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ABSTRACT
Establishing and maintaining cooperation is an enduring
problem in multi-agent systems and, although several solu-
tions exist, the increased use of online trading systems, peer-
to-peer networks, and ubiquitous computing environments
mean that it remains an important question. Environments
are emerging in which large numbers of agents are required
to cooperate, but where repeat interactions between agents
may be rare or non-existent. Most existing approaches to
cooperation rely on reciprocity to establish notions of trust
and reputation. However, where repeat interactions are rare
such approaches are not always effective. In this paper we
use ideas from biology and the social sciences to provide a
mechanism that supports cooperation in such environments.
Our mechanism combines a tag-based method to enable co-
operation given a lack of reciprocity, with an adaptation of a
simple image scoring reputation model to cope with cheat-
ing agents. Using a simple peer-to-peer scenario we show
how cooperative behaviour is favoured, and how the influ-
ence of cheating agents can be reduced using only minimal
information about an agent’s neighbours.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence — Multiagent systems

General Terms
Experimentation, Algorithms, Reliability

Keywords
Cooperation, Tags, Reputation, Image Scoring, Evolution,
P2P

1. INTRODUCTION
The question of how cooperation is established and main-

tained is an enduring problem for understanding biologi-
cal systems and social networks. A similar issue exists in
multi-agent systems where mechanisms are needed to sup-
port cooperation between autonomous agents. Although
several successful approaches exist for some environments,
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the increasing use of online trading systems, peer-to-peer
(P2P) networks, and ubiquitous computing environments
mean that enabling and maintaining cooperation remains
an important question. Such environments typically have a
large number of agents that are required to cooperate, but
repeat interactions between agents may be rare. The major-
ity of existing approaches for establishing cooperation do not
completely fit, since little may be known about the potential
interaction partners and there is a relatively low likelihood of
any subsequent interactions with the same partner. In this
paper we propose a mechanism that combines ideas from bi-
ology and the social sciences to support cooperation in such
environments.

Reciprocity is the basis for the majority of existing ap-
proaches to cooperation — the notion that repeated encoun-
ters imply that any altruistic or selfish act performed by an
agent may eventually be returned by the recipient. Direct
reciprocity is the simplest, and historically the most com-
mon, approach where two agents have repeat interactions in
which there is the opportunity to “cooperate” or “defect”. In
recent years economists, social scientists, and computer sci-
entists have become increasingly interested in indirect reci-
procity, where a third party is involved in repeat interactions
— agents are not likely to directly have repeat interactions,
but are likely to interact with others whose behaviour with
third parties they have previously observed. Nowak and Sig-
mund [14] characterise direct reciprocity through the prin-
ciple of “You scratch my back, and I’ll scratch yours”. Simi-
larly, indirect reciprocity is characterised as“You scratch my
back, and I’ll scratch someone else’s” or “I scratch your back
and someone else will scratch mine”. This increased interest
in indirect reciprocity is due in part to a growth in global
markets and large scale systems in which one-shot interac-
tions between (relatively anonymous) partners become the
norm. Indeed, it may also be necessary to engender cooper-
ation where no reciprocation of any form exists, for example
if there is no memory of past encounters [17]. Where trans-
actions take place online between strangers, the success and
robustness of a marketplace is traditionally based to a large
extent on the ability to utilise whatever reciprocity exists
in order to establish some form of reputation and trust [10,
16].

Many models exist for supporting cooperation between
agents using trust and reputation [10, 11, 15, 16]. However,
the majority target scenarios in which agents have ongo-
ing repeat interactions, and so they use direct reciprocity to
ground cooperation. In this paper we propose a model for es-
tablishing and maintaining cooperation in situations where
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repeat interactions are rare and direct reciprocity is not ap-
propriate. We use P2P networks as an illustrative domain,
but our approach is generic and applicable in a range of co-
operative applications in which direct reciprocity cannot be
used. In the following section we describe the theoretical
approaches upon which our model is based, along with the
promising initial results obtained by others. In Section 3
we introduce the P2P context for our model, and the model
itself is introduced in Section 4. Our experimental setting
and selected experimental results are described in Sections 5
and 6. Finally, Section 7 concludes the paper.

2. RELATED WORK
Indirect reciprocity is not an novel idea: biologists and

social scientists have long considered a kind of cooperation
that does not require individuals to directly meet again, but
where cooperative strategies are favoured [1, 3, 13]. Fur-
thermore, theoretical models of cooperation exist that do
not require any reciprocity, but instead are based on the
recognition of cultural artifacts or “kin” recognition [2, 4].
Previously, the agent community has tended to focus on
scenarios where direct or indirect reciprocity exists, and nu-
merous successful models of cooperation based on trust and
reputation have been developed [10, 16]. In large open en-
vironments, however, very little reciprocity may exist and
existing models of trust and reputation become less appro-
priate. In a P2P system, for example, agents that interact
may never directly interact again, and may only have a very
small number of interactions with, or observed by, the same
third party (as required for indirect reciprocity). Therefore,
a mechanism for cooperation is needed that does not rely on
reciprocal interactions.

In recent years, there have been promising results for
an approach to cooperation that uses “tags” [9] as cultural
artifacts to engender cooperation where no reciprocity ex-
ists [17], which has in turn led to a technique to improve
cooperation in P2P networks [8]. Note that tags in this con-
text are simple observable traits that are ascribed to each
agent, and the notion is unrelated to the folksonomy use
of the term “tags” for collaborative and social content clas-
sification. Existing work on tags, however, has given only
limited consideration to the existence of “cheaters” in the
population, and it is this issue that we address in this pa-
per. However, before we discuss how to combat the problem
of cheaters, we introduce the tag-based approach to cooper-
ation.

Riolo, Cohen and Axelrod (RCA) describe a tag-based ap-
proach to cooperation in which an agent’s decision to coop-
erate is based on whether an arbitrary “tag” associated with
it is sufficiently similar to that associated with the poten-
tial recipient [17]. Their approach can be viewed as related
to Nowak and Sigmund’s (NS) model of “image scoring” in
which a simple reputation-like mechanism allows agents to
only cooperate with others that are known to be sufficiently
generous [13]. Image scoring gives rise to indirect reciprocity,
since an agent’s actions are observed and directly influence
whether others in the future will be cooperative towards it.
Tag-based cooperation, however, is independent from past
or future interactions within the current generation1 — im-

1Where agents reproduce, an offspring’s tag will typically
depend on the success of the parent’s actions, however, tags
are independent from action within the current generation.

age depends on past actions, while tags do not.
In RCA’s model each agent i is initially randomly assigned

a tag τi and a tolerance level Ti with a uniform distribution
from [0, 1]. An agent A will donate to a potential recipi-
ent B if B’s tag is within A’s tolerance threshold, namely
|τA − τB | ≤ TA. Thus, agents with a high tolerance will
donate to others with a wide range of tags, while those
with a low tolerance only donate to others with very simi-
lar tags [17]. When an agent donates it pays a cost c, and
the recipient receives a benefit b (it is assumed that b > c).
RCA have performed simulations in which each agent acts
as a potential donor in P interaction parings, after which the
population of agents is reproduced in proportion to their rel-
ative score. Each offspring’s tag and tolerance is subject to
a potential mutation, such that with some small probability
a new (randomly selected) tag is received or the tolerance
is mutated by the addition of Gaussian noise (with mean 0
and a small standard deviation). RCA found that a high
cooperation rate can be achieved with this simple model, in
which no reciprocity is required. Their results show cycles
in which a cooperative population is established, only to be
invaded by a mutant whose tag is similar (and so receives
donations) but with low tolerance (and so does not donate).
Such mutants initially do well, and so take over the popu-
lation, lowering the overall rate of cooperation. Eventually,
the mutant tag becomes the most common and cooperation
again becomes the norm [17]. RCA’s approach is an effec-
tive mechanism for achieving cooperation without relying on
reciprocity, but their model relies on the assumption that
no cheaters are present in the population. A cheating agent
is one that accepts donations, but will not donate to oth-
ers, even if the “rules” of the system dictate that it should.
Thus, a cheater in RCA’s scenario would accept donations,
but never donate to others regardless of tag similarity. We
assume that cheaters follow the usual rules of reproduction
in terms of offspring characteristics (e.g. tag and tolerance),
but that their offspring will also be cheaters.

Hales and Edmonds (HE) apply RCA’s approach in the
context of a P2P network, with two important changes [8].
The first change is to adopt RCA’s “learning interpretation”
of the reproduction phase, such that each agent compares
itself to another and adopts the other’s tag and tolerance if
the other’s score is higher (again subject to potential muta-
tions) [17]. The second change is that HE interpret a tag as
an agent’s set of neighbours in a P2P network. Thus, adopt-
ing another agent’s tag is equivalent to re-wiring the P2P
network such the other agent’s connections are adopted [8].
Again there is a small probability of mutation, which is in-
terpreted as replacing a randomly selected neighbour with
another node in the network. Simulations performed by HE
have shown this approach to be very promising in situations
where agents are able to re-wire the network, and in which
there are no cheaters. In this paper we are interested in
networks in which the population may include cheaters, and
where agents cannot re-wire the network. The assumption
that agents cannot re-wire the network (i.e. the topology
is fixed) is for reasons of simplicity. Our approach, there-
fore, will be based on RCA’s model, and HE’s application of
it (minus the re-wiring), supplemented by a mechanism to
cope with cheaters.

A number of other tag models have been proposed [6],
using alternative formulations of tag representation, and
matching and mutation processes. Hales and Edmonds [7]
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represent tags as fixed length bit strings, and consider how
they can be used to achieve cooperation where a recipi-
ent must find a potential donor with an appropriate re-
source, rather than finding an arbitrary donor. Their results
are promising, and led to the P2P-based model described
above [8]. However, as with other approaches the presence
of cheaters is not considered. Matlock and Sen (MS) [12] add
the flexibility for agents to cooperate with other tag groups,
by generalising the tag matching mechanism to enable co-
operation between individuals with different tags. This is
achieved through the use of “tag matching patterns” (where
tags are a string of bits against which pattern matching is
performed), payoff sharing such that agents can share pay-
offs with their “opponent”, and a more sophisticated repro-
duction and mutation mechanism that preserves tag match-
ing using patterns. In this paper we also allow for cooper-
ation between individuals with different tags, as in RCA’s
model, but as per RCA we take these agents to be part of
the same group (i.e. sharing the same tag within some tol-
erance threshold). We are not concerned in this paper with
enabling cooperation between different social groups. Our
focus is on addressing the issue of cheaters, a problem not
considered by MS. We see our work as complementary to
MS, since we address a different problem. Indeed, future
work may investigate whether our approach to cope with
cheaters is effective in setting described by MS.

Many sophisticated models of reputation have been pro-
posed by agent researchers, which have proved successful
in a variety of domains [10, 16]. However, they tend to
assume that even where there is no direct reciprocity, there
will be many interactions with a common third party, mean-
ing that a high level of indirect reciprocity exists. Such
models also tend to require agents to maintain a relatively
large amount of information. In the context of mathemati-
cal biology, Nowak and Sigmund (NS) [13] have developed a
simple mechanism for reputation using indirect reciprocity,
that avoids the complexity inherent in typical agent-based
approaches. In their model each agent has an image score s
that is known to all agents. If a donor helps a recipient its
image score is incremented, and its score is decremented if
it declines to help. Each agent has a strategy k such that
it will help others whose image score is above k, i.e. agent i
will cooperate with j if sj ≥ ki. After a certain number of
interactions the agents are reproduced, with the number of
offspring proportional to an agent’s success. In simulations,
NS find that for certain k values, cooperation will become
prevalent.

In this paper we describe how RCA’s tag-based approach
can be used in a P2P setting, where cheaters exist and re-
wiring is not possible. We use a reputation mechanism based
on NS’s model to cope with cheaters, but we extend their
method to reduce the requirement for indirect reciprocity. In
particular, an agent uses an estimate of the combined image
score of its neighbours to reduce the impact of cheaters.

3. THE P2P CONTEXT
How best to achieve cooperation in a given domain de-

pends in part on the characteristics of that domain. In this
paper we use P2P networks as an illustrative scenario, and
although our approach is fairly generic, our discussion will
focus on a P2P setting. We assume that there is a large num-
ber of agents in comparison to the number of interactions,
meaning that repeat interactions are rare. Thus, direct reci-

procity is negligible, and although indirect reciprocity exists
it is not always guaranteed (meaning that there may not
exist a common third party with whom any two agents have
interacted or that has observed their actions).

We are concerned with establishing cooperation in a net-
work of nodes (or agents), in which each agent has a fixed
number n of connections to neighbours. The network topol-
ogy is assumed to be fixed, and agents are not able to re-wire
the network, or make use of network overlays (as is HE’s ap-
proach). Furthermore, unlike RCA, HE, and NS we assume
that a proportion of the population will be cheaters, mean-
ing that they will receive all the benefits offered to them but
will always refuse to act cooperatively towards others. For
simplicity, we adopt the “donation scenario” used by RCA
and NS in which each agent is chosen to act as a potential
donor with a number of neighbours. If the agent donates it
incurs a cost c and the recipient receives a benefit b, other-
wise both agents receive nothing. We use NS’s parameter
values of b = 1 and c = 0.1 (the addition of a cost of 0.1
is to avoid negative payoffs) [13]. It should be noted that
although this is an artificial scenario, it could be extended
in the manner of HE to more realistic P2P applications such
as file sharing [8].

4. COMBINING TAGS AND IMAGE SCOR-
ING

Our mechanism is founded upon RCA’s tag-based ap-
proach, but we incorporate a simple mechanism to com-
bat cheaters that is inspired by NS’s image scoring method.
Each agent i is initially assigned an arbitrary tag τi and
tolerance Ti with uniform distribution from [0, 1]2. As in
RCA’s model, an agent A will donate to a potential recip-
ient B if B’s tag is within A’s tolerance threshold, namely
|τA − τB| ≤ TA. We use RCA’s learning interpretation of
reproduction (i.e. that used by HE) where after a certain
number of interactions an agent compares itself to another
selected at random. If the other agent is more successful
then its details are copied (meaning that the other agent
reproduces), otherwise no change is made. There are two
ways of determining when to reproduce: interval-based or
rate-based. For interval-based reproduction an agent repro-
duces after a fixed number P of interactions (this is the
approach taken by RCA, HE and NS). In rate-based repro-
duction we specify a reproduction probability, which repre-
sents the probability that an agent will reproduce after each
interaction. In this paper, for simplicity, we concentrate
on interval-based reproduction (however, we have obtained
similar experimental results using a rate-based approach).
After reproduction there is a potential mutation of the off-
spring’s tag and tolerance, with probabilities mτ and mT

respectively. Specifically, with probability mτ a new (ran-
domly selected) tag is received, and with probability mT the
tolerance is mutated by the addition of Gaussian noise with
mean 0 and a small standard deviation (a value of 0.01 was
used in these results).

In common with RCA we find that relatively stable dona-
tion rate (meaning cooperation) is established over a large

2More strictly we allow tolerance to have a lower bound
of −10−6 to address Roberts and Sherratt’s concerns that
RCA’s approach forces agents with identical tags to always
cooperate [18]. The results presented here permit this small
negative tolerance.
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Figure 1: Donation rate with no cheaters using
RCA’s approach.

number of generations for appropriate parameters, provided
that cheaters are not introduced into the population. As
per RCA’s results, the donation rate fluctuates with each
generation, but across generations the average behaviour is
cooperative. Figure 1 shows the dynamics of the cooper-
ation rate for a configuration that mirrors RCA’s setting.
Specifically, we use the parameter values mτ = mT = 0.01
and P = 3. Note that in our P2P setting an agent has a
restricted set of neighbours (in this case n = 49 where the
network size N = 100) whereas in RCA’s approach an agent
has all others in the population as “neighbours” in this sense.
Our values differ from those used by RCA in that the proba-
bly of tag mutation and tolerance mutation are lower (RCA
use mτ = mT = 0.1). Using these parameters the form of
our results matches those obtained by RCA in [17]. If we
use RCA’s parameter values for mτ and mT we get a signif-
icantly lower donation rate than in their simulations. The
reasons for this are unclear, and require future investigation.
However, Edmonds and Hales notice similar differences from
RCA’s results, and suggest that bias in reproducing agents
with equal scores and automatic donation to “tag clones” in
RCA’s simulation are potential contributory causes [5].

Our method thus far is identical to RCA’s (parameter
values aside) and allows cooperation to be established in
the absence of cheaters. Unfortunately, when cheaters are
introduced cooperation soon disappears. Figure 2 shows the
effect of creating a population where a proportion of agents
act as cheaters, who accept donations from others but never
donate (regardless of tag similarity). Where there are no
cheaters (the upper dotted line) cooperation is established as
before. Introducing 5% of the population as cheaters reduces
the donation rate (the solid line) and allowing 10% of agents
to be cheaters (the dashed line) soon results in a fairly stable
state of minimal cooperation (with under 10% of interactions
being cooperative). Without modification, therefore, RCA’s
approach soon fails to provide cooperation in the presence
of cheaters, and for relatively small proportions of cheaters
the average donate rate is significantly reduced.

RCA’s method makes no use of any reciprocity that may
exist in the environment. In our setting of P2P systems,
there is potential for a (limited) degree of indirect reciprocity
in that an agent has a restricted neighbourhood with whom
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Figure 2: The effect of cheaters on donation rate
with RCA’s approach.

to interact, and there may be repeat interactions via a third
party. As noted by Alexander [1], indirect reciprocity can
be thought of as originating from direct reciprocity in the
presence of an interested audience. In our P2P setting we
assume that the number of interactions relative to the num-
ber of neighbours is small, meaning that there is little direct
reciprocity between a given pair of agents. However, for
simplicity we also assume that agents cannot re-wire the
network, and so have a fixed neighbourhood of potential
interaction partners. Thus, for any interaction, the neigh-
bourhood within which it takes place represents an inter-
ested audience, since an agent in that audience may in the
future be required to interact with one of the agents involved
in the interaction. This notion of an interested audience is
the basis of NS’s image scoring mechanism to establish in-
direct reciprocity. The premise of their approach is that an
agent should only donate to others that have been observed
to be sufficiently generous. In NS’s method all agents ef-
fectively observe all interactions, via each agent (honestly)
maintaining a public image score. An agent’s strategy then
determines the minimum value of image score to which it will
donate. We cannot directly use their method for two rea-
sons: first, agents have a restricted neighbourhood and so
cannot observe all interactions, and second because we allow
for the presence of cheaters (who one might assume would
be dishonest in publishing their image score). We therefore
take the essence of NS’s approach — using the observations
of interested parties to establish indirect reciprocity — and
re-cast it in our P2P environment.

In our environment an agent has a fixed set of n connec-
tions to its neighbours, and these neighbours may be able
to observe its actions. Assume that any given neighbour
might observe an interaction with some probability po. If
the probabilities for all neighbours are equal to 1 then an
interaction is observed by all n neighbours, and conversely
probabilities of 0 imply that no neighbours observe. Note
that this assumption of the potential for observation is realis-
tic in many real-world settings. For example, in a file sharing
system nodes can observe whether other nodes’ downloads
have completed, or in a communication network nodes can
detect whether others have forwarded packets. In reality the
probability of observation is likely to change over time for
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each individual agent, according to the activities that it is
involved in. For simplicity, however, we assume that po is
fixed, and is the same for all agents.

Based on the observations of its neighbours’ activities thus
far, an agent is able to build a (limited) picture of the cooper-
ative behaviour of its neighbours. Each agent has a simple
memory recording (up to) the last l donation interactions
that it has observed its neighbours take part in. For each
interaction a value of +1 is recorded to represent a donation
and −1 to represent refusal to donate. The memory oper-
ates as a FIFO queue, such that new entries are appended
until the maximum capacity of l is reached, at which point
the oldest entry is removed from the head of the queue to
allow the new entry to be appended. Using this informa-
tion, an agent can estimate the general donation behaviour
of its neighbours. It is important to note that this memory
is fairly sparse, since the number of interactions is relatively
small compared to the number of agents. This differs from
other approaches to reputation in which it is typically as-
sumed that, taken together, a group of agents will have suf-
ficient information about an individual’s past behaviour to
estimate its reputation [10, 16]. The overhead of maintain-
ing such a memory is fairly small, with an upper bound of
just n × l values, which is smaller than typical reputation
mechanisms.

The decision to donate in RCA’s approach is determined
by an agent’s tolerance, i.e. A will donate to B if |τA−τB| ≤
TA. In order to make use of its current observations, we al-
low an agent to modify its tolerance at run time, for each
interaction. The general principle used by the majority of
existing reputation approaches is that if a potential recipient
is thought to be cooperative then one is more likely to be
cooperative towards it, i.e. tolerance is increased. Such ap-
proaches typically use information obtained from third par-
ties about the potential recipient B’s behaviour. However, in
our setting we are assuming that the number of interactions
is small in relation to the number of agents. Therefore, we
cannot rely on specific information from third parties about
the potential recipient, because such information will often
not be available. Instead, we relax the general principle
such that if an agent is situated in a neighbourhood that
is thought to be cooperative then tolerance is increased. In
other words, we change the emphasis from trying to make
assessments about specific individuals, to assessing the gen-
eral context in which an agent is situated. Our aim is to
provide a mechanism in which if an agent would cooperate
using RCA’s approach then it will also do so in our mecha-
nism, but in a cooperative setting it may cooperate in our
approach where in RCA’s it would decline.

In order to determine the tolerance level to use, an agent
considers the observations it has made so far of each agent in
its neighbourhood. From these we calculate a change com-
ponent for each neighbour, by summing the observations
recorded scaled by the extent of observations made. Recall
that the observations recorded are +1 for a donation and −1
for a refusal to donate. If we simply sum the observations,
then the change component for an agent would be negative
if it has declined to donate more often than it has donated.
When the change components from all neighbours are com-
bined together (as defined below in Equation 2) this could
result in a reduction of tolerance. This is inconsistent with
the general principle outlined above of increasing tolerance
in neighbourhoods that are perceived to be cooperative —

we do not wish to reduce tolerance, only to increase it where
appropriate. Thus, we avoid negative change components by
defining the change component δn for neighbour n as:

δn =

( Pln
j=1

oj
n

ln
× λ if

Pln
j=1

oj
n

ln
× λ > 0

0 otherwise
(1)

where oj
n represents the j’th observation of n, and ln de-

notes the number of observations made of n’s interactions
as a donor (thus ln < l). We can tune the model using the
parameter λ, which determines the extent to which we scale
an agent’s tolerance. A value of λ = 0 means that the model
is identical to RCA’s approach, while a value of λ = 1 im-
plies that the new tolerance could be increased up to double
the original value. (Values of λ above 1 are not excluded,
but we find that they have little additional effect.)

Once the change components for each neighbour have been
calculated they can be combined to give an overall change
in tolerance. For agent A the updated tolerance T ′

A is given
by:

T ′

A = TA +

„

TA ∗

Pn

i=1
δi

n

«

(2)

The decision to donate is now based on this new tolerance
value. Thus, A will donate to B if |τA − τB| ≤ T ′

A.
This model does not use indirect reciprocity in the usual

manner, since there is less reliance on the existence of spe-
cific observations. Typical reputation approaches to com-
bating cheaters tend to assume that sufficient information
exists to estimate the cooperativeness of a particular agent.
Such information is not guaranteed in a P2P setting, and so
our model relaxes the information needed, by using an gen-
eral assessment of an agent’s neighbourhood, rather than
assessing an individual. Our experimental results show that
using this approach can still provide a significant improve-
ment in cooperation. (Although certainly, if sufficient in-
formation was available to use a more standard reputation
mechanism, then it would be likely to perform better.)

Our model provides a number of parameters that deter-
mine the rate of donation that is achieved in a given setting.
These are, the maximum length of the observation mem-
ory l, the probability with which an interaction is observed
po, and the scaling factor λ, that determines the extent to
which tolerance is adjusted. Several characteristics of the
environment also determine the rate of donation, and in a
practical application these are typically outside our control.
Specifically, the network size N in relation to the number of
neighbours n has a significant influence, along with the pro-
portion of cheaters in the environment. Also of significance
is the number of interactions an agent enters into before re-
production, i.e. the interval size P or the reproduction rate
used. This number of interactions strongly influences the ex-
tent to which observations can be made. More interactions
between generations implies that more observations can be
made, meaning that there is more likelihood of having ob-
served a given agent, and (towards the end of a generation)
it is likely that an agent’s memory will be populated (i.e.
ln = l for neighbour n). We have performed a number of
simulations to explore the effectiveness of our model, and
the influence of the various parameters. In the remainder of
this paper we summarise our findings.
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Figure 3: Donation rate for our model and RCA’s
approach with 5% cheaters.

5. SIMULATION ENVIRONMENT
We have undertaken simulations using several configura-

tions of network to investigate our model. Our simulations
have been built using the PeerSim P2P simulator3. We have
experimented with networks of ranging from 100 to 5000
nodes, where each node has a (randomly assigned) neigh-
bourhood varying between 5% and 100% of the population.
Our simulations ran for between 500 and 5000 generations,
using both interval reproduction and rate-based reproduc-
tion. The results show little difference between the two re-
production approaches, and for simplicity of presentation we
focus on interval reproduction in this paper.

The initial tag and tolerance assigned to an agent are
randomly selected uniformly from [0, 1], although we have
also used RCA’s method of exploring high initial tolerance
(T = 0.5) and low initial tolerance (T = 0.005) settings. In
this respect our results mirror those found by RCA, in that
other than for short transients the end result is not substan-
tially different from using a random initial tolerance [17].

In the following section we present illustrative results that
show the effectiveness of our model. The results shown are
representative runs obtained from many runs of the simu-
lator (typically 10 per configuration). Due to the random
initial allocation of tolerances and tags the results obtained
vary from run to run, but with the exception of a very small
number of outliers the results mirror those included here.
The figures presented in this section show how the donation
rate evolves over individual simulation runs. We also give
the average donate rate across all generations, averaged over
10 runs of the simulation.

6. RESULTS AND DISCUSSION
Before we consider the effect of the various environment

and model parameters, we begin showing the effectiveness of
our approach in the 5% cheater setting shown earlier (in Fig-
ure 2). Figure 3 shows the donation rate for both our model
and RCA’s approach in the presence of 5% of the population
being cheaters. The environment parameters are identical
to those used to generate the results in Figure 2. We use

3http://peersim.sourceforge.net/
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Figure 4: Donation rate as the proportion of
cheaters in the population is varied.

a network size of N = 100, a neighbourhood of n = 49,
and set the tuning parameter as λ = 1. It can be seen
that after around 250 generations the population becomes
significantly more cooperative than where RCA’s unmodi-
fied approach is used (the dotted line). The donation rate
still undergoes significant fluctuations, reducing as mutants
with lower tolerances take advantage, until the population
re-stabilises with a new dominant tag cluster. This effect
was also observed, and is discussed in detail, by RCA [17].

Figure 4 shows an extract of 500 generations from runs
using our model with various proportions of cheaters in the
environment. We show an extract of only a small number
of generations for clarity of presentation (i.e. we show gen-
erations 1000–1500 rather than 0–2000 in Figure 3). A base
case of 0% cheaters is shown (plotted as the upper solid
line), which compares very favourably to the donation rate
achieved by RCA’s approach given 0% cheaters (as shown
in Figure 1). The lowest line on the graph (shown as a solid
line) is for an environment in which 50% of the agents are
cheaters. In this case our approach achieves a donation rate
of approximately 27% over all generations (once the simula-
tion has stabilised, after around 250 generations). This com-
pares with approximately 11% achieved using RCA’s model
without modification (which is not plotted in Figure 4 for
clarity reasons). We also include the donation rate for 5%
cheaters (the upper dashed line), 10% cheaters (the dotted
and dashed line) and 20% cheaters (the dotted line). When
averaged across generations for several runs of the simula-
tion we get the following donation rates.

Cheater Proportion
0% 5% 10% 20% 50%

Our model 0.95 0.69 0.61 0.41 0.27
RCA’s model 0.62 0.18 0.16 0.17 0.11

The results show that as more cheaters are introduced
the donation rate declines, as is expected. However, the
relationship between the number of cheaters and donation
rate is not linear. As a small number of cheaters are in-
troduced into the population they have a relatively large
effect on donation (e.g. a population with 5% cheaters has
much lower donation rate than 0% cheaters). Conversely, for
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Figure 5: The effect on donation rate of the number
of interactions (and memory length) before repro-
duction.

higher proportions of cheaters a small increase in the num-
ber of cheaters has a relatively small effect (e.g. the rate for
25% is only slightly less than as shown here for 20%).

The number of observations that are used to calculate an
agent’s tolerance has a fairly large effect on the donation
rate. Figure 5 illustrates this by considering different val-
ues for the number of interaction pairings P between each
reproduction cycle, and setting the memory length to the
maximum possible value, i.e. l = P , and allowing an agent
to observe all interactions in its neighbourhood (po = 1).
Note that if l < P then an agent would only record the last
l interactions regardless of the number of pairings. Other pa-
rameters are as for previous results. In this setting we have
allowed 10% of the population to act as cheaters. The low-
est donation rate of around 60% is achieved where there are
only 3 interactions per generation (the lower dashed line),
while 20 interactions gives the highest rate (the dotted line)
of 82%. Using 4 interactions (the dotted and dashed line)
gives an improvement to approximately 65% on average.
However, this improvement undergoes major oscillations —
reducing to similar rates as when less interactions are used,
but with periods of over 85%. As we increase the number
of interactions to 6 (the solid line) we again see an improve-
ment, to 77%, which is much more stable. Again, the dona-
tion rate oscillates, but to a much lesser extent. The average
donation rate across several simulation runs are as follows.

Interactions 3 4 6 20
Donation Rate 0.60 0.65 0.77 0.82

We have performed other simulations in which we vary
the memory length l independently from the number of par-
ings P , and consider alternative values for the observation
probability po. Overall, our results show that as the num-
ber of observations recorded increases, so does the donation
rate. However, the relationship between these parameters is
not straightforward, and our results require more analysis
before conclusions can be drawn.

We have also considered the effect of neighbourhood size
(as a proportion of network size) on the donation rate. We
used a cheater population of 10% and P = 3 interaction pair-
ings per generation to obtain the results shown in Figure 6.
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Figure 6: The effect of neighbourhood size on dona-
tion rate.

Agents were permitted to observe all of their neighbours’
interactions, i.e. po = 1. The lowest donation rate of 38%
was achieved when an agent’s neighbourhood size was 5% of
the network size, i.e. n/N = 0.05. This compares with an
donation rate of approximately 15% using RCA’s unmodi-
fied approach. As the neighbourhood size is increased, we
initially get a small corresponding increase in donation rate.
Neighbourhoods of 10% and 20% result in donation rates of
39% and 40% respectively (shown in Figure 6 by the dotted
line and dashed line). A neighbourhood of 50% gives a much
larger increase (as shown by the dotted and dashed line)
to 74%. The maximum donation rate of 85% was achieved
where an agent could observe all other agents in the network
(shown by the solid line). This is analogous to the setting
used by NS in which each individual (honestly) maintains a
public image score. Note that configurations with over 40–
50% neighbours are not realistic for a practical P2P setting
since the number of agents, and so the number of potential
neighbours, is large. In a real-world P2P application of the
model the neighbourhood size is likely to be fairly small, but
these results demonstrate that improvements can be made
where observations are limited (e.g. the 5% case), but that
there is benefit in trying maximise the neighbourhood size
that is observed. The average donation rate across several
simulation runs are as follows.

Neighbourhood 5% 10% 20% 50% 100%
Donation Rate 0.38 0.39 0.40 0.74 0.85

7. CONCLUSIONS
In this paper we have proposed a novel mechanism that

supports cooperation amongst agents where there is minimal
indirect reciprocity. Building on RCA’s tag-based approach
we have shown how agents can use simple observations of
their neighbours’ behaviour to assess the extent to which
their environment is cooperative. As the number of obser-
vations is increased, agents are able to improve the donation
rate in the population. Our mechanism has less reliance on
indirect reciprocity than existing agent reputation systems,
and is more realistic in scenarios where agents might cheat
than NS’s image scoring approach on which it is based. We
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have illustrated the effectiveness of the method though sim-
ulation, and presented the main results in this paper.

There are several areas of ongoing work. Of highest prior-
ity is to continue our experimental evaluation to understand
more about the relationship between the parameters that
determine an agent’s behaviour. Specifically, although we
have shown that the donation rate increases as the number
of observations recorded increases, the relationship between
memory length l, the number of parings P , and the ob-
servation probability po are not yet fully understood. Our
secondary concern is to explore the effect of alternative re-
production biases and “tag clone” donation behaviours (as
suggested by [5]), along with different scheduling methods
in our simulation to further analyse the reasons behind the
need for lower mutation rates in our implementation com-
pared to RCA’s. (PeerSim supports both cycle and event
driven simulations. Our current implementation is cycle
driven, and we intend to re-implement the simulation in an
event driven manner.) We also aim to explore the effect
of introducing re-wiring into the network, such that agents
have a different set of neighbours for each generation, and of
creating larger networks with smaller neighbourhood sizes.
Finally, we aim to re-cast our simulation environment in a
more realistic P2P setting, for example the file-sharing ex-
ample used by HE. Future work will also consider alternative
definitions for the tolerance update function, including re-
ducing tolerance in certain contexts as well as increasing it.
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