ϕ iff there is sA such that M, λ[i] |= ϕ for
all λ ∈ out(q, sA) and i ∈ N0

M, q |= 〈〈A〉〉ϕU ψ iff there is sA ∈ ΣA such that, for all
λ ∈ out(q, sA), there is i ∈ N0 with M, λ[i] |= ψ, and
M, λ[j] |= ϕ for all 0 ≤ j < i.

(a) a1 a2 a3 where a1 ≺ a3

(b) a1 a2 a3 where a2 ≺ a3

Figure 1: Figure (a) (resp. (b)) corresponds to the
coalitional frameworks defined in Example 1 (resp.
3 (b)). Nodes represent agents and arrows between
nodes stand for the attack relation.

3. COALITIONS AND ARGUMENTATION
In this section we provide an argument-based characteri-

zation of coalition formation that will be used later to extend
ATL. We follow an approach similar to [3], where an argu-
mentation framework for generating coalition structures is
defined. Our approach is a generalization of the framework
of Dung for argumentation [10], extended with a preference
relation. The basic notion is that of a coalitional framework,
which contains a set of elements C (usually seen as agents or
coalitions), an attack relation (for modeling conflicts among
elements of C), and a preference relation between elements
of C (to describe favorite agents/coalitions).

Definition 4 (Coalitional framework [3]). A
coalitional framework is a triple CF = (C,A,≺) where C
is a non-empty set of elements, A ⊆ C × C is an attack re-
lation, and ≺ is a preorder on C representing preferences on
elements in C.

Let S be a non-empty set of elements. CF(S) denotes the
set of all coalitional frameworks where elements are taken
from the set S, i.e. for each (C,A,≺) ∈ CF(S) we have that
C ⊆ S.

The set C in Definition 4 is intentionally generic, account-
ing for various possible alternatives. One alternative is to
consider C as a set of agents Agt = {a1, . . . , ak}: CF =
(C,A,≺) ∈ CF(Agt). Then, a coalition is given by C =
{ai1 , . . . , ail} ⊆ C and “agent” can be used as an intuitive
reference to elements of C. Another alternative is to use a
coalitional framework CF = (C,A,≺) based on CF(P(Agt)).
Now elements of C ⊆ P(Agt) are groups or coalitions (where
we consider singletons as groups too) of agents. Under this
interpretation a coalition C ⊆ C is a set of sets of agents. Al-
though “coalition” is already used for C ⊆ C, we also use the
intuitive reading “coalition” or “group” to address elements
in C.1 Yet another way is not to use the specific structure
for elements in C, assuming it just consists of abstract el-
ements, e.g. c1, c2, etc. One may think of these elements
as individual agents or coalitions. This approach is followed
in [3].

In the rest of this paper we mainly follow the first alterna-
tive when informally speaking about coalitional frameworks,
i.e. we consider C as a set of agents.

Example 1. Consider the following two coalitional frame-
works: (i) CF1 = (C,A,≺) where C = {a1, a2, a3}, A =
{(a3, a2), (a2, a1), (a1, a3)} and agent a3 is preferred over
a1, i.e. a1 ≺ a3; and (ii) CF2 = (C′,A′,≺′) where C′ =
{{a1}, {a2}, {a3}}, A′ = {({a3}, {a2}), ({a2}, {a1}), ({a1},
{a3})} and group {a3} is preferred over {a1}, i.e. {a1} ≺′

1The first interpretation is a special case of the second (coali-
tional frameworks are members CF(P(Agt))).
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{a3}. They capture the same scenario and are isomorphic
but CF1 ∈ CF({a1, a2, a3}) and CF2 ∈ CF(P({a1, a2, a3}));
that is, the first framework is defined regarding single agents
and the latter over (trivial) coalitions. Figure 1 (a) shows a
graphical representation of the first coalitional framework.

Let CF = (C,A,≺) be a coalitional framework. For C,C′ ∈
C, we say that C attacks C′ iff CAC′. The attack relation
represents conflicts between elements of C; for instance, two
agents may rely on the same (unique) resource or they may
have disagreeing goals, which prevents them from coopera-
tion. However, the notion of attack may not be sufficient
for modelling conflicts, as some elements (resp. coalitions)
in C may be preferred over others. This leads to the no-
tion of defeater which combines the notions of attack and
preference.

Definition 5 (Defeater). Let CF = (C,A,≺) be a
coalitional framework and let C,C′ ∈ C. We say that C de-
feats C′ if, and only if, C attacks C′ and C′ is not preferred
over C (i.e., not C ≺ C′). We also say that C is a defeater
for C′.

Attacks and defeats are defined between single elements
of C. As we are interested in the formation of coalitions it
is reasonable to consider conflicts between coalitions. Mem-
bers in a coalition may prevent attacks to members in the
same coalition; they protect each other. The concept of
defence, introduced next, captures this idea of mutual pro-
tection.

Definition 6 (Defence). Let CF = (C,A,≺) be a coali-
tional framework and C,C′ ∈ C. We say that C′ defends
itself against C if, and only if, C′ is preferred over C, i.e.,
C ≺ C′, and C′ defends itself if it defends itself against any
of its attackers. Furthermore, C is defended by a set S ⊆ C
of elements of C if, and only if, for all C′ defeating C there
is a coalition C′′ ∈ S defeating C′.

In other words, if an element C′ defends itself against C
then C may attack C′ but C is not allowed to defeat C′.

A minimal requirement one should impose on a coalition
is that its members do not defeat each other; otherwise,
the coalition may be unstable and break up sooner or later
because of conflicts among its members. This is formalized
in the next definition.

Definition 7 (Conflict-free). Let CF = (C,A,≺)
be a coalitional framework and S ⊆ C a set of elements in
C. Then, S is called conflict-free if, and only if, there is no
C ∈ S defeating some member of S.

It must be remarked that our notions of “defence” and
“conflict-free” are defined in terms of “defeat” rather than
“attack”.2 Given a coalitional framework CF we will use
argumentation to compute coalitions with desirable proper-
ties. In argumentation theory many different semantics have
been proposed to define ultimately accepted arguments [10,
7]. We apply this rich framework to provide different ways to
coalition formation. A semantics can be defined as follows.

2In [3, 4] these notions are defined the other way around,
resulting in a different characterization of stable semantics.

Definition 8 (Coalitional framework semantics).
A semantics for a coalitional framework CF = (C,A,≺) is
a (isomorphism invariant) mapping sem which assigns to a
given coalitional framework CF = (C,A,≺) a set of subsets
of C, i.e., sem(CF) ⊆ P(C).

Let CF = (C,A,≺) be a coalitional framework. To for-
mally characterize different semantics we will define a func-
tion FCF : P(C)→ P(C) which assigns to a set of coalitions
S ∈ P(C) the coalitions defended by S.

Definition 9 (Characteristic function F). Let
CF = (C,A,≺) be a coalitional framework and S ⊆ C. The
function F defined by

FCF : P(C)→ P(C)

FCF (S) = {C ∈ C | C is defended by S}

is called characteristic function.3

F can be applied recursively to coalitions resulting in new
coalitions. For example, F(∅) provides all undefeated coali-
tions and F2(∅) constitutes the set of all elements of C
which members are undefeated or are defended by unde-
feated coalitions.

Example 2. Consider again the coalitional framework CF1

given in Example 1. The characteristic function applied
on the empty set results in {a3} since the agent is unde-
feated, F(∅) = {a3}. Applying F on F(∅) determines the
set {a1, a3} because a1 is defended by a3. It is easy to see
that {a1, a3} is a fixed point of F .

We now introduce the first concrete semantics called coali-
tion structure semantics, which was originally defined in [3].

Definition 10 (Coalition structure semcs [3]). Let
CF = (C,A,≺) be a coalitional framework. Then

semcs(CF) :=

{
∞⋃

i=1

F i
CF (∅)

}
is called coalition structure semantics or just coalition struc-
ture for CF .

For a coalitional framework CF = (C,A,≺) with a fi-
nite set C4 the characteristic function F is continuous [10,
Lemma 28]. Since F is also monotonic it has a least fixed
point given by F(∅) ↑ω (according to Knaster-Tarski). We
have the following straightforward properties of coalition
structure semantics.

Proposition 1 (Coalition structure). Let CF = (C,A,≺
) be a coalitional framework with a finite set C. There is al-
ways a unique coalition structure for CF . Furthermore, if no
element of C ∈ C defends itself then the coalitional structure
is empty, i.e. semcs(CF) = {∅}.

Example 3. The following situations illustrate the no-
tion of coalitional structure:

(a) Consider Example 2. Since {a1, a3} is a fixed point
of FCF1 the coalitional framework CF1 has {a1, a3} as
coalitional structure.

3We omit the subscript CF if it is clear from context.
4Actually, it is enough to assume that CF is finitary (cf. [10,
Def. 27]).
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(b) CF3 := (C,A,≺) ∈ CF({a1, a2, a3}) (shown in Figure
1(b)), is a coalitional framework with C = {a1, a2, a3},
A = {(a1, a2), (a1, a3), (a2, a1), (a2, a3), (a3, a1)} and
a3 is preferred over a2, a2 ≺ a3, has the empty coali-
tion as associated coalition str., i.e. semcs(CF) = {∅}.

Since the coalition structure is often very restrictive, it
seems reasonable to introduce other less restrictive seman-
tics. Each of the following semantics are well-known in ar-
gumentation theory [10] and can be used as a criterium for
coalition formation (cf. [3]).

Definition 11 (Argumentation Semantics). Let
(C,A,≺) be a coalitional framework, S ⊆ C a set of ele-
ments of C. S is called

(a) admissible extension iff S is conflict-free and S de-
fends all its elements, i.e. S ⊆ F(S).

(b) complete extension iff S is conflict-free and S = F(S).

(c) grounded extension iff S is the smallest (wrt. to set
inclusion) complete extension.

(d) preferred extension iff S is a maximal (wrt. to set
inclusion) admissible extension.

(e) stable extension iff S is conflict-free and it defeats all
arguments not in S.

Let semcs (resp. semcomplete, semgrounded, sempreferred and
semstable) denote the semantics which assigns to a coalitional
structure CF all its admissible (resp. complete, grounded,
preferred, and stable) extensions.

There is only one unique coalition structure (possibly the
empty one) for a given coalitional framework, but there can
be several stable and preferred extensions. The existence of
at least one preferred extension is assured which is not the
case for the stable semantics. Thus, the possible coalitions
very much depend on the used semantics.

Example 4. For CF3 from Example 3 the following holds:

semcs(CF) = {∅}
semadmissible(CF) = {{a1}, {a2}, {a3}, {a2, a3}}
semcomplete(CF) = semgrounded(CF) = {{a1}, {a2, a3}} =

sempreferred(CF) = semstable(CF) = {{a1}, {a2, a3}}

Analogously, for the coalitional framework CF1 from Exam-
ple 1 there exists one complete extension {a1, a3} which is
also a grounded, preferred, and stable extension.

4. COALITIONAL ATL
In this section we combine argumentation for coalition for-

mation and ATL and introduce coalitional ATL (ATLc).
This logic extends ATL by new operators 〈|A|〉 for each sub-
set A ⊆ Agt of agents. These new modalities combine, or
rather integrate, coalition formation into the original ATL
cooperation modalities 〈〈A〉〉. The intended reading of 〈|A|〉ϕ
is that the group A of agents is able to form a coalition
B ⊆ Agt such that A is a part of B, A ⊆ B, and B can
enforce ϕ. Coalition formation is modeled by the formal ar-
gumentative approach in the context of coalition formation,
as described in Section 3, based on the framework developed
in [3].

Our main motivation for this logic is to make it possible
to reason about the ability of building coalition structures,
and not only about an a priori specified group of agents (as
it is the case for 〈〈A〉〉ϕ). The new modality 〈|A|〉 provides
a rather subjective view of the agents in A and their power
to create a supergroup B, A ⊆ B, which in turn is used to
reason about the ability to enforce a given property.

The language of ATLc is as follows.

Definition 12 (LATLc). Let Agt = {a1, . . . , ak} be a
finite, nonempty set of agents, and Π be a set of proposi-
tions (with typical element p). We use the symbol “a” to
denote a typical agent, and “A” to denote a typical group of
agents from Agt. The logic LATLc(Agt,Π) is defined by the
following grammar:

ϕ ::=p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 fϕ | 〈〈A〉〉2 ϕ | 〈〈A〉〉ϕU ϕ |
〈|A|〉 fϕ | 〈|A|〉2 ϕ | 〈|A|〉ϕU ϕ

We extend concurrent game structures by coalitional frame-
works and an argumentative semantics. A coalitional frame-
work is assigned to each state of the model capturing the
current “conflicts” among agents. In doing so, we allow that
conflicts change over time, being thus state dependent. But
we assume that the argumentative semantics is the same for
all states.

Definition 13 (CCGS). A coalitional concurrent game
structure (CCGS) is given by a tuple

M = 〈Agt,Q ,Π, π, Act, d, o, ζ, sem〉

where 〈Agt,Q ,Π, π, Act, d, o〉 is a CGS, ζ : Q → CF(Agt)
is a function which assigns a coalitional framework over Agt
to each state of the model, and sem is an (argumentative)
semantics as defined in Definition 8.

A model provides an argumentation semantics sem which
assigns all formable coalitions to a given coalitional frame-
work. As argued before we require from a valid coalition
that it is not only justified by the argumentation semantics
but that it is also a superset of the predetermined starting
coalition. This leads to the notion valid coalition.

Definition 14 (Valid coalition). Let A, B ⊆ Agt
be groups of agents, M = 〈Agt,Q ,Π, π, Act, d, o, ζ, sem〉 be
a CCGS and q ∈ Q.

We say that B is a valid coalition with respect to A, q, and
M whenever B ∈ sem(ζ(q))∪{A} and A ⊆ B. Furthermore,
we use VCM(A, q) to denote the set of all valid coalitions
regarding A, q, and M. The subscript M is omitted if clear
from the context.

Consider a formula 〈|A|〉ψ. Since we assume that the mem-
bers of the initial group A work together, whatever the rea-
sons might be, group A is added to sem(ζ(q)). This ensures
that agents in A can enforce ψ on their own, if they are
able to do so, even if A is not accepted originally by the
argumentation semantics, i.e. A 6∈ sem(ζ(q)).

There are other sensible ways of defining a valid coalition.
For instance, one may require that B ⊆ A instead of A ⊆ B.
In this scenario members from the “initial coalition” A are
removed to find smaller coalitions that ensure a property. It
can be thought of reducing costs of the overall coalition and
to increase the payoff of the coalition’s members. Another
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arguable point is whether the indicated initial coalition A
should always be considered as a valid coalition. However,
in the rest of the paper, due to the lack of space, we will stick
to our initial motivation and leave alternatives for future
research.

The semantics of the new modality is given by

Definition 15 (ATLc Semantics). Let a CCGSM =
〈Agt,Q ,Π, π, Act, d, o, ζ, sem〉, A ⊆ Agt a group of agents
and q ∈ Q be given. The semantics of coalitional ATL ex-
tends that of ATL, given in Definition 3, by the following
rule (〈|A|〉ψ ∈ LATLc(Agt,Π)):

M, q |= 〈|A|〉ψ iff there is a coalition B ∈ VC(A, q) such that
M, q |= 〈〈B〉〉ψ.

Remark 2 (Different Semantics, |=sem). We have
just defined a whole class of semantic rules for modality 〈| · |〉.
The actual instantiation of the semantics sem, for example
semstable, sempref, and semcs defined in Section 3, affects the
semantics of the cooperation modality.

For the sake of readability, we sometimes annotate the sat-
isfaction relation |= with the presently used argumentation
semantics. That is, given a CCGS M with an argumenta-
tion semantics sem we write |=sem instead of |=.

The underlying idea of the semantic definition of 〈|A|〉ψ is
as follows. A given (initial) group of agents A ⊆ Agt is able
to form a valid coalition B (i.e. A is part of the coalition B
and A ⊆ B), with respect to a given coalitional framework
CF and a particular semantics sem, such that B can enforce
ψ.

Similarly to the alternatives to our definition of valid coali-
tions there are other sensible semantics for ATLc. The se-
mantics we presented here is not particularly dependent on
time; i.e., except from the selection of a valid coalition B
at the initial state there is no further interaction between
time and coalition formation. We have chosen this simplis-
tic definition to present our main idea – the connection of
ATL and coalition formation by means of argumentation –
as clear as possible. We will briefly discuss alternative se-
mantics in Section 6, that are worth to be investigated in
the future.

A simple relation between the classic and the new modal-
ity is given next.

Proposition 3. Let A ⊆ Agt and 〈〈A〉〉ψ ∈ LATLc(Agt,Π).
Then it holds that the formula 〈〈A〉〉ψ → 〈|A|〉ψ is valid5 with
respect to CCGS’s.

Note that 〈|A|〉ϕ does not necessarily imply 〈|A′|〉ϕ when A′ 6=
A. In the first formula A is taken as a valid coalition (by
definition) which is not always the case in the latter formula.

Proposition 4. Let A ⊆ Agt and 〈|A|〉ψ ∈ LATLc(Agt,Π).
Then it holds that 〈|A|〉ψ →

∨
B∈P(Agt),A⊆B〈〈B〉〉ψ is a valid-

ity with respect to CCGS’s.

Compared to ATL, a formula like 〈|A|〉ϕ does not refer
to the ability of A to enforce ϕ, but rather to the ability
of A to constitute a coalition B, such that A ⊆ B, and
then, in a second step, to the ability of B to enforce ϕ.

5That is, the formula holds in all states of the given model
for any CCGS.
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(?, ?, ?) (?, ?, ?) (?, ?, ?)

Figure 2: A simple CGS defined in Example 5.

Thus, two different notions of ability are captured in these
new modalities. For instance, 〈〈A〉〉ψ∧¬〈|∅|〉ψ expresses that
group A of agents can enforce ψ, but there is no reasonable
coalition which can enforce ψ (particularly not A, although
they possess the theoretical power to do so).

Example 5. There are three agents a1, a2, and a3 which
prefer different outcomes. Agent a1 (resp. a2, a3) desires
to get outcome r (resp. s, t). One may assume that all
outcomes are distinct; for instance, a1 is not satisfied with
an outcome x whenever x 6= r. Each agent can choose to
perform action α or β. Action profiles and their outcomes
are shown in Figure 2. The ? is used as a placeholder for
any of the two actions, i.e. ? ∈ {α, β}. For instance, the
profile (β, β, ?) leads to state q3 whenever agent a1 and a2

perform action β and a3 either does α or β.
According to the scenario depicted in the figure, a1 and

a2 cannot commonly achieve their goals. The same holds
for a1 and a3. On the other hand, there exists a situa-
tion, q1, in which both agents a2 and a3 are satisfied. One
can formalize the situation as the coalitional game CF =
(C,A,≺) given in Example 3(b), that is, C = Agt, A =
{(a1, a2), (a1, a3), (a2, a1), (a2, a3), (a3, a1)} and a2 ≺ a3.

We formalize the example as the CCGSM = 〈Agt,Q ,Π,
π, Act, d, o, ζ, sem〉 where Agt = {a1, a2, a3},Q = {q0, q1, q2, q3},
Π = {r, s, t}, and ζ(q) = CF for all states q ∈ Q. Transi-
tions and the state labeling can be seen in Figure 2. Further-
more, we do not specify a concrete semantics sem yet, and
rather adjust it in the remainder of the example.

We can use pure ATL formulas, i.e. formulas not con-
taining the new modalities 〈| · |〉, to express what groups of
agents can achieve. We have, for instance, that agents a1

and a2 can enforce a situation which is undesirable for a3:
M, q0 |= 〈〈a1, a2〉〉 fr. Indeed, {a1, a2} and the grand coali-
tion Agt (since it contains {a1, a2}) are the only coalitions
which are able to enforce fr; we have

M, q0 |= ¬〈〈X〉〉 fr (1)

for all X ⊂ Agt and X 6= {a1, a2}. Outcomes s or t can be
enforced by a2: M, q0 |= 〈〈a2〉〉 f(s ∨ t). Agents a2 and a3

also have the ability to enforce a situation which agrees with
both of their desired outcomes: M, q0 |= 〈〈a2, a3〉〉 f(s ∧ t)
Furthermore, agent a2 can decide on its preferred outcome s
on its own: M, q0 |= 〈〈a2〉〉 fs

These properties do not take into account the coalitional
framework, that is whether specific coalitions can be formed
or not. By using the coalitional framework, we get

M, q0 |=sem 〈〈a1, a2〉〉 fr ∧ ¬〈|a1|〉 fr ∧ ¬〈|a2|〉 fr

for any semantics sem introduced in Definition 8 and cal-
culated in Example 4. The possible coalition (resp. coali-
tions) containing a1 (resp. a2) is {a1} (resp. are {a2} and
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{a2, a3}). But neither of these can enforce fr (in q0) be-
cause of (1). Thus, although it is the case that the coalition
{a1, a2} has the theoretical ability to enforce r in the next
moment (which is a “losing” situation for a3), a3 should not
consider it as sensible since agents a1 and a2 would not agree
to constitute a coalition (according to the coalitional frame-
work CF).

The decision for a specific semantics is a crucial point and
depends on the actual application. The next example shows
that with respect to a particular argumentation semantics,
agents are able to form a coalition which can successfully
achieve a given property, whereas another argumentative se-
mantics does not allow that.

Example 6. ATLc can be used to determine whether a
coalition for enforcing a specific property exists. Assume
that sem represents the grounded semantics. For instance,
the statement

M, q0 |=semgrounded 〈|∅|〉 ft

expresses that there is a grounded extension (i.e. a coali-
tion wrt to the grounded semantics) which can enforce ft,
namely the coalition {a2, a3}. This result does not hold for
all semantics; for instance, we have

M, q0 6|=semcs 〈|∅|〉 ft

with respect to the coalition structure semantics, since the
coalition structure is the empty coalition andM, q0 6|= 〈〈∅〉〉 ft.

Note that it is easily possible to extend the language by an
update mechanism, in order to compare different argumen-
tative semantics using formulae inside the object language.

5. MODEL CHECKING ATLC

In this section we present an algorithm for model checking
ATLc formulae. The model checking problem is given by
the question whether a given ATLc formula follows from a
given CCGS M and state q, i.e. whether M, q |= ϕ [9].
In [2] it is shown that model checking ATL is P-complete,
with respect to the number of transitions ofM, m, and the
length of the formula, l, and can be done in time O(m · l).

For ATLc we also have to treat the new coalitional modal-
ities in addition to the normal ATL constructs. Let us con-
sider the formula 〈|A|〉ψ. According to the semantics of 〈|A|〉,
given in Definition 15, we must check whether there is a
coalition B such that (i) A ⊆ B, (ii) B is acceptable by
the argumentation semantics or A = B, and (iii) 〈〈B〉〉ψ.
The number of possible candidate coalitions B which sat-
isfy (i) and (ii) is bounded by |P(Agt)|. Thus, in the worst
case there might be exponentially many calls to a procedure
checking whether 〈〈B〉〉ψ. Another source of complexity is
the time needed to compute the argumentation semantics.
In [11], for instance, it is stated that credulous acceptance6

using preferred semantics is NP-complete.
Both considerations together suggest that the model check-

ing complexity has two computationally hard parts: expo-
nentially many calls to 〈〈A〉〉ψ and the computation of the
argumentation semantics. Indeed, Theorem 6 will support

6That is, whether an argument is in some preferred exten-
sion.

function mcheck(M, q, ϕ);
Given a CCGS M = 〈Agt,Q,Π, π, Act, d, o, ζ, sem〉, a state q ∈ Q,

and ϕ ∈ LATLc (Agt,Π) the algorithm returns > if, and only if,

M, q |=sem ϕ.

case ϕ contains no 〈|B|〉: if q ∈ mcheckATL(M, ϕ) re-
turn > else ⊥

case ϕ contains some 〈|B|〉:

case ϕ ≡ ¬ψ: return ¬(M, q, ψ)

case ϕ ≡ ψ ∨ ψ′: return mcheck(M, q, ψ) ∨
mcheck(M, q, ψ′)

case ϕ ≡ 〈〈A〉〉Tψ: Label all states q′ where
mcheck(M, q′, ψ) == > with a new propo-
sition yes and return mcheck(M, q, 〈〈A〉〉T yes); T
stands for 2 or f.

case ϕ ≡ 〈〈A〉〉ψ U ψ′: Label all states q′ where
mcheck(M, q′, ψ) == > with a new proposition
yes1, all states q′ where mcheck(M, q′, ψ′) ==
> with a new proposition yes2 and return
mcheck(M, q, 〈|A|〉yes1 U yes2)

case ϕ ≡ 〈|A|〉Tψ, ψ contains some 〈|C|〉: Label
all states q′ where mcheck(M, q′, ψ) == >
with a new proposition yes and return
mcheck(M, q, 〈|A|〉T yes); T stands for 2 orf.

case ϕ ≡ 〈|A|〉ψ U ψ′, ψ or ψ′ contain some 〈|C|〉:
Label all states q′ where mcheck(M, q′, ψ) == >
with a new proposition yes1, all states q′ where
mcheck(M, q′, ψ′) == > with a new proposition
yes2 and return mcheck(M, q, 〈|A|〉yes1 U yes2)

case ϕ ≡ 〈|A|〉ψ and ψ contains no 〈|C|〉: Non-
deterministically choose B ∈ P(Agt)

if

(1) B ∈ (sem(ζ(q)) ∪ {A}),
(2) A ⊆ B, and (?)
(3) q ∈ mcheckATL(M, 〈〈B〉〉ψ)

then return > else ⊥

function mcheckATL(M, ϕ);
Given a CGS M = 〈Agt,Q,Π, π, Act, d, o〉 and ϕ ∈ LATL(Agt,Π),

the standard ATL model checking algorithm (cf. [2]) returns all states

q with M, q |=ATL ϕ.

� return {q ∈ Q | M, q |=ATL ϕ}

Figure 3: A model checking algorithm for ATLc

this intuition. However, we show that it is possible to “com-
bine” both computationally hard parts to obtain an algo-
rithm which is in ∆P

2 = PNP, if the computational com-
plexity to determine whether a given coalition is acceptable
are not harder than NP.

For the rest of this Section, we will denote by Lsem,CF
the set of all coalitions A such that A is acceptable accord-
ing to the coalitional framework CF and the argumentation
semantics sem, i.e. Lsem,CF := {A | A ∈ sem(CF)}.

Given some complexity class C, we use the notation Lsem,CF ∈
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C to state that the word problem of Lsem,CF , i.e., whether a
A is a member of Lsem,CF , is in C.

Before we turn to the model checking algorithm, we in-
troduce the following result.

Lemma 5. Let CF = (C,A,≺) ∈ CF(Agt) be a CCGS.
For all semantics sem defined in Definition 11 we have that
Lsem,CF ∈ P.

In Figure 3 we propose a model checking algorithm for
ATLc. The complexity result given in the next theorem is
modulo the complexity needed to compute membership in
Lsem,CF .

Theorem 6 (Model checking ATLc). Let a CCGS
M = 〈Agt,Q ,Π, π, Act, d, o, ζ, sem〉 be given, q ∈ Q, ϕ ∈
LATLc(Agt,Π), and Lsem,CF ∈ C. Model checking ATLc

with respect to the argumentation semantics sem7 is in PNPC
.

The last theorem gives an upper bound for model check-
ing ATLc with respect to an arbitrary but fixed seman-
tics sem. A finer grained classification of the computational
complexity of Lsem,CF allows to improve the upper bound
given in Theorem 6. Assume that Lsem,CF ∈ P and con-
sider the last case of function mcheck in Figure 3 labelled
by (?), ϕ ≡ 〈|A|〉ψ. First, a coalition B ∈ P(Agt) is non-
deterministically chosen and then, it is checked whether B
satisfies the three conditions (1-3) in (?). Each of the three
tests can be done in deterministic polynomial time. Hence,
the verification of M, q |= 〈|A|〉ψ, in the last case, meets
the “guess and verify” principle which is characteristic for
problems in NP. This brings the overall complexity of the
algorithm to ∆P

2 . More surprisingly, the same result holds
even for the case where Lsem,CF ∈ NP.

Corollary 7. If Lsem,CF ∈ NP (resp. NP-complete)
then model checking ATLc is in ∆P

2 (resp. ∆P
2 -complete)

with respect to sem.

In [11] the complexity of credulous reasoning with re-
spect to the preferred and stable extensions is analyzed and
determined to be NP-complete. This is in the line with
our result: there can be a polynomial number of calls to
mcheck(M, q, 〈|A|〉ψ) (where ψ does not contain any cooper-
ation modality 〈| · |〉). Now, the problem of checking whether
mcheck(M, q, 〈|A|〉ψ) holds is very similar to checking whether
some argument is credulously accepted. In both cases we
have to ask for the existence of a set X with specific prop-
erties (in our framework we refer to X as a coalition and in
[11] as an argument) which can be validated in polynomial
deterministic time.

Corollary 8. Model checking ATLc is in ∆P
2 for all

semantics defined in Definition 11.

6. ALTERNATIVE SEMANTICS
In this section we discuss two other semantics for the

coalitional operators. The general idea is to intensify the
interplay between the coalition formation process and the
temporal structure of the model.

In the semantics presented in Definition 15 a valid coali-
tion is initially formed and kept until the property is fulfilled.

7That is, whether M, q |=sem ϕ.

For instance, consider formula 〈|A|〉2 ϕ. The formula is true
in q if a valid coalition B in q can be formed such that it can
ensure 2 ϕ. On might strengthen the scenario and require
that B must be valid in each state on the path λ satisfy-
ing ϕ. Formally, the semantics could be given as follows:
q |= 〈|A|〉2 ϕ if, and only if, q |= ϕ and there is a coalition
B ∈ VC(q,A) and a common strategy sB ∈ ΣB such that
for all paths λ ∈ out(q, sB) and for all i ∈ N it holds that
λ[i] |= ϕ and B ∈ VC(λ[i], A). The last part specifies that
B must be a valid coalition in each state qi = λ[i] of λ.

In the semantics just presented the formed coalition B
must persist over time until ϕ is enforced. One can go one
step further. Instead of keeping the same coalition B it can
also be sensible to consider “new” valid coalitions in each
time step (wrt. A), possibly distinct from B. This leads to
some kind of fixed point definition: q |= 〈|A|〉2 ϕ if, and only
if, there is a coalition B ∈ VC(q,A) such that q |= ϕ and
q |= 〈〈B〉〉 f〈|A|〉2 ϕ. At first, B must be a valid coalition in
state q leading to a state in which ϕ is fulfilled and in which
another valid coalition (wrt. A and the new state) exists
which in turn can ensure to enter a state in which, again,
there is another valid coalition and so on. The semantics of
the remaining temporal operators are given analogously.

Another issue we would like to mention is the incorpora-
tion of our framework into ATL∗. The semantics chosen
in this paper (see Definition 15) can directly be transferred
to ATL∗. The adoption of the other discussed semantics is
not that straightforward. It seems necessary to keep track
of the coalition of interest. In the case of the first alternative
semantics discussed in this section this would mean to recall
B and in the second A. This could be done by annotating
the satisfaction relation by a coalition.

In our future research we would like to consider more so-
phisticated semantics, investigate their effects on the com-
putational complexity results, and analyze the interplay be-
tween different semantics.

7. RELATED WORK
To the best of our knowledge, there is no similar work

of integrating a temporal logic like ATL and argument-
based coalition formation. The main inspiration for our
work was the powerful argumentation-based model for rea-
soning about coalition structures proposed by Amgoud [3].
Indeed, our notion of coalitional framework (Def. 4) is based
on the notion of framework for generating coalition struc-
tures (FCS) presented in Amgoud’s paper. However, our
work is concerned with extending ATL by argumentation
in order to model coalition formation.

In [12] an argumentation-based negotiation method for
coalition formation is proposed, combining a logical frame-
work and an argument evaluation mechanism. The proposed
system involves several user agents and a mediator agent.
During the negotiation, the mediator agent encourages ap-
propriate user agents to join in a coalition in order to facili-
tate reaching an agreement. User agents advance proposals
using a part of the user´s valuations in order to reflect the
user´s preferences in an agreement. This approach differs
greatly from our proposal, as we are not concerned with
the negotiation process among agents, and our focus is on
modelling coalitions within an extension of a highly expres-
sive temporal logic, where coalition formation is part of the
logical language.

Recent research in formalizing coalition formation has been
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oriented towards adding more expressivity to Pauly’s coali-
tion logic [17]. E.g. in [1], the authors define Quantified
Coalition Logic, extending coalition logic with a limited but
useful form of quantification to express properties such as
“there exists a coalition C satisfying property P such that C
can achieve φ”. In [5], a semantic translation from coalition
logic to a fragment of an action logic is defined, connecting
the notions of coalition power and the actions of the agents.
However, in none of these cases argumentation is used to
model the notion of coalition formation as done in this pa-
per.

8. CONCLUSIONS
In this paper we have presented LATLc , a formal extension

of ATL which is able to model coalition formation through
argumentation. ATLc does contain two different modali-
ties, 〈〈A〉〉 and 〈|A|〉, which refer to abilities of agents. 〈〈A〉〉
is used to reason about the pure ability of the very group
A. The question whether it is reasonable to assume that
the members of A collaborate is not taken into account in
ATL. With the new operator we try to close this gap and
also allow to focus on sensible coalition structures. Here,
“sensible” refers to acceptable coalitions with respect to some
argumentative semantics (characterized in Definition 8).

We have defined the formal machinery required for char-
acterizing argument-based coalition formation in terms of a
new construct. The actual computation of the coalition is
modeled in terms of a given argumentation semantics which
can easily be changed in the model. This allows us to com-
pare the ability of agents to form particular coalitions and
study emerging properties regarding different semantics. As
outlined in Section 5, the model checking used in ATL can
be extended to LATLcby integrating suitable proof proce-
dures for argumentation semantics.

Recently, the adequate formalization of preferences has
deserved considerable attention within the argumentation
community, particularly in the context of the work of Kaci
et al. [15]. Indeed, one of our future research lines is to
extend our current formalization of ATLc to capture more
complex issues in preference handling and to consider more
sophisticated semantics as discussed in Section 6.

Part of our future work also involves the actual imple-
mentation of a subset of LATLc , restricted to some particu-
lar argumentation semantics for which proof procedures can
be easily deployed (e.g. grounded semantics), in order to
perform experiments to assess our proposal when modeling
complex problems. Research in this direction is currently
being pursued.
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