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ABSTRACT
Distributed allocation mechanisms rely on the agents’ au-
tonomous (and supposedly rational) behaviour: states
evolve as a result of agents contracting deals and exchang-
ing resources. It is no surprise that restrictions on potential
deals also restrict the reachability of some desirable states,
for instance states where goods are efficiently allocated. In
particular topological restrictions make any attempt to guar-
antee asymptotic convergence to an optimal allocation im-
possible in most cases. In this paper, we concentrate on
the dynamics of such systems; more precisely we study the
trajectories of goods in such iterative reallocative processes.
Our first contribution is to propose an upper bound on the
length of the trajectories of goods, when agent utility func-
tions are modular. The second innovative aspect of the pa-
per is then to discuss how this affects, on average, the quality
of the states that are reached. Finally, a preliminary study
of the non-modular case is proposed, examining how syner-
getic effects between items can affect their trajectories.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Algorithms, Economics

Keywords
Resource Allocation, Dynamics of Complex Systems

1. INTRODUCTION
Resource allocation problems play an important role in mul-
tiagent systems research [2, 6, 4]. Firstly, multiagent sys-
tems are often the technology of choice for tackling the re-
source allocation problems occurring in various applications.
Examples include logistics, grid computing, and electronic
commerce. Secondly, for almost any application modelled
as a multiagent system, resource allocation issues will typ-
ically arise even when this is not the primary purpose for
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building the system. For instance, agents may require cer-
tain resources to be able to carry out a specific task, and
those resources could reside with other agents at the time,
which requires negotiation techniques for identifying situa-
tions where those resources are most usefully reallocated.

Research on multiagent resource allocation has tackled a
variety of issues in the past. The following are some of the
most prominent lines of research:

• Resource allocation and negotiation require suitable
communication protocols. If (combinatorial) auctions
are used to identify a good allocation, then the issue
of the interaction protocol is fairly simple, but for dis-
tributed approaches to multiagent resource allocation,
where individual agents can freely search for poten-
tial trading partners this can become a major research
challenge. Much research in this area builds on the
well-known contract net protocol [19].

• A second line of research is concerned with developing
successful negotiation strategies. The focus here is on
building negotiating agents that will perform well in
practice [14, 17, 20].

• Research of a more fundamental nature is concerned
with questions in mechanism design [5]. How can we
design rules for resource allocation mechanisms that
will give incentives to the participating agents to be-
have in certain desired ways (e.g. reveal their true val-
uations when making deals)?

• Another interesting topic in multiagent resource allo-
cation concerns the quality of the allocations of re-
sources that we can expect to achieve if a certain mech-
anism is used. For instance, it is sometimes possible
to prove that a particular negotiation regime will force
a system to converge to a state that is socially opti-
mal according to various efficiency or fairness criteria
borrowed from social choice theory [10].

In this paper, we propose a new perspective. We are in-
terested in the dynamics of multiagent resource allocation.
What can be said about the movements of an individual
good when autonomous agents negotiate with each other in
a distributed manner? And secondly, once we have gained
a basic understanding of these dynamics, what can be said
about the influence of these movements on the quality of
negotiation outcomes?

We are going to address this type of problem in the con-
text of a particular resource allocation framework studied by
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a number of authors [18, 10]. In this framework groups of
agents can agree on a deal regarding the reallocation of some
of the goods held by them amongst themselves (possibly in-
cluding side payments). The assumption is that agents are
individually rational (IR) in the sens of only taking part in
deals that result in an immediate improvement of their util-
ity. We can then ask under what circumstances a sequence
of such locally negotiated deals would converge towards an
optimal allocation (for different optimality criteria). While
the global optimality of such distributed processes can only
be guaranteed under ideal circumstances, different natural
restrictions can be considered:

• The protocol may restrict the trading opportunities
between agents, by restricting the number of agents
and/or the number of resources possibly involved in a
deal. In particular, the class of deals involving a single
resource at a time have been widely used, for obvious
practical reasons.

• The domain may impose some restriction by exclud-
ing specific allocations (for instance, you may want to
assign at least one resource to each agent).

• The domain may impose a topological structure on
the negotiation system that defines which agents can
actually interact with which other agents [3].

Among these, the restrictions pertaining to the topological
structure that may affect the framework are particularly dif-
ficult to grasp. This is so because the behaviour of such a
system will eventually depend on the nature of the graph,
on the way resources are allocated to start with, and on the
distribution of the agents’ preferences.

In this paper, we analyse the dynamics of such systems.
More precisely, we shall analyse the trajectories of goods, re-
stricting initially our attention to the modular case where
no synergy exist between resources. We first obtain a re-
sult showing that, if utilities are drawn randomly from some
distribution, then the expected length of such a trajectory
can be (upper) bounded by the square of the degree of the
graph. Remarkably, this result is fairly general. In particu-
lar, it does not depend on the distribution. Also, we will see
that the bound holds for a wide class of possible strategies
that agents may employ to decide upon what agent to deal
with, as long as the exchanges agreed upon remain rational.

Having established this result, we investigate to what ex-
tent the utilitarian notion of optimality (requiring the sum
of the utilities of the agents in the system to be maximal)
can be derived from this result. Finally, we pave the way for
a study of the non-modular case.

The remainder of this paper is as follows. In the next sec-
tion we set up the resource allocation framework we shall use
in this paper. In particular, we discuss the different classes
of strategies agents may employ when confronted with more
than one rational deal option. Section 3 then studies the
length of a good trajectory, and we propose an upper bound
that is quadratic in the max degree of the graph. The result
is general enough to apply to any strategies, and to any dis-
tribution. Then, we show how this relates to the expected
average social welfare. Finally, we begin an investigation of
the non-modular case, by studying how the goods interact
with one another, and relate this to the expected trajec-
tory length. After a discussion on related work, Section 7
concludes.

2. ALLOCATION FRAMEWORK
We consider the setting of a finite set of agents A =
{0, . . . , n−1} negotiating over the allocation of a finite set
of m indivisible resources R (or goods, or items). Not ev-
ery agent may be able to “see” all of the other agents. A
negotiation topology is an undirected graph G = (A, E), the
vertices of which are the agents in A. Two agents i and j
stand in the relation E iff they can see each other. This
means that i and j may engage in negotiation and exchange
resources. Note that our visibility relation E is symmetric
(the graph is undirected); this is important to be able to
define negotiation along graphs in a meaningful manner.

An allocation A : A → 2R specifies for each agent i the
bundle of resources owned by i, such that each and every
resource gets assigned to exactly one agent. A deal can be
described as a pair of (distinct) allocations δ = (A, A′), fix-
ing the situation before and after the exchange. Existing
work within this framework, e.g. [18, 10, 8], either allows
for any such deals to take place or considers structural re-
strictions in terms of the number of goods moving between
agents. For example, a “swap deal” [18] is any deal between
two agents whereby exactly one good is moving from the
first to the second agent, and vice versa. Instead, in this
paper, we only consider deals involving a single resource.

Each agent i ∈ A is equipped with a valuation function vi :
2R → Q, to express their preferences over alternative bun-
dles of resources. In this paper, we shall mostly restrict our
attention to domains where no synergy (either positive or
negative) between resources can occur. Valuation functions
are then simply modular, that is vi(B) =

P

r∈B
vi({r}),

where B represents a possible bundle of resources owned by
agent i. For the sake of simplicity, we will write αi

r as a
shorthand for vi({r}), the value agent i assigns to the re-
source r.

2.1 Rationality
Deals may be coupled with monetary side payments. These
are given in terms of a payment function p : A → Q satisfy-
ing

P

i∈A p(i) = 0. A positive value p(i) means that agent i
is paying; a negative value p(i) means that agent i is re-
ceiving the respective amount. A deal δ = (A,A′) is called
individually rational (IR) iff there exists a payment function
p such that vi(A

′(i)) − vi(A(i)) > p(i) for all agents i ∈ A,
except possibly p(i) = 0 for agents i with A(i) = A′(i). We
assume that agents will only agree on such IR deals, i.e.
deals that benefit everyone involved. The sum of all previ-
ous payments p(i) made by agent i is given by its payment
balance π(i).

2.2 Strategies
Another assumption that we will make concerns the agents’
strategies, that is, how will they select their trading part-
ner when faced with several (rational) deal options in their
neighbourhood. It is possible to identify several classes of
strategies, depending on the input required to compute the
partner agent with whom the deal will be contracted.

• blind strategies—agents are only allowed to check
which of their neighbours are proposing rational deals
to make their decision. For instance, on the basis of
this information, we can assume that the agent will
select the first partner proposing a rational deal fol-
lowing a predefined lexical order; or alternatively just
pick one at random until a rational deal is found.
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• heuristic strategies—agents select partner on the ba-
sis of heuristics regarding the potential utility profit
among all the neighbours. In the context of myopic
agents, certainly a natural strategy is to seek to max-
imize its immediate potential utility gain, that is, to
pass the resource to the neighbour valuing it the most
(we shall from now on call this the max strategy).

It is noteworthy that blind strategies are not based on the
value that agents assign to resources. On the other hand, an
agent using heuristic strategies must first get to know the
utility all their neighbours assign to a specific resource to
contract a deal.

2.3 Social Welfare
A negotiation state (A,π) is a pair of an allocation and a
function giving the payment balance for each agent. Fi-
nally, each agent i is equipped with a quasi-linear utility
function ui mapping pairs of resource bundles and past pay-
ments to a utility scale: ui(B,x) = vi(B)−x. For example,
ui(A(i), π(i)) is the utility of agent i in state (A,π), while
ui(A(j), π(j)) is the utility that i would experience if it were
to swap places with j (in terms of both the bundle owned,
and the sum of payments made so far).

The social welfare sw(A) of an allocation A is defined as

sw(A) =
X

i∈A

vi(A).

This is the utilitarian definition of social welfare, the one
mostly used in the multiagent systems literature [21]. But
several of the other notions of social welfare developed in the
social sciences are also of interest. For instance, if egalitarian
social welfare [15] is used then we should aim at maximizing
the welfare of the poorest agent of the society.

It is known in general [10] that deals are rational iff they
increase the utilitarian social welfare, and that sequences of
deals involving only a single resource are guaranteed to con-
verge to an optimal outcome with respect to that measure,
as long as the agents’ utility functions are modular and the
negotiation topology is a fully connected graph. As soon as
some dealing opportunities are restricted by a negotiation
topology, convergence properties cannot be guaranteed any
longer (because it is easy to construct examples that require
exactly that deal to reach the optimum). In this context,
the next big thing would be to gain some insight on the av-
erage behaviour of the system. This calls for an analysis of
the dynamics of multiagent resource allocation.

3. LENGTH OF AN ITEM TRAJECTORY
In this section, we study the expected length of an item
trajectory in the case of modular utilities. Indeed, each re-
source r is initially owned by an agent, and then is sold to
another neighbour agent valuing r more, and so on. Thus,
r can be viewed as taking a walk along G, moving only to-
wards agents valuing it more. This is precisely the walk of
this resource along the graph that we call the trajectory of
r. The main theorem of this section (upper) bounds the ex-
pected value of the length of such a trajectory, in any type
of graph, as a function of its maximum degree ∆. To obtain
this, we will assume that there exists for each resource r
a distribution Dr from which the coefficients αi

r have been
drawn independently, for each agent i. We also assume that
for a given resource r, all values αi

r differ.

Figure 1: Example of topology G (left). Suppose
α0

r = 2, α1
r = 1, α2

r = 3, α3
r = 5, α4

r = 0.5, α5
r = 9. Then

the digraph G∗ (right) shows the possible moves of r.

Before going further, note that for each resource r the
values of αi

r induce a total ordering on the agents 0 . . . n−1.
We will denote by i � j the fact that αi

r > αj
r.

Note that an edge (i, j) of the graph G can be crossed by
resource r owned by i iff i ≺ j, otherwise the deal would not
be individually rational. Thus, the graph G hides a directed
graph G∗ in which each edge is one-way, as illustrated by
Figure 1. The orientation of the edges shows how the re-
source can move.

Because coefficients are drawn independently from a ran-
dom distribution, all the n! orderings are equiprobable.
However, this does not imply that all possible digraphs in-
duced from G are equiprobable. Consider Figure 2. From
the graph G shown on top, the four possible digraphs G∗

are displayed. Note that G∗
a is induced by the ordering

0 ≺ 1 ≺ 2, whereas G∗
b can be induced by both 0 ≺ 2 ≺ 1

and 2 ≺ 0 ≺ 1. Thus, Pr(G∗
b) = 2×Pr(G∗

a). This means we
cannot simply assume that all digraphs are equiprobable.

Figure 2: Digraphs are not equiprobable

Let us now show how the expected length of trajectories
can be upper-bounded. In the following lemma, we consider
the simpler case where graphs are trees, and obtain a bound.
Then, in Theorem 1, we will show that this bound still holds
for any type of graph.

Lemma 1 (Length of trajectories in trees).
Let G be a tree of max degree ∆. Suppose that coefficients
composing the agents’ utility functions have been drawn in-
dependently from distribution Dr. Then the expected length
of a resource trajectory in the graph is bounded by ∆2.

Proof. We will consider a single resource r, the associ-
ated distribution Dr, and the values α0

r . . . αn−1
r (which we

will assume to be all different) drawn from it. Because util-
ities are modular, resources can be treated independently,
and the present result still holds if we have more than one
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resource. Without loss of generality, let vertex 0 be the agent
initially holding r. Our first goal is to find the probability
that a resource starting at 0 makes a walk over exactly k
arcs, which we will note Pr[len = k].

Formally, the walk of a resource is an infinite sequence
of vertices x0, x1, . . .. At time 0, we have x0 = 0. Once a
vertex with no out-going arc has been reached (meaning no
more rational deal is possible), the resource will remain on
the same vertex forever. Thus, if the walk occurs over k
arcs exactly, then xk = xk+1. Clearly, each variable xt is a
random variable whose distribution depends on the strategy
used, the topology of the graph, and on the distribution Dr.
We can thus rewrite the above probability:

Pr [len = k] = Pr [x0 6= x1, . . . , xk−1 6= xk, xk = xk+1]

Using the standard “chain of events” formula Pr [
V

Ai] =
Q

h

Ai |
V

j<i Aj

i

, combined with the fact that xi+1 6= xi

always implies xi 6= xi−1, we get:

Pr [len = k] = Pr [x0 6= x1] × . . .

×Pr [x1 6= x2 | x0 6= x1]

× . . .

×Pr [xk = xk+1 | xk−1 6= xk]

We now compute the different members of this probability.
Let di refer to the degree (in and out) of vertex xi.

First, Pr[x0 = x1] is the probability that the out-going
degree of vertex 0 is null. This is equal to the fraction of
orderings in which vertex 0 is ranked higher than its immedi-
ate neighbors, among all possible orderings. In other words,
this is related to the number of orderings in which 0 � 1, 0 �
2, . . . 0 � d0 divided by the total number of orderings among
d0 + 1 agents, which makes Pr[x0 = x1] = d0!

(d0+1)!
= 1

d0+1
,

and thus Pr [x0 6= x1] = d0

d0+1
.

Next, let us show how to evaluate Pr[xk = xk+1 | xk−1 6=
xk]. This probability is related to the ranking of xk com-
pared to that of its children. First note that the ranking
of these children among all vertices is independent from the
knowledge we have concerning xk−1. To illustrate this, con-
sider Figure 3, and suppose x0 = 0 and x1 = 2. Clearly, the
ranking of the children of 2 is independent from the fact that
0 ≺ 2 (as materialized by the dotted line on the figure). Also
notice that xk−1 6= xk implies xk is ranked higher than previ-
ous vertices x0 . . . xk−1, which increases the probability that
all of the dk − 1 remaining arcs of xk are incoming. Applied
to this example, we would write Pr [2 ≺ 3 ∧ 2 ≺ 4 | 0 ≺ 2] ≥
Pr [2 ≺ 3 ∧ 2 ≺ 4]. We can now generalize the following way:

Pr [xk = xk+1 | xk 6= xk−1] ≥ (dk−1)!
dk !

= 1
dk

.

Figure 3: r moves from 0 to 2

We can now compute the overall probability, for k > 0.

Pr[len = k] ≤ d0

d0 + 1
× d1 − 1

d1
× . . . × dk−1 − 1

dk−1

×Pr [xk = xk+1 | xk−1 6= nk]

≤ ∆

∆ + 1
×

„

∆ − 1

∆

«k−1

In order to derive a formula valid for any walk, we have in-
troduced in the last inequation ∆, which refers to the max
degree of the graph. Now we can compute the average num-
ber of moves made by r:

E[len] =

max walk length
X

k=0

k × P (len = k)

≤ ∆

∆ + 1
×

∞
X

k=1

k

„

∆ − 1

∆

«k

=
∆

∆ + 1
× ∆ × (∆ − 1)

≤ ∆2

Now we will investigate how the bound derived for the case
of trees can be used in the general case. The line of reasoning
that we will follow is best explained by means of an example.

Figure 4: r moves from 0 to 2: we know that 1 ≺ 2

Consider a resource moving across arcs of the graph on
Figure 3, using the lexical fixed order strategy (i.e. choosing
accessible neighbors with lowest index). The first step of
the trajectory has led the resource from 0 to 2. What does
this tell us? Knowing that x1 = 2 is very informative in
this case (this is where this crucially differs from the case of
trees), for the resource would have gone from 0 to 1 in the
previous step, were it possible. In other words, this means
that 1 ≺ 0, hence it must be the case by transitivity that
1 ≺ 2. (But this does not say anything about vertex 5). This
means that the probability to stop at this step is increased,
and our bound applies. The following proof of Theorem 1
generalizes this argument and shows that it applies to all
blind and max heuristic strategies.

Theorem 1 (Length of trajectories in graphs).
Let G be a graph of max degree ∆. Suppose that coefficients
composing the agents’ utility functions have been drawn
independently from Dr. Then the expected length E [len] of
a resource trajectory in the graph is bounded by ∆2.

Proof. We know from Lemma 1 that ∆2 constitutes an
upper bound on the length of trajectories for trees. Thus,
we just need to show that it remains valid in the case of
graphs, whatever strategy is being used. Suppose resource r
has reached vertex xj , and that it possess a common neigh-
bour, say k, with a vertex xi that the resource previously
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passed (that is, i < j). Clearly, as xi occurs before xj in
the trajectory, xi ≺ xj . Also suppose the trajectory of r
did not go through k. How does this knowledge affect the
probability that the trajectory stops at xj?

Let us first consider blind strategies. Remember that blind
strategies do not necessarily imply that an agent knows all
its neighbours valuations before passing the resource on.
Then we have two cases: either (i) agent xi checked whether
a rational deal was possible with k, which was not the case.
This entails that k ≺ xi. Since xi ≺ xj , it follows that
k ≺ xj by transitivity. Thus, xj has at least two incoming
arcs (xj−1, xj) and (k, xj). In this case the probability that
xj = xj+1 becomes at least 1

dj−1
, which is higher than the

1
dj

obtained in the lemma. Or (ii) k was not picked before,

then xj does not say anything about xi. In both cases, the
bound of Lemma 1 still applies.

Now we consider the max strategy. Then in this case,
xi necessarily checked k before selling the resource to xi+1.
As it was not selected, the agent went for another vertex,
xi+1 such that k ≺ xi+1. Because xj occurs later in the
trajectory, it must be that xi+1 ≺ xj , and then k ≺ xj .
The case is similar to case (i) studied before, and the bound
applies.

This concludes this section on the length of goods’ trajecto-
ries. A couple of remarks are in place here. First, the bound
obtained is only dependent on the (max) degree of the graph
(and not on the number of agents). Secondly, the result is
fairly general in that it holds even if the distribution from
which the utilities are drawn is different for each resource.
The third important point to stress is that the bound ob-
tained in the case of trees continues to hold in the general
case. This is an important element, especially if when we
consider that there are good hopes to improve the value
of this bound. Finally, this upper bound for the expected
length holds for all blind strategies, and the natural “utility
maximizing” strategy. Note that the argument developed in
the proof of the theorem may not hold for some very spe-
cific strategies (e.g. one may imagine a heuristic consisting
instead in taking the min among potential buyers).

4. EXPECTED OUTCOMES
From the result obtained in the previous section, we are
now going to derive a result regarding the quality of final
allocations. Surely, the final state of the system (the final
allocation) must be influenced by the length of the goods’
trajectories. But this may be less obvious than it may seem
at first sight. First, the result only really says resources are
expected to run a given number of steps, but we do not
know anything about their repartition (where the resource
will end up). Secondly, it is not straightforward to see how
the chosen social welfare measure will vary as a function of
the length of these trajectories.

To put things more dryly, while the previous section gives
E[len], we want to determine E[sw]. Now we discuss what
can be concluded for different social welfare measures. The
following result, due to Jensen [13], will be crucial in the
discussion.

Proposition 1. For any convex (resp. concave) function
ϕ(x), it is the case that ϕ(E[x]) ≤ E[ϕ(x)] (resp. ϕ(E[x]) ≥
E[ϕ(x)]).

4.1 Utilitarian Social Welfare
We start with the case of the utilitarian measure of social
welfare—the sum of the agents’ utilities. So we need to
determine the distribution of the agents’ utilities at the end
of the process, when each resource gets to the end of its
trajectory. Intuitively, the longer the trajectory, the higher
the value should be. We make this idea more precise in the
following lemma. Recall that Dr refers to the distribution
from which the coefficients associated with resource r have
been drawn.

Lemma 2. Consider a single resource r, whose trajectory
length is len. Let {X1, . . . , Xk} be a set of k independent
random variables, each distributed among Dr, where k =
∆ × len. The expected final social welfare is bounded by the
expected value of the max of these variables. More formally:

E[sw|len] ≤ EX1...Xk∼Dr [max(X1, . . . , Xk)]

Proof. (sketch) The proof argument is best explained by
considering each resource as an autonomous entity. Under
this perspective, each resource can be seen as “probing” a
number of vertices, seeking to get to a vertex offering an
increase of its utility. Now at each step, the resource will
probe in the worst case ∆ neighbour vertices. At the end of
its trajectory of len steps, the resource has probed at most
len × ∆ vertices, and the value assigned to it by the final
vertex is clearly bounded by the max of all probed vertices.
It is important to notice that the value of each newly probed
vertex is independent from the ones probed previously.

The expected value of the max over k variable depends on
the underlying distribution of these variables. For example,
it is known that if these variables are uniformly distributed
over the interval [0, 1], then the expected max is k

k+1
. For-

mally, the following corollary holds:

Corollary 1. Given a single resource crossing len arcs,
given that agents’ utility coefficients are drawn from a uni-
form distribution on the interval [0, αmax], the expected final
social welfare E [sw | len] is bounded by αmax × len×∆

len×∆+1

Depending on the class of distribution, other corollaries
could be derived. Extremal value theory, a subfield of prob-
ability theory studying the distribution of the max, would
be highly useful for this task. In particular, a seminal result
from Fisher and Tippet [11] states that if k → ∞, the max
of k random variables drawn from any non-degenerate dis-
tribution is itself distributed over a particular parametrized
distribution, called the Generalized Extreme Value Distribu-
tion (GEV). A deeper discussion of this point is beyond the
scope of this paper.

We can now plug together Lemma 2 and Theorem 1, using
Jensen’s inequality, in order to bound the expected social
welfare.

Theorem 2. Suppose we restrict ourselves to having a
single resource. Suppose also that ϕ(len) is an upper-bound
on E [sw | len], the expected social welfare considering only
that resource, which has moved across len arcs. If ϕ is non-
decreasing and concave, then E [sw] ≤ ϕ

`

∆2
´

.

Proof. We will show know that Jensen’s inequality al-
lows us to upper-bound the final expected social welfare
E [sw]. First recall that, by the law of total expectation, we
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a1 a2

{r1, r2} 1 5
{r1} 1 0
{r2} 0 1

Table 1: Non-modular utilities can induce loops

can write E [sw] = E [E [sw | len]]. Applying the E [.] oper-
ator on each side of the inequation E [sw | len] ≤ ϕ(len),
we get: E [E [sw | len]] ≤ E [ϕ(len)]. Thus, E [sw] ≤
E [ϕ(len)]. Because ϕ is concave and by application of
Jensen’s inequality, we get E [sw] ≤ E [ϕ(len)] ≤ ϕ (E [len]).
Because ϕ is non-decreasing, we can apply the upper-bound
on E [len], which becomes: E [sw] ≤ ϕ

`

∆2
´

.

It is straightforward to generalize this last theorem to the
case where m > 1 resources are available. Clearly, resources
are non interacting, and the bound presented in this sec-
tion applies for each of them independently. Thus, given m
resources, we have E [sw] ≤ m × ϕ

`

∆2
´

Suppose all coefficients are drawn uniformly from [0, 1].

Then, applying the above bounds, we get E [sw] ≤ ∆3

∆3+1
.

As an example, suppose the graph is a chain of any length
of max degree 2 where 10 resources are negotiated. In that
case, E [sw] ≤ 10 × 8

9
' 8.8.

To conclude, note that not any measure of social welfare
can be related in this way to the result of Theorem 1. Take
the case of egalitarian social welfare. The length of the tra-
jectory alone is certainly too simple a notion to give interest-
ing results: what we need to know is exactly the repartition
of the items at the end of the process, even maybe which
agents are crossed along the item trajectory. This requires
more refined notions of the system dynamics.

5. THE NON-MODULAR CASE
In this section, we propose a preliminary discussion of the
non-modular case. Remember the assumption of modular-
ity has been crucial so far, for it allowed us to take for
granted that resource trajectories were completely indepen-
dent. When synergies between resources occur, either in
a positive (super-modularity), or in a negative way (sub-
modularity), the trajectories of goods may influence each
other. More precisely, trajectories will be influenced by the
current allocation of resources. For instance, a resource may
pursue its walk across an agent only if this agent holds a
particular resource. These interactions between trajectories
have multiple consequences. First, it may now be possible
to find loops in the trajectories, in the sense that goods may
cross several times the same agent, even if only deals involv-
ing a single resource are permitted.

Let us illustrate the existence of loops by an example.
Let two agents a1 and a2 negotiate over two resources. Ta-
ble 1 describes their utility functions. Note that a2 uses a
non-modular utility function: the value assigned to bundle
{r1, r2} is higher than the sum of values assigned separately
to {r1} and {r2}. Suppose the initial state is the allocation
which gives resource r1 to agent a2, and resource r2 to agent
a1. Now suppose for instance that we use a blind fixed or-
der strategy: a2 is designated to start the process, and gives
resource r1 to a1. In the next round resource r2 makes the
opposite journey, from a1 to a2. But then r1 is bound to

come back to a2 since this is the only remaining rational
deal. Hence it is possible that loops occur in the trajecto-
ries of goods when valuations are not modular. Note that
allocations still cannot occur twice. This naturally entails
that trajectories are always finite.

5.1 Non-Interacting Trajectories
In the previous section, we obtained a bound on the expected
length of the walk of a resource, for the case of modular
utilities. The goal of this section is to generalize this result
to the non-modular case. It has been shown in [12] that
any utility function v can be uniquely represented as a sum
over a set of coefficients {αX | X ⊆ R} in the following way:
v(R) =

P

X⊆R
αX . This entails that utility functions can be

uniquely decomposed the following way: v(R) =
P

r∈R αr +
P

X⊆R,|X|>1 αX , where the first part is a modular utility

which we will call vmod, and the second is a non-modular
function valuing single resources at zero, which we will call
vsyn.

Let us first identify in which situation the synergetic part
of the utilities plays a role. It obviously does when several
resources are with the same agent, but it also plays a role
when two agents connected by an edge each own a resource.
Indeed one of these two may consider contracting a deal with
the other one which would result in the possession of several
resources, thus activating the synergetic part of its utility.
To summarize, if during the whole negotiation process, re-
sources never happen to be on the same agent or on the
same edge, vsyn plays absolutely no role. In that case, we
say that trajectories are non-interacting. Note that if the
number of resources is low (m � n), we might expect most
trajectories to be non-interacting.

More formally, let us consider a distribution D among
the class of all possible utility functions. Suppose the n
utility functions are drawn from D. If trajectories are non-
interacting, for each agent i, only the modular part of the
utility functions vmod

i plays a role (as v
syn
i = 0) and the

behavior of the system would be exactly that of the modular
case, with the distribution Dmod induced by D.

5.2 Interacting Trajectories
Now we turn our attention to the case where some trajec-
tories interact. We start with a discussion involving only
two resources, represented by a square (�) and a triangle
(4), respectively, in Figure 5 . In all four cases, we assume
that: utilities have been drawn randomly, vertex 0 holds the
square, and the arcs represent the possible moves of � only.

Figure 5: Disturbances in Items Trajectories when
Utilities are not Modular

Both cases (a) and (a’) represent the modular cases. As
discussed before, the fact that vertex 1 holds the triangle
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in case (a’) has no influence on the possible moves of the
square (arcs in (a) and (a’) are oriented the same way).

Case (b) represents the super-modular case: a positive
synergetic value is added on vertex 1 when it possesses both
goods. Here, vertex 1 will act as an attractor: it increases
the utility gain (hence the thicker arrow), but once the
square is on vertex 1, it makes it less likely to continue its
path, and may even provoke the end of the trajectory, as
illustrated in the figure.

Case (c) represents the sub-modular case, meaning that a
negative synergetic value is added on vertex 1 when it pos-
sess both goods. The analysis is the opposite of the previous
case: vertex 1 sort of pushes away the resource. It is less
likely that the square will reach it (and may not, as pic-
tured). But once it is on vertex 1, it has more chances to
continue its route towards vertex 2.

The following result establishes more formally the con-
sequences on the path length of the disturbances resulting
from synergetic effects among goods. It concerns only inter-
actions between two trajectories of items.

Lemma 3 (Length of Interacting Trajectories).
Let G be a graph of max degree ∆. Suppose the agents’
utility functions have been drawn independently from a
distribution D over the class of all utility functions (not
necessarily modular). Then, the expected length of any

resource trajectory is bounded by ∆2 ×
“

∆
∆−1

”c

, where c is

the number of interactions occurring on this trajectory.

Proof. Consider a resource r, for whose trajectory we
want to bound the expected length. As in Lemma 1, let
x0, x1, . . . represent the sequence of vertices visited by r.
Let us suppose that, if r goes through more than i arcs,
then it will cross another resource r′ located on vertex xi.
Formally, this can be represented as an event C = (len < i)∨
(r′ is on xi). How does this affect the probability Pr [len]?
Recall the formula of Lemma 1: For any k > i, we can write

Pr [len = k | C] = Pr [x0 6= x1 | C] × . . .

×Pr [xi−1 6= xi | xi−1 6= xi−2 ∧ C] (1)
×Pr [xi 6= xi+1 | xi 6= xi−1 ∧ C] (2)
× . . .

×Pr [xk 6= xk+1 | xk 6= xk−1 ∧ C]

Note only terms (1) and (2) are affected by the event C.
There are then two cases to consider, depending on the type
of utility of agent i.

• (1st case) suppose the utility function vi is super-
modular. Then, vi({r, r′}) is higher than vi({r}).
Thus, the probability that vi({r, r′}) > vi−1({r}) is
higher than that of vi({r}) > vi−1({r}). Thus, we
will simply bound Pr [xi−1 6= xi | xi−1 6= xi−2 ∧ C] by
1 from above. On the contrary, the probability that
vi+1({r}) > vi({r, r′}) will be decreased, compared to

vi({r}) > vi−1({r}). We will thus bound it by di−1
di

.

Thus, we will have:

(1) × (2) ≤ di − 1

di

≤ ∆ − 1

∆

• (2nd case) suppose now vi is sub-modular. Then,
vi({r, r′}) is lower than vi({r}). Thus, the probabil-
ity that vi({r, r′}) > vi−1({r}) is lower than that of

vi({r}) > vi−1({r}). We will bound it by
di−1−1

di
.

On the contrary, the probability that vi+1({r}) >

vi({r, r′}), which will be increased, will be bounded
by 1. Finally, we have:

(1) × (2) ≤ di−1 − 1

di−1
≤ ∆ − 1

∆

Thus, in both cases, we can write (by using the bound of
Lemma 1).

Pr [len = k | C] ≤ ∆

∆ + 1
×

„

∆ − 1

∆

«k−1−1

=

„

∆ − 1

∆

«

× Pr [len = k]

Now consider the general case, where in fact c interactions
may occur with r at different locations of its trajectory. Re-
peating the above argument many times, we can infer the
following bound:

Pr [len = k | c interactions] ≤
„

∆

∆ − 1

«c

× Pr [len = k]

Finally, an upper bound on the expected path is

E [len | c interactions] ≤
„

∆

∆ − 1

«c

× E [len]

≤ ∆2 ×
„

∆

∆ − 1

«c

Note that the higher the degree, the less influential the dis-
turbance resulting from the synergetic effect among goods
on the expected path length. Equipped with this result, the
next step to make it practically useful will be to evaluate
the probability that trajectories are interacting. This will
be dependent on different graph properties, as well as on
the expected path length. We leave this for future research.

6. RELATED WORK
The problem of computing the length of allocation processes
has been studied in different papers [7, 9], but in situations
where no topological constraints affect agents interactions
(fully connected graphs). More importantly, the question
addressed is not that of an (average case) expected length,
but more typically a worst-case analysis of the longest ne-
gotiation sequences.

The question of determining the expected length of an
increasing subsequence in a random permutation has been
intensely studied in combinatorics [1]. A spectacular result
result shows that 2

√
n is the expected length of such an in-

creasing subsequence. This is interestingly connected to our
problem, but differs in many respects. As increasing sub-
sequences must go from left to right, this induces a specific
topology where each agent is simply connected to any agent
that follows him in the lexical order. Furthermore, the se-
quence is really the best you could find. In our case, this
may correspond to the expected length of a given resource
when guided by an oracle guiding it through the longest
trajectory.

More generally, a huge amount of work bounding the dy-
namics of complex systems as been produced in the past few
years. Mainly two types of analysis have been developed:
one based on dynamical system theory (for e.g. Lyapunov
stability, pole-zero analysis), and another one on stochastic
modeling (random walks in graphs, random graphs, statis-
tical physics) [16]. Our approach is more related to the
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latter, as the trajectories we are studying have some close
connection to the concept of random walks. Nevertheless,
the specificity of our framework did not allow us to exploit
ready-to-use results from this field.

7. CONCLUSION
This paper initiates the analysis of the dynamics of multia-
gent resource allocation. The main technical contributions
presented here are: (i) an analysis of the length of good tra-
jectories in a widely studied abstract negotiation framework,
both in the modular and (although more tentatively) in the
non-modular case, resulting in a general upper bound result
in the modular setting; and (ii) a study of expected utilitar-
ian outcomes based on the previous result in the modular
setting, and on a function bounding the expected social wel-
fare given a length of trajectory. We emphasize that the
approach advocated here is not necessarily asymptotic: the
constraint on the path length can be exogenously given (for
instance you may know that for practical reasons resources
would not move along more than 2 vertices). Simply plug
it into your formula and the bound on the expected social
welfare remains valid. This illustrates that the methodology
proposed is of great modularity. In fact, beyond the techni-
cal results presented here, we regard this general methodol-
ogy as the most valuable contribution of this paper.

We believe there are numerous directions in which this
work may be pursued further.

The first obvious technical challenge will be to improve
the proposed bound on the path length. In particular, while
the generality of the result is one of its main advantages,
it may be that the study of more specific graph structures,
with well identified properties, could bring about interesting
results. One such class are small-world-like graphs, whose
properties have been widely studied in recent years.

A second, perhaps more fundamental question, is to char-
acterize what notions of optimality can be approached with
the tools presented here. As was briefly discussed earlier in
the paper, not all social welfare measures can be straightfor-
wardly related to the length of trajectories. In most cases, a
more refined notion of the actual trajectories of goods will be
required, where the precise repartition of goods at the end
of (or throughout) the process can be appreciated. Note
that this is also the same kind of notions that are needed
when, in the non-modular case, the number of interacting
trajectories is required to complete the analysis.
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