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ABSTRACT
In this paper, we investigate multi-agent learning (MAL) in
a multi-agent resource selection problem (MARS) in which a
large group of agents are competing for common resources.
Since agents in such a setting are self-interested, MAL in
MARS domains typically focuses on the convergence to a
set of non-cooperative equilibria. As seen in the example of
prisoner’s dilemma, however, selfish equilibria are not neces-
sarily optimal with respect to the natural objective function
of a target problem, e.g., resource utilization in the case of
MARS. Conversely, a centrally administered optimization
of physically distributed agents is infeasible in many real-
life applications such as transportation traffic problems. In
order to explore the possibility for a middle ground solution,
we analyze two types of costs for evaluating MAL algorithms
in this context. The quality loss of a selfish algorithm can be
quantitatively measured by the price of anarchy, i.e., the ra-
tio of the objective function value of a selfish solution to that
of an optimal solution. Analogously, we introduce the price
of monarchy of a learning algorithm to quantify the prac-
tical cost of coordination in terms of communication cost.
We then introduce a multi-agent social learning approach
named A Few Good Agents (AFGA) that motivates self-
interested agents to cooperate with one another to reduce
the price of anarchy, while bounding the price of monar-
chy at the same time. A preliminary set of experiments on
the El Farol bar problem, a simple example of MARS, show
promising results.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents,Multiagent systems,Coherence and coordination

General Terms
Algorithms

Keywords
social learning, coordination, adaptation, price of anarchy,
price of monarchy
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In this paper, we study distributed learning in a multi-
agent resource selection problem (MARS) in which a large
number of self-interested agents are competing for common
resources. Typically, the goal of multi-agent learning (MAL)
in this context is to learn how a particular agent should select
resources to maximize its resource utility in the presence of
other (possibly also intelligent) agents.

In MAL, two particularly important criteria for learning
algorithms are rationality and convergence [5]. The former
stresses that a learning algorithm must be adaptive to sta-
tionary opponents, while the latter sets the target of conver-
gence to a Nash equilibrium (NE) in self-play - a setting in
which opponents are also using the same learning algorithm
as the learner. Consequently, the majority of existing MAL
algorithms aim for convergence in self-play, particularly to
NE [8, 5, 9, 14] or to a set of correlated equilibria (CE) [13,
3].

As seen in the prisoner’s dilemma, however, the perfor-
mance of such non-cooperative equilibria, known as selfish
equilibria, can be suboptimal with respect to the natural
objective function of a target problem, e.g., in MARS, re-
source utilization. A mathematical model describing such
inefficiency in MARS is referred to as selfish routing, of par-
ticular interest in both transportation science and computer
networks [22].

Although a centrally administered system (CAS) can be
used in MARS to guarantee an optimal result, e.g., [6, 4],
it is often infeasible in many real-life problem domains such
as traffic routing problems in transportation systems. Since
agents are physically distributed, the cost of communication
among agents and a central administrator is often signifi-
cant.

In this context, we investigate the possibility of a middle
ground solution between selfish equilibria and a centrally
administered system wherein self-interested agents utilize a
proper level of coordination to improve their performance
beyond selfish equilibria.

We first propose the use of two quantitative criteria for
evaluating cooperative multi-agent learning algorithms in
this context: price of anarchy1 and price of monarchy. The
former measures the inefficiency of a multi-agent learning
algorithm with respect to the natural objective function.
Specifically, the price of anarchy is defined as the ratio of
the objective function value of a learning algorithm at con-
vergence to that of an optimum. Corresponding to the price

1The price of anarchy was originally defined in [16] as
the worst ratio of the objective function value of a non-
cooperative equilibrium to that of an optimum. We take
the liberty to generalize the definition to use it as a crite-
rion for MAL.
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of anarchy, we define the price of monarchy, in order to quan-
tify the practical cost of cooperation in terms of communi-
cation cost. The quantification of these two criteria provides
an eloquent means for trade off analysis for coordination in
MARS.

Aspiring to reduce these two costs, we then introduce the
A Few Good Agents (AFGA) approach. The key idea of
the proposed approach comes from reciprocal altruism. In-
formally, an agent will cooperate if and only if the agent
believes that it would receive higher expected payoffs by
taking cooperative actions than by not doing so, and the
mutual dependence among agents generates such an incen-
tive for persistent cooperation.

The AFGA approach is driven by a synergy between two
types of agents: leaders and voters. A leader learns to make
good predictions about the changes in the environment, and
selects actions based on its predictions. When the entire
population is composed of agents of a type leader, then the
system pays the full price of anarchy.

A voter, alternatively, utilizes social learning - learning
from other agents – to learn indirectly about the environ-
ment from a set of leaders, and selects actions based on its
leader’s predictions. The intuition for voter agents is similar
to that of classical ensemble learning methods [10] in that a
voter’s decisions depend on some set of other learning agents
that may use various learning algorithms. The learning al-
gorithms of leaders are transparent to voters, hence, voters’
criteria for subscribing to a leader’s prediction is determined
by the actual performance of the leader’s past predictions.

In addition, the AFGA approach presents a beneficial sup-
plementary property. From the perspective of multi-agent
systems (MAS), it is redundant to have multiple agents
learning the same information simultaneously. We design
AFGA agents to utilize social learning to maximize the learn-
ing utility of the MAS. This is intuitive if social learning is
relatively easier than the learning of the actual task. The
name “a few good agents” refers to the subset of agents
that are adept learners, namely the leaders, while the other
agents - voters – take full advantage of the leaders by only
needing to solve a simpler learning problem.

The use of social learning additionally provides robust per-
formance in the case of a dynamically changing population,
e.g., cars in traffic routing problems. Most existing MAL al-
gorithms assume a finite set of agents learning at the same
speed. Since learning agents tend to explore more at the
beginning of the learning phase, the performance of learn-
ing algorithms degrades whenever a new set of agents is
introduced to the system. The AFGA approach is better
insulated from this potential learning degradation caused
by dynamic changes in population because new agents can
utilize social learning instead of exploring the environment
themselves.

We have carried out a preliminary set of experiments in
the El Farol bar problem [1], a simple example of MARS, to
evaluate the efficacy of our approach. The results show that
the AFGA agents significantly reduce the price of anarchy
compared to a Nash equilibrium which is a targeted solu-
tion of most existing MAL algorithms. At the same time,
the AFGA approach has also been shown to bound the price
of monarchy significantly lower than that of a centrally ad-
ministered system.

More notably, the results also demonstrate that the AFGA
approach is still effective under two types of uncertainty: 1)
when agents have only limited observation of the state of
resources, 2) when the members of the agent population in

MARS change dynamically, e.g., traffic flow in an automo-
bile routing problem.

2. DEFINITIONS
This section provides a formal definition of MARS, fol-

lowed by preliminary definitions that are used in our discus-
sion throughout the paper.

2.1 Multi-agent Resource Selection Problem
We formally define MARS as a quadruple of (N, Γ,

−→
A,
−→
R ).

MARS is a single state repeated game which is repeated
infinitely.

• N is a set of agents. N = {1, 2, ..., n}.
• Γ = {r1, ..., rm} denotes a set of resources available for

agents in N .

• −→A t = a1 × ...× an denotes the resource choices of the
agents at time t where ai ∈ Γ,∀i ∈ N .

• −→R t+1 : Γ×−→A t → < is a delayed reward function

Specifically, a reward associated with using a resource is
defined as a function of the number of concurrent users of
the resource, and all users using the same resource share the
same reward. Thus, MARS is a class of congestion games
[20].

2.2 Selfish Equilibria
One of the main criteria of evaluating a MAL algorithm

in MARS is convergence. The following two equilibria are
often discussed as the target of convergence.

I. Nash equilibrium (NE) [18]: A joint strategy profile
π is in a NE iff no player wants to deviate from the
current choice of action given the opponents’ actions
are fixed.

II. Correlated equilibrium (CE) [2]: Given a joint strat-
egy profile π, let πi, π−i denote the action prescribed
for agent i by the strategy π, and the vector of actions
prescribed by the strategy π for agents j ∈ N, j 6= i
When a common prior assumption holds, i.e., when
all agents have access to the joint distribution of ac-
tions of all agents, a correlated equilibrium is a strat-
egy profile s s.t. all players are Bayes rational, i.e.,
∀i ∈ N, E[ri(πi, π−i)] ≥ E[ri(ai, π−i)]∀ai ∈ Ai where
Ai denote a set of available actions of agent i.

In fact, a NE is a special class of a correlated equilibrium
where agents’ decision making (or the information on which
an agent’s decision depend) is independent from one an-
other.

2.3 Centrally Administered System (CAS)
A centrally administered system (CAS) is a model where

a global administrator has access to complete information.
An administrator also communicates with all agents in the
system, optimizing the performance of the entire population.

3. CRITERIA FOR COOPERATIVE MAL
We propose the use of two criteria to evaluate coopera-

tive MAL algorithms. The quantification of these two val-
ues provides important criteria for coordination decisions.
Knowingly, agents should coordinate with others if and only
if the coordinated actions reduce the price of anarchy while
bounding the price of monarchy by a proper level.

340



tS(x) = n

tD(x) = ƒ (x)

n

T
ravel tim

e

n
Number of concurrent users

ƒ(x) = x

ƒ(x) = xp

Figure 1: Driving versus Metro

3.1 Price of Anarchy
The price of anarchy, which was first introduced in [16],

measures the inefficiency of a selfish equilibrium. Let ϕa and
SE denote the objective function value of a target problem
using an algorithm a, and a set of selfish equilibria, respec-
tively. In the price of anarchy literature, it is conventionally
assumed that the objective is to minimize the cost function
ϕ. Let ϕs and ϕopt denote the objective function value of
a selfish equilibrium s, s ∈ SE, and that of the optimal so-
lution, respectively. The price of anarchy, $A

worst, is defined
as maxs∈SE( ϕs

ϕopt
). $A

best is defined similarly. In the origi-

nal work, the price is computed using the worst NE. Similar
work on correlated equilibria can be found in [7].

In this paper, we generalize the definition such that the
price of anarchy measures the inefficiency of a MAL algo-
rithm. Thus, the price of anarchy of a learning algorithm l
is

$A
l =

ϕl

ϕopt
. (1)

3.2 Price of monarchy
Analogous to the price of anarchy, we introduce a new

measure, price of monarchy. Whereas the price of anarchy
measures potential quality loss due to selfish decisions, the
price of monarchy estimates the practical cost of installing
cooperation in MAS. We mainly discuss time delay during
execution, thus we define the price of monarchy in terms of
communication cost.

Thus, the lower bound of the price of monarchy is found
in non-communicating systems. In general, the price of
monarchy depends on how a coordination mechanism is im-
plemented, e.g., vigorous negotiation may require iterative
communication processes. We set the upper bound of the
price of monarchy to that of a CAS, and disregard algo-
rithms for which the communication cost exceeds this upper
bound.

Let ςl and ς−c denote a communication cost function of a
learning algorithm l, and that of a non-cooperative system,
respectively. The price of monarchy, $M

l , is

$M
l =

ςl

ς−c
. (2)

4. SOME BASIC MARS PROBLEMS
In this section, we use two illustrative examples to de-

scribe the main issues raised in MARS, namely, 1) the price
of anarchy in selfish routing, and 2) the rationality paradox.

4.1 Driving versus Metro
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Figure 2: Reward function of EFBP (n = 100, τ = 60)

Let us first illustrate selfish routing using a simple exam-
ple of MARS [19, 22]. Suppose there exist n self-interested
agents that are deciding between two actions of taking a
metro or driving to work, denoted by M and D, respec-
tively. Figure 1 illustrates such an example. The natural
objective of this problem is to minimize the average travel
time of all agents.

Let xa denote the number of agents that selected action
a, where a ∈ {M, D}, and let ta(xa) be the travel time of
taking action a. Note that the travel time is a function of xa,
and the agents that selected the same action all experience
the same travel time. Let us assume that tM (xM ) = n where
n is the number of agents. On the other hand, let the travel
time of driving be a linearly increasing function, tD(xD) =
xD such that tD(n) = n. That is, taking a metro takes
a constant travel time that is always slower than driving
except when the traffic is fully congested.

In this case, self-interested agents converge to an equilib-
rium in which agents will always choose to drive even when
the road is fully congested, resulting the average travel time
of n. This is a NE since no one is motivated to deviate from
their current choice of actions given the choices of other
agents are fixed.

If we assume that there exists a CAS that selects a small
number of agents, ε, (ε < n), and forces them to take the
metro, then the travel time of the selected agents is still
not any slower than that of their original decisions, i.e., n.
This enforcement, however, enables the remaining drivers to
travel faster, reducing the travel time of a driving agent to
n− ε.

In this case, the average travel time of all agents is a con-
vex function, 1

n
× {nε + (n− ε)2}. By taking the derivative

of the convex function, an optimal value is trivially found,
e.g., ε = n

2
, reducing the average travel time down to 3n

4
.

Suppose instead that the travel time function is non-linear
(dotted line in Figure 1), e.g., an exponential function, tD(xD) =
xP , for some P . Then, in the limit, the travel time of driving
becomes ignorable, i.e., limP→∞(n−ε)P = limP→∞{nP (1−
ε
n
)P } = 0. Thus, the average travel time of agents in this

case is reduced to ε.
In this example, the price of anarchy is 4

3
and n

ε
for the

linear travel time function and the exponential function, re-
spectively. This example provides an interesting observa-
tion: although the price of anarchy can be very high, e.g.,
exponential cost functions, the price can be significantly re-
duced by a small number of altruistic agents.

4.2 The El Farol Bar Problem (EFBP)
The El Farol bar problem (EFBP) introduced in [1] is
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Figure 3: Selfish Equilibria and Rationality Paradox

another example of MARS. EFBP is defined as follows. A set
of n agents repeatedly make decisions of whether to attend a
bar or not on certain nights. The only observations available
to the agents are the past history of attendance at the bar.
In the original problem, it was assumed that agents have
access to a complete history of attendance.

The payoff of attending a bar is high only if the number
of attendees at the bar on the night is less than a certain
threshold, τ . However, the agent receives the worst payoff if
the bar is over crowded. Thus, an agent is better off staying
home if it believes that the bar would be crowded on the
night. An example of the reward function for n = 100, τ =
60 is shown in Figure 2.

Despite the simplicity, EFBP clearly exhibits the two im-
portant issues of MARS: the rationality paradox and selfish
equilibria. The rationality paradox refers to the fact that a
rational agent fails to learn the best action based on its ex-
pected reward. Since all agents are simultaneously learning
the same information, agents reason in the same manner.

For instance, when an agent predicts the attendance at
the bar is lower than τ then the agent decides to attend the
bar. Since the other agents also reason the same manner,
however, the entire population decides to attend the bar,
receiving the worst payoffs. Figure 3 (right) depicts such a
result. Agents face contradicting outcomes by making deci-
sions based on their rationality.

Existing studies on EFBP have been mostly focused on
the issue of the rationality paradox, seeking algorithms that
converge to selfish equilibria. For instance, agents using an
inductive reasoning algorithm converge to a mixed strategy
NE [1]. Figure 3 (left) depicts a mixed strategy NE of EFBP.
Alternatively, agents using a regret-based learning algorithm
converge to a set of correlated equilibria [12].

5. A FEW GOOD AGENTS MODEL
In general, some agents can learn better than others at

certain times either because they are exposed to different
parts of information in the environment, or because they
simply have better learning algorithms. Based on this ob-
servation, we propose a multi-agent model in which a set of
such privileged agents learn directly from the environment
while the rest utilize social learning, i.e., they learn rather
indirectly from those privileged agents.

We first define two types of agents: leader and voter. A
leader agent learns to choose actions for a group of one (it-
self) or more agents. Instead of learning a policy for itself,
an agent may depend on the strategies of other agents. If an
agent is following the strategy of another agent it is a voter.
Thus, a voter agent tries to learn whose strategy yields the
highest payoffs.

Outer learning (meta-learning) layer

Inner learning layer

Coordination decisions

Independent
Leader
Voter

Action selection

Attend the bar
Stay home

EnvironmentAction

reward

meta-action

Figure 4: Hierarchical learning layers

An agent can change its type between leader and voter.
When an agent is changing its type, it is said that the agent
mutates. The mutation succeeds with some probability.

Let type(i) denote the type of agent i, i ∈ N . In this
context, we hypothesize the existence of a set of leaders at
time t, αt, that can lead the population to perform better
than any other set of leaders. Formally,

Let N be a set of self-interested agents competing
for scarce resources, then there exists a set of
leaders, αt, αt ⊆ N at time t, s.t. ϕt(N, αt) ≤
ϕt(N, α′), ∀α′ ⊆ N , where ϕt(N, α′) denotes the
quality loss (in resource utilization) at time t,
and ∀j ∈ N , j ∈ α′ iff type(j) = L.

That being said, we aim to design learning algorithms for
the agent population of MARS to learn to elect the ideal set
of leaders themselves.

The crux of the AFGA approach lies in mutual depen-
dence between leaders and voters. On one hand, a leader
needs its voters to execute collective actions to achieve a
higher payoff, thus it is motivated to be truthful to the vot-
ers in order to retain its voting bloc. Since there are multiple
leaders, a voter can switch to a new leader if the performance
of the current leader is no longer satisfying.

On the other hand, a voter elects to listen to the leader
because it believes that acting in the group will produce
higher rewards than acting individually. Thus, the AFGA
approach is based on reciprocal altruism, which is indeed a
class of a selfish model.

The AFGA model is composed of two hierarchical layers
as depicted in Figure 4. In general, the goal of reinforcement
learning is to learn a policy that maps a state onto an action
to maximize the expected future reward over time. The
learning of a policy to determine an action, e.g., whether
to attend a bar or stay home, is done in the inner learning
layer. The outer layer is where agents learn to choose a
coordination action that maximizes the reward. The set of
decision choices in the outer layer are called meta-actions.

As shown in Figure 4, an agent makes decisions in both
layers each night, and both the selected meta-action and the
ultimate action (attend the bar or stay home) are evaluated
according to the same reward received from the environ-
ment.

In what follows, we will describe the learning occurring in
each layer in detail. Although we will use the bar problem
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as an example to illustrate the algorithm, the algorithm is
designed for a more general class of a MARS problem.

5.1 Outer learning (meta-learning) layer
In multi-agent systems, an agent needs to decide whether

it should act independently or coordinate its actions with
other agents in an environment to maximize its performance.
The most innovative part of the AFGA approach is repre-
senting such coordination decisions as a meta-learning layer
in the agent’s reasoning model.

For instance, an agent learns to make a better decision on
whether it should be a leader or a voter in the outer layer.
Alternatively, an agent may still decide to act independently.

The meta-actions representing such choices are denoted by
a set: {L, I, α1, ..., αk}. Meta-action L means that the agent
is a leader itself whereas meta-action I indicates that the
agent is an independent voter. An independent voter uses
its own policy to select actions. Although a leader without
subscribers can be also viewed as an independent agent, it
is not included in the set of meta-actions because a leader
itself cannot choose to become an independent leader in the
current model.

Other meta-actions, e.g., αi, denote candidate leaders.
For example, if an agent’s meta-action is αi then the agent
is a voter following the strategy of another agent αi. The
maximum number of candidate leaders that one voter can
keep in its memory is parameterized by k (default value for
k is 4 in the experiments below). Thus, each agent has k+2
meta-actions.

Agents learn a policy in the outer layer using a Q-learning
algorithm that was simplified for a stateless repeated game
[8]. After each night, an agent updates a QM -value for its
current meta-action. Suppose αi is the current meta-action.
Let rt be the reward at time t after following the prescription
of the current leader αi. Note that the reward is only defined
for the actual action that was taken, e.g., attend the bar,
as opposed to meta-actions. The QM -value of αi is then
updated as follows.

QM
t+1(αi) = (1− η)QM

t (αi) + ηrt (3)

where η is the learning rate such that 0 < η ≤ 1.
An agent then chooses a meta-action using an ε-greedy

method, i.e., an agent selects the best meta-action based on
the QM -values most of time, but it explores other options
with a small probability, ε.

For instance, a leader agent mutates to a voter if QM -
value of meta-action L, QM (L), is no longer the highest.
Conversely, a voter agent mutates to a leader if its QM (L)
is the highest. With a small probability ε, an agent ran-
domly chooses a meta-action rather than the action with
the maximum QM -value.

5.2 Inner learning layer
In the inner layer, an agent decides the actual action, e.g.,

whether to attend the bar or not. In fact, every agent has
its own stochastic policy π for choosing an action. Initially,
the policy of an agent is a random choice among all available
actions. The policy is updated when the agent is a leader,
and the policy remains stationary when it is a voter.

Depending on its current meta-action choice, an agent
may follow its own policy or that of another agent. The
strategy of a voter following a leader is straightforward. A
voter queries its leader, and the leader uses its policy to
prescribe an action for the voter. The voter then simply
follows the action that its leader has just prescribed. When

a voter is independent, on the other hand, it uses its own
(stationary) policy to make a decision.

A more interesting question is how a leader updates its
policy. A typical reinforcement learner in the bar problem
may try alternative actions and update the value of the two
actions - attending the bar or staying home – in order to
learn a policy, e.g., attend the bar with some probability p.

Instead of updating the value of an individual action of at-
tending the bar, a leader agent updates the expected atten-
dance at the bar. Because the reward in congestion games
is defined as a function of the number of the agents that
have selected the same action (resource), the expected at-
tendance is in fact the prediction of joint actions of the agent
population.

Let n denote the number of agents that are deciding to
attend the bar, and let τ be the maximum attendance such
that agents receive the worst payoffs if the attendance at the
bar exceeds τ . The goal of a leader is to regulate the joint
actions of its subscribers lest the total attendance exceed
the threshold τ assuming the rest of the population is acting
selfishly.

Let li(t), and l̄i(t) denote agent i’s observation of the ac-

tual attendance of the bar on the tth night, and agent i’s
prediction for the expected attendance on the tth night, re-
spectively. Then the update function is

l̄i(t + 1) = (1− η)l̄i(t) + ηli(t) (4)

where η is the learning rate such that 0 < η ≤ 1.
Based on the expected attendance, a leader further esti-

mates an admissible number of agents among its subscribers
that can attend the bar. Since the expected attendance rep-
resents the joint actions of the agent population on the next
night, the predicted attendance can be interpreted as the
sum of two numbers: 1) the number of agents that the leader
i is going to send among its subscribers (voters), denoted by
ci,t, and 2) the number of agents that decide to attend the
bar independent of the leader i, denoted by c−i,t.

Let Ωi,t denote a set of voters that subscribe to the leader
i’s strategy at time t. The length of Ωi is at least 1 since
Ωi includes leader i itself. An admissible number of agents
that can attend on the following night, ci,t+1, is estimated
by subtracting the load that would be generated by non-
subscribers from the predicted attendance l̄(t) as follows.

c−i,t+1 = max{τ, l̄(t)} × (1− |Ωi,t|
n

)} (5)

ci,t+1 = max(0, τ − c−i,t+1) (6)

Finally, the policy π is updated as follows. Let pi,t denote
the probability that a subscriber of leader i at time t attends
the bar.

pi,t =
ci,t+1

|Ωi,t| (7)

πi = (1− η)πi + ηpi,t

In other words, policy πi is the probability that leader i
prescribes action attend for its subscribers. Since the deci-
sion is randomized by policy π, all subscribers receive a fair
chance to attend the bar. A leader also counts the number
of subscribers for which it has prescribed action attend so
that the number of attendees among its subscribers at time
t is at most ci,t - the admissible number of attendees.

6. EXPERIMENTS
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Figure 5: Average reward on varying communica-
tion budget

Prior to reporting the results, we define auxiliary cost
functions that were used to compute the price of anarchy and
the price of monarchy in the El Farol bar problem (EFBP).

6.1 Auxiliary cost functions
In the El Farol bar problem (EFBP), the objective of a

learning agent is to maximize the reward in contrast to the
price of anarchy analysis which is commonly conducted in
the sense of cost minimization. In order to measure the
price of anarchy we define a non-negative, non-increasing
function, ϕ, in terms of the expected reward. The expected
reward was normalized to [0, 1].

ϕ = 1− normalize[0,1](µ{E(r)}) (8)

where µ{E(r)} denotes the average of the expected reward
of the population. The price of anarchy in EFBP is then
computed using Equation 8 and 1.

Subsequently, we define ς of the price of monarchy in
EFBP as follows. Let the cost of a message, β, be a non-
decreasing function of a communication bandwidth - the
number of concurrent users. For instance, the number of
concurrent users in a Centrally Administered System (CAS)
is n since all n agents need to exchange at least one message
with a central administrator at the same time. Thus the
average communication cost of a CAS, µCAS , is

µCAS =
1

n
×

n∑
1

β(n). (9)

We now define the communication cost for AFGA. Let Vt

denote a set of voters at time t. The cost of a message for a
voter at time t depends on the number of other voters that
share the same leader. Thus, the average communication
cost of AFGA, µAFGA, is

µAFGA =
1

n
×

∑
i∈Vt

β(|Ωαi,t |) (10)

where αi,t is the current leader of a voter i, and Ωl denotes
a set of voters of a leader l.

Let β(x) = c× x for some constant c, c > 0. Without loss
of generality, we choose c = 1

n
such that the communication

cost of a non-communicating model, e.g., a Nash equilibrium
(NE), and that of a CAS are 0 and 1, respectively. Then we
choose ςl to be

ςl = exp(µl). (11)
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Figure 6: Price curve of EFBP

We are only interested in learning algorithms for which the
price of monarchy $M is within the range of [$M

NE , $M
CAS ].

6.2 Results
We now present a set of experimental results that were

performed on EFBP in order to verify the efficacy of the
proposed approach. In particular, we discuss the results on
the following specific conditions.

I. S-C (Static population, Complete information): This
is the original bar problem defined in [1] in which it
was assumed that agents have a complete observation
on the attendance at the bar.

II. D-I (Dynamic population, Incomplete information): In
all conditions except S-C, agents can observe the atten-
dance at the bar only on those nights that they actually
attended the bar. In a dynamic population, a subset
of the population gradually moves out of the environ-
ment, being replaced by new agents. The population
dynamics per night is parameterized by D. For in-
stance, D = 0.1 denotes that one randomly selected
agent is replaced with a new one every 10th night, such
that the entire population is substituted every 1000th

night when n = 100. The set of values used for D in
the experiments are {0, 0.1, 0.2, 0.5, 1.0, 2.0}. Note that
D = 0 indicates a static population.

All results presented in this section used n = 100, τ = 60,
and the results were averaged over 100 trials.

For the purpose of experiment, we introduce an additional
parameter for voters: ξ to denote a voter’s communication
budget, such that communication cost is bounded, µAFGA ≤
ξ. Note that, in general, ξ is set to the upper bound, 1.0, so
that each agent makes its own flexible decisions.

We conducted a series of experiments by varying ξ, ξ ∈
[0, 1]. Figure 5 (Left) shows that AFGA agents utilize com-
munication efficiently regardless of the maximum allowance
ξ. At the same time, Figure 5 (Right) shows that the per-
formance of AFGA agents starts approaching the optimum
even with only a small amount of communication cost.

Since the main goal of this work is to reduce the price of
anarchy, the performance of AFGA was compared against
that of a mixed strategy NE, which is commonly considered
as an upper bound performance of MAL, and the optimum
(Table 12).

2The result on NE is an empirical result.
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Table 1: NE vs. Optimum in EFBP
NE Optimum

Attendance (µ,σ) 60.0,4.9 60.0,0.0
Average reward 0.007 0.600

$A 2.483 1.000
$M 1.000 2.718

In fact, the learning algorithm for a leader in the inner
layer converges to a Nash equilibrium (NE) when applied
to a strictly non-cooperative setting. By adding the outer
learning layer, the AFGA approach allows agents to learn
a cooperative policy that improves the performance beyond
a Nash equilibrium. In the worst case, if the agents fail to
reach a cooperative solution that is better than an indepen-
dent one, then the agents will learn and act independently,
eventually converging to a Nash equilibrium.

In EFBP, the average attendance of NE is 60 ± 4.9, re-
sulting in an average reward near zero. On the other hand,
the average attendance of AFGA on all conditions is below
the threshold, τ such that µ + σ ' τ , reducing the number
of overcrowded nights.

Figure 6 presents the price curve of EFBP that summa-
rizes the results by displaying the two cost analysis. We
call this a price curve since the price of anarchy measures
the quality while the price of monarchy measures the prac-
tical cost. The performance of the AFGA approach under
7 conditions were plotted, i.e., each point corresponds to
the performance of the AFGA approach at convergence per
condition. In addition, Figure 6 also contains 3 baseline per-
formances: the optimum, NE, and CAS. For easier reading,
we also plotted scales relative to the price of anarchy of a
Nash equilibrium of EFBP, $A

NE , and the price of monarchy
of a centrally administered system (CAS), $M

CAS .
The price curve indicates that the price of anarchy is min-

imized when the system is a CAS by paying the full price of
monarchy, and vice versa. Thus, an optimal solution is the
lower left corner of the diagram. In general, the closer the
data points are to the axes, the better the performance of a
learning algorithm is.

The data points in the plot were clustered in the lower left
region, which indicates the coordination of AFGA agents is
both efficient and effective. In particular, the performance
on the original bar problem (S-C) was very close to the op-
timum. More importantly, the performance was stable un-
der a moderate level of population dynamics, e.g.,D < 1 in
Figure 6. When the population was highly dynamic, the
number of independent agents increased, i.e., the degree of
cooperation diminished. Even in such cases, the quality of
a solution found by the AFGA approach was significantly
higher than that of a NE, e.g., D = 1 and D = 2 in Figure
6.

7. RELATED WORK

Existing approaches to reducing the price of anarchy in
MARS seek solutions from two different sources: one from
the environment and the other from the users of the envi-
ronment. The former addresses making adjustment directly
to the environment to make it more efficient. Specific ex-
amples are an increase in resource capacity or a redesign of
the network routing structure [22]. Our interest resides in

the latter, assuming that the environment is not under our
control.

The focus of existing MAL has been mostly on conver-
gence to selfish equilibria. For example, there are a number
of pure strategy NE that are also optimal in EFBP, e.g.,
any combination of exactly τ agents attend the bar, while
the rest stay home. None of them are, however, stable be-
cause they are not fair for those who stay home. Thus, selfish
agents converge to a mixed strategy NE which is suboptimal.

Generally in MARS, optimal solutions cannot be achieved
without an external intervention or an explicit coordination
among agents [17], such that some subset of agents must
choose altruistic actions at times. In AFGA, this is ac-
complished through a leader’s strategy for allocating actions
among its voters altruistically. In this sense, AFGA can be
seen as a local centralization. The approach is, however,
unique in that the formation of the organizational structure
is dynamically derived by the collective rationality of the
agent population as opposed to a predetermined network of
organization structure. For instance, AFGA agents mutate
themselves between leader and voter according to their per-
formance, which gives rise to self-organizing group behavior.
Furthermore, an agent can still decide to be non-cooperative
if the expected reward of acting alone is higher.

A no-external-regret algorithm was applied to EFBP in
[11]. Their result converged to a set of CE, and the result-
ing attendance at the bar was 60±5.11. They also proposed
a market-based mechanism to achieve fair and optimal so-
lutions for EFBP that bills the bar attendees.

Learning of a periodic policy was introduced in [23] in
which agents alternate a set of unfair NE. In their prob-
lem domains, it was assumed that agents have access to the
performance of other agents. Subsequently, agents act under
“homo-egualis”principle, thus social welfare is embedded in-
side the agents’ objective function. For instance, an agent is
evaluated not only by its individual performance, but also by
the score of the poorest performing agent in the population.

Another common method is to install a centralized control
to force a set of agents to take certain actions that are dic-
tated by the administration as opposed to their own choice
of actions. Although a completely centralized approach is
avoided due to practical reasons, a mixed model of selfish
agents and centrally managed agents is commonly used in
practice. Virtual Private Network (VPN) is such an exam-
ple in which intermediate nodes are centrally managed while
private users still make independent decisions [15].

The work that is probably the closest to our approach
is the Stackelberg strategy [21] in which a set of (market)
leaders make moves first, inducing desired responding ac-
tions from the followers.

This approach, however, requires leaders to always sac-
rifice their own payoffs because followers will still choose
selfish actions regardless of what moves leaders make. For
instance, a Stackelberg strategy performs poorly if a leader
adopts a proportional strategy such that it shares the burden
only proportionally in the hope that the followers will also
share the remaining burden. Thus, a Stackelberg strategy
always exploits the centrally controlled set of agents since
the followers are not obligated nor motivated to choose al-
truistic actions.

The hierarchical agent structure of AFGA is similar to the
one in Stackelberg games. Regardless of the similarity in its
agent structure, our approach is different from the Stackel-
berg strategy in several major points. First, all agents in
the AFGA model make decisions at the same time, in con-
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trast to general settings of Stackelberg games. Second, an
AFGA leader shares information with its voters a priori as
opposed to showing its action choice. Third, AFGA agents
self-organize themselves in such a way altruistic actions can
be fairly distributed.

8. CONCLUSIONS
This paper makes three contributions. First, we proposed

two essential quantitative criteria for MAL: price of anarchy
and price of monarchy. Whereas the original definition of the
price of anarchy interpreted the quality loss as a coordina-
tion cost, we defined a separate measure for the coordination
cost to provide an eloquent means for the trade off analysis
in MARS.

The second contribution is the introduction of a new learn-
ing algorithm, A Few Good Agents (AFGA), that utilizes so-
cial learning to reduce the price of anarchy while bounding
the price of monarchy. Furthermore, the AFGA algorithm
presents a supplementary benefit of maximizing the overall
learning utility of MAS through the use of social learning
among agents.

Lastly, we demonstrated the usefulness of the AFGA ap-
proach in the El Farol bar problem, a special case of MARS
with a single resource, and provided a performance anal-
ysis in terms of the two quantitative criteria. The results
demonstrate that self-interested, rational agents using the
AFGA approach learn to reduce the price of anarchy by
paying only a small price of monarchy in EFBP. In other
words, the AFGA approach avoids both rationality paradox
and selfish equilibria. The results also demonstrate that the
performance of the proposed algorithm is stable under two
types of uncertainty: incomplete observation and dynamic
population.

We conclude this paper with a brief note on our future
direction on this work. Although the experiment was con-
ducted in a single resource problem, the algorithm was de-
signed for a general class of a MARS problem. Thus, future
experiments will be conducted on other general MARS prob-
lems.

We also briefly discussed the boosting effect of AFGA with
respect to the learning utility of MAS. Our future work in-
cludes the definition of a third criterion that quantifies the
learning utility of MAS.
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