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ABSTRACT
Decentralized Markov decision processes are frequently used
to model cooperative multi-agent systems. In this paper, we
identify a subclass of general DEC-MDPs that features reg-
ularities in the way agents interact with one another. This
class is of high relevance for many real-world applications
and features provably reduced complexity (NP-complete)
compared to the general problem (NEXP-complete). Since
optimally solving larger-sized NP-hard problems is intracta-
ble, we keep the learning as much decentralized as possible
and use multi-agent reinforcement learning to improve the
agents’ behavior online. Further, we suggest a restricted
message passing scheme that notifies other agents about
forthcoming effects on their state transitions and that al-
lows the agents to acquire approximate joint policies of high
quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Design, Theory

Keywords
Decentralized MDPs, Interaction, Communication

1. INTRODUCTION
Research on distributed control of cooperative multi-agent

systems has received a lot of attention during the past years.
Among the models discussed in the literature, the DEC-
MDP framework [4], that is characterized by each agent
having only a partial view of the global system state, has
been frequently investigated. In this regard, it has been
shown that the complexity of general DEC-MDPs is NEXP-
complete, even for the benign case of two cooperative agents.

Decentralized decision-making is required in many real-life
applications. Examples include distributed sensor networks,
teams of autonomous robots, or production planning and
optimization scenarios. Being important for practice, the
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enormous computational complexity of solving DEC-MDPs
conflicts with the fact that real-world tasks do typically have
a considerable problem size. Therefore, in this paper we will
identify a subclass of general DEC-MDPs that features reg-
ularities in the way the agents interact with one another.
For this class, we can show that the complexity of optimally
solving an instance of such a DEC-MDP is provably lower
(NP-complete) than the general problem (Section 2). More-
over, we analyze methods for the agents to benefit from par-
tially knowing about the state transition dependencies. To
this end, we propose the use of a restricted message passing
scheme that notifies other agents about forthcoming effects
on their state transitions and we investigate its usefulness
(Section 3). For adapting the agents’ policies, we propose
the usage of a multi-agent reinforcement learning (RL) ap-
proach, where the agents are independent learners and do
their learning online which we evaluate in the context of
larger-sized scheduling problems (Section 4).

2. PROBLEM DESCRIPTION

2.1 DEC-MDP Framework
Basically, the subclass of problems we are focusing on in

this paper may feature an arbitrary number of agents whose
actions influence, besides their own, the state transitions of
maximally one other agent in a specific manner. We embed
the problem settings of our interest into the framework of
decentralized Markov decision processes (DEC-MDP) [4].

Definition 1. A factored m-agent DEC-MDP M is de-
fined by a tuple

〈Ag,S, A, P, R, Ω, O〉
where Ag = {1, . . . , m} is a set of agents, S is the set
of world states that can be factored into m components
S = S1 × · · · × Sm (Si belong to one of the agents each),
A = A1 × ...×Am is the set of joint actions to be performed
by the agents (a = (a1, . . . , am) ∈ A denotes a joint action
that is made up of elementary actions ai taken by agent
i), P is the transition function with P (s′|s, a) denoting the
probability that the system arrives at state s′ upon execut-
ing a in s, R is a reward function with R(s, a, s′) denoting
the reward for executing a in s and transitioning to s′.

Ω = Ω1×· · ·×Ωm is the set of all observations of all agents
(o = (o1, . . . , om) ∈ Ω denotes a joint observation with oi as
the observation for agent i) and O denotes the observation
function that determines the probability O(o1, . . . , om|s, a, s′)
that agent 1 through m perceive observations o1 through om.



Moreover, M is jointly fully observable, i.e. the current
state is entirely determined by the amalgamation of all agents’
observations: if O(o|s, a, s′) > 0, then Pr(s′|o) = 1.

We refer to the agent-specific components si ∈ Si, ai ∈ Ai,
and oi ∈ Ωi as the local state, action, and observation of
agent i. A joint policy π is a set of local policies 〈π1, . . . , πm〉
each of which is a mapping from agent i’s sequence of lo-
cal observations to local actions, i.e. πi : Ωi → Ai. In
the following, we allow each agent to fully observe its local
state, i.e. we consider factored m-agent DEC-MDPs with lo-
cal full observability which implies that for all agents i and
for all local observations oi there is a local state si such that
Pr(si|oi) = 1. Note that joint full observability and local
full observability of a DEC-MDP do generally not imply full
observability, which would allow us to consider the system
as a single large MDP and to solve it with a centralized
approach.

A factored m-agent DEC-MDP is called reward indepen-
dent, if there exist local functions R1 through Rm, each de-
pending on local states and actions of the agents only, as
well as a function r that amalgamates the global reward
value from the local ones, such that maximizing each Ri in-
dividually also yields a maximization of r. Throughout this
paper, we will consider the global reward to be the sum of
the local ones.

If, in a factored m-agent DEC-MDP, each agent’s observa-
tion depends only on its current and next local state and on
its action, then that DEC-MDP is called observation inde-
pendent. Then, in combination with local full observability,
the observation-related components Ω and O are redundant
and can be removed from Definition 1.

While the DEC-MDPs of our interest are observation in-
dependent and reward independent, they are not transition
independent. That is, the state transition probabilities of
one agent may very well be influenced by another agent.

2.2 Variable Action Sets
We assume that there are some regularities that determine

the way local actions exert influence on other agents’ states.
First, we assume that the sets of local actions Ai change
over time.

Definition 2. A factored m-agent DEC-MDP is said to
feature changing action sets, if the local state of agent i is
fully described by the set of actions currently selectable by i

(si = Ai \ {α0}) and Ai is a subset of the set of all available
local actions Ai = {α0, αi1 . . . αik}, thus Si = P(Ai \ {α0}).
Here, α0 represents a null action that does not change the
state and is always in Ai. We abbreviate Ar

i = Ai \ {α0}.

Concerning state transition dependencies, one can dis-
tinguish between dependent and independent local actions.
While the former influence an agent’s local state only, the
latter may additionally influence the state transitions of
other agents. As pointed out, our interest is in non-transition
independent scenarios. In particular, we assume that an
agent’s local state can be affected by an arbitrary number
of other agents, but that an agent’s local action affects the
local state of maximally one other agent.

Definition 3. A factored m-agent DEC-MDP is said to
have partially ordered transition dependencies, if there exist
functions σi for each agent i with

1. σi : Ar
i → Ag ∪ {∅} and

2. ∀α ∈ Ar
i the directed graph Gα = (Ag ∪ {∅}, E) with

E = {(j, σj(α))|j ∈ Ag} is acyclic and contains a path
of length m

and it holds P (s′i|s, (a1 . . . am), (s′1 . . . s′i−1, s
′

i+1 . . . s′m))
= P (s′i|si, ai, {aj ∈ Aj |i = σj(aj), j 6= i}).

The influence exerted on another agent always yields an
extension of that agent’s action set: If σi(α) = j, i takes
local action α, and the execution of α has been finished,
then α is added to Aj(sj), while it is removed from Ai(si).

So, the σi functions indicate whose other agents’ state is
affected when agent i takes a local action. Also, condition 2
in Definition 3 implies that for each local action α there is
a total ordering of its execution by the agents. While these
orders are total, the global order in which actions are exe-
cuted is only partially defined by that definition and subject
to the agents’ policies. Lemma 1 states that for the prob-
lems considered any local action may appear only once in
an agent’s action set and, thus, may be executed only once.

Lemma 1. In a factored m-agent DEC-MDP with chang-
ing action sets and partially ordered transition dependen-
cies it holds: ∀i ∈ Ag, ∀α ∈ Ar

i , ∀t ∈ {1 . . . T} and ∀si =
(s1

i . . . st
i): If there is a ta (1 ≤ ta < T ) with α ∈ sta

i and a

tb (ta < tb ≤ T ) with α 6∈ s
tb
i , then ∀τ ∈ {tb . . . T} : α 6∈ sτ

i .

Proof. The proofs of this and of the following lemmas
are omitted due to space constraints.

2.3 Implications on Complexity
While the complexity of solving general DEC-MDPs is

known to be NEXP-complete [4], several authors have iden-
tified subclasses of the general problem that provably yield
lower (NP-complete) complexity (e.g. [3, 6, 2]). As shown in
[9], a key factor that determines whether the problem com-
plexity is reduced to NP-completeness is whether the agents’
histories can be compactly represented. In particular, there
must exist an encoding function Enci : Ωi → Ei such that

1. a joint policy π = 〈π1 . . . πm〉 with πi : Ei → Ai is
capable of maximizing the global value and

2. the encoding is polynomial, i.e. that |Ei| = O(|S|ci).

For our class of factored m-agent DEC-MDPs with changing
action sets and partially ordered transition dependencies we
can define an encoding that adheres to both of these condi-
tions, thus showing that those problems are NP-complete.

The interaction history of a DEC-MDP is the sequence
of local observations oi ∈ Ωi which in our case corresponds

to the history of local states si ∈ Si = ×
T

t=1 Si, since we
assume local full observability (recall that Si = P(Ar

i )).

Definition 4. Given a local action set Ai = {α0 . . . αk}
and a history si = (s1

i . . . st
i) ∈ Si of local states of agent

i, the encoding function is defined as Enci : Si → Ei with
Ei = Cα1

× · · · × Cαk
and Cαj

= {0, 1, 2}. And it holds
Enci(si) = (ci,α1

. . . ci,αk
) ∈ Ei with

ci,αj
=

8

>

<

>

:

0 if ∄τ with αj ∈ sτ
i

1 if αj ∈ st
i

2 else



Basically, the encoding guarantees that each agent knows
whether some local action has not yet been, is currently,
or had been in its action set. Proving that this encoding
is capable of representing the optimal policy and showing
that it is a polynomial encoding, we can conclude that the
subclass of DEC-MDPs we identified is NP-complete.

Lemma 2. Enci provides a polynomial encoding of agent
i’s observation history.

Lemma 3. Enci provides an encoding of agent i’s obser-
vation history such that a joint policy π = 〈π1 . . . πm〉 with
πi : Ei → Ai is sufficient to maximize the global value.

As deciding a polynomially encodable DEC-MDP is NP-
hard [9], solving a factored m-agent DEC-MDP with chang-
ing action sets and partially ordered dependencies is so, too.

3. RESOLVING DEPENDENCIES
Besides using an encoding of an agent’s interaction his-

tory (Section 2), there are other options for exploiting the
regularities in the transition dependencies of the class of
DEC-MDPs we identified that.

3.1 Reactive Policies and Their Limitations
An agent taking its action based solely on its most recent

local observation si ⊆ Ai is in general not able to contribute
to optimal joint behavior: It faces difficulties in assessing the
value of its idle action α0. Because a purely reactive agent
has no information related to other agents and dependencies
at all, it is incapable of properly distinguishing when it is
favorable to remain idle and when not. For these reasons,
we exclude α0 from all Ai for purely reactive agents.

Definition 5. For an m-agent DEC-MDP with changing
action sets and partially ordered transition dependencies, a
reactive policy πr = 〈πr

1 . . . πr
m〉 consists of m reactive local

policies with πr
i : Si → Ar

i where Si = P(Ar
i ).

That is, purely reactive policies always take an action α ∈
Ai(si) = si (except for si = ∅), even if it was better to stay
idle and wait for a transition from si to some s′i = si ∪ {α′}
induced by another agent, and then execute α′ in s′i.

3.2 Awareness of Dependencies
In Definition 4, we stated that the probability that agent

i’s local state moves to s′i depends on that agent’s current
local state si, its action ai, as well as on the set {aj ∈ Aj |i =
σj(aj), i 6= j} =: ∆i, i.e. on the local actions of all agents
that may influence agent i’s transition. Although knowing
∆i is in general not feasible for each agent, we may enhance
the capabilities of a reactive agent i by allowing it to get at
least some partial information about this set. For this, we
extend a reactive agent’s local state space from Si = P(Ar

i )

to Ŝi such that for all ŝi ∈ Ŝi it holds ŝi = (si, zi) with
zi ∈ P(Ar

i \ si). So, zi is a subset of the set of actions
currently not in the action set of agent i.

Definition 6. Let 1 . . . m be reactive agents acting in a
DEC-MDP, as specified in Definition 3, whose local state
spaces are extended to Ŝi. Assume that current local actions
a1 . . . am are taken consecutively. Given that agent j decides
for aj ∈ Aj(sj) and σj(aj) = i, let also si be the local state
of i and ŝi its current extended local state with ŝi = (si, zi).
Then, the transition dependency between j and i is said to
be resolved, if zi := zi ∪ {aj}.

Resolving transition dependencies according to Definition
6 means letting agent i know some of those current local
actions of other agents by which i’s local state will soon be
influenced. Since, for the class of problems we are dealing
with, inter-agent interferences are always exerted by chang-
ing (extending) another agent’s action set, in this way agent
i gets to know which further action(s) will soon be available
in its action set. Integrating this piece of information into i’s
extended local state description Ŝi, i gets the opportunity to
willingly stay idle (execute α0) until the announced action
aj ∈ zi enters its action set and can finally be executed.

The notification of agent i, which instructs him to extend
its local state component zi by aj , may easily be realized by
a simple message passing scheme (assuming cost-free com-
munication between agents) that allows agent i to send a
single directed message to agent σi(α) upon the local ex-
ecution of α. Obviously, this kind of partial resolving of
transition dependencies is particularly useful in applications
where the execution of atomic actions takes more than a
single time step and where, hence, decision-making proceeds
asynchronously across agents. Under those conditions, up to
half of the dependencies in ∆i (over all i) may be resolved.

4. DISCUSSION AND EVALUATION
Distributed problem solving in practice is often character-

ized by a factored system state description where the agents
base their decisions on local observations. Also, our assump-
tions that local actions may influence the state transitions of
maximally one other agent and that any action has to be per-
formed only once are frequently fulfilled. Sample real-world
applications include scenarios from manufacturing, produc-
tion planning, or assembly line optimization, where typi-
cally the production of a good involves a number of process-
ing steps that have to be performed in a specific order. In
a factory, however, usually a variety of products is assem-
bled concurrently, which is why an appropriate sequencing
of single operations is of crucial importance for overall per-
formance. Thus, the class of factored m-agent DEC-MDPs
with changing action sets and partially ordered transition
dependencies covers a variety of such scheduling problems,
for example flow-shop and job-shop scheduling scenarios [7].
Beyond that, a big portion of supply chain problems where
complex items are assembled through a series of steps are
covered. Other practical application domains to which our
model is of relevance include network routing (e.g. sub-task
of determining the order of forwarding packets), railway traf-
fic control (e.g. task of allowing trains to pull into the station
via agent-based track switches), or workflow management.

Joint Policy Acquisition with RL
Solving a DEC-MDP optimally is NEXP-hard and intractable
for all except the smallest problem sizes. Unfortunately, the
fact that the subclass of DEC-MDPs we identified is in NP
and hence simpler to solve, does not rid us from the compu-
tational burden implied. So, our goal is not to develop yet
another optimal solution algorithm applicable to small prob-
lems only, but to use a technique capable of quickly finding
approximate solutions in the vicinity of the optimum.

We let the agents acquire their local policies indepen-
dently of the other agents by repeated interaction with the
DEC-MDP and concurrent evolvement of their policies. Our
learning approach is made up of alternating data collection
and learning stages that are being run concurrently within



all agents. At its core, a specialized variant of a neural fit-
ted Q iteration (NFQ) algorithm [8], enhanced for usage in
multi-agent domains, is used that allows the agents to de-
termine a value function over their local state-action spaces.
A detailed description of that approach can be found in [5].

Experiments
For the purpose of evaluation, we focus on various job-
shop scheduling (JSS) benchmark problems (taken from [1])
that are known to be NP-hard. The goal of scheduling
is to allocate a given number of jobs to a limited num-
ber of resources such that some objective is optimized. In
job-shop scheduling, n jobs must be processed on m ma-
chines in a pre-determined order, while minimizing maxi-
mum makespan Cmax, which corresponds to finishing pro-
cessing as quickly as possible. Each job consists of a specific
number of operations that each have to be handled on a cer-
tain resource for a certain duration, where the whole job is
finished after its last operation has been entirely processed.

JSS problems are suited to be modelled as factored m-
agent DEC-MDPs with changing action sets and partially
ordered transition dependencies: The world state can be fac-
tored, if we assume that to each of the resources one agent
i is associated whose local action is to decide which wait-
ing job to process next. Further, the local state of i can be
fully described by the changing set of jobs currently waiting
for further processing, and after having finished an oper-
ation of a job, this job is transferred to another resource,
which corresponds to influencing another agent’s local state
by extending that agent’s action set. Examining the for-
mal definition of JSS problems [7], it is obvious that we can
also easily define σi : Ar

i → Ag ∪ {∅} (see Definition 3) for
all agents/resources i and that the corresponding directed
graph Gα is indeed acyclic with a path of length m.

The primary concern of the experiments conducted was on
an analysis of the three approaches discussed in this paper.
We compared agents that independently learn purely reac-
tive policies πr

i (see Section 3.1) defined over Si = P(Ar
i )

that never remain idle when their action set is not empty
(RCT), reactive policies π̂i that are partially aware of their
dependencies on other agents (being notified about forth-
coming influences exerted by other agents, COM), and poli-
cies πi : Ei → Ai where Ei is an encoding of that agent’s
observation history Si according to Definition 4 (ENC).

Findings
Using RCT-agents, only schedules from the class of non-
delay schedules Snd can be created by applying reactive
policies. Since Snd ⊆ Sa and it is known that the opti-
mal schedule is always in Sa [7], but not necessarily in Snd,
RCT-agents can at best learn the optimal solution from Snd.
By contrast, learning with ENC-agents, the optimal solution
can in principle be attained, but we found that the time re-
quired by our learning approach for this to happen increases
significantly due to larger-sized local state spaces.

We also found that the awareness of inter-agent dependen-
cies achieved by partial dependency resolvements via com-
munication in fact realizes a good trade-off between the for-
mer two approaches. On the one hand, resolving a transition
dependency according to Definition 6, an agent i can be-
come aware of an incoming job. Thus, i may decide to wait
for that arrival, instead of starting to execute another job.
Hence, also schedules can be created that are not non-delay.

On the other hand, very poor policies with unnecessary idle
times can be avoided, since a decision to stay idle may be
taken only when a future job arrival has been announced.

Averaged over 24 different benchmark instances [1] of vary-
ing sizes (up to 15 agents) for which it is known that the op-
timal solution is not in Snd, the learned policies nearly reach
the theoretical optimum (schedule with minimal Cmax) miss-
ing it by 6.18% for RCT-agents, by 9.55% for ENC-agents,
and by 4.78% for COM-agents. Dispatching rule based sche-
duling approaches are clearly surpassed (best conventional
scheduling rule reaches a remaining error of 8.59%).

5. CONCLUSION
We have identified a class of cooperative decentralized

MDPs that features a number of regularities in the way
agents influence the state transitions of other agents. Ex-
ploiting the knowledge about these correlations, we have
proven that this class of problems is easier to solve (NP-
hard) than general DEC-MDPs (NEXP-hard). Subsequently,
we have looked at possibilities for modeling memoryless agents
and enhancing them by restricted allowance of communica-
tion. For solving instances of the DEC-MDP class identified
we relied on a coordinated batch-mode reinforcement learn-
ing algorithm that facilitates the agents to concurrently and
independently learn their local policies of action online.
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