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ABSTRACT
The hierarchical structure of real-world problems has moti-
vated extensive research into temporal abstractions for re-
inforcement learning, but precisely how these abstractions
allow agents to improve their learning performance is not
well understood. This paper investigates the connection
between temporal abstraction and an agent’s exploration
policy, which determines how the agent’s performance im-
proves over time. Experimental results with standard meth-
ods for incorporating temporal abstractions show that these
methods benefit learning only in limited contexts. The pri-
mary contribution of this paper is a clearer understanding
of how hierarchical decompositions interact with reinforce-
ment learning algorithms, with important consequences for
the manual design or automatic discovery of action hierar-
chies.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial

Intelligence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
reinforcement learning, temporal abstraction

1. INTRODUCTION
The concept of hierarchy has strong intuitive appeal to

artificial intelligence researchers. Humans cope with the ex-
traordinary complexity of the real world in part by thinking
hierarchically, and we would like to imbue our autonomous
agents with the same faculty. In the reinforcement learn-
ing (RL) community, this idea has taken shape in work on
temporal abstraction, in which abstract actions represent se-
quences of lower-level actions [1]. Early work demonstrated
the potential of handcrafted temporal abstractions for im-
proving the performance of RL agents in particular prob-
lems, but it raised the question of how to discover this hi-
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erarchical structure automatically [1]. This open question
remains at the forefront of research into hierarchical RL.
In this paper, we argue that efforts to enable agents to dis-
cover hierarchy automatically have been frustrated by a lack
of clear understanding of how precisely temporal abstraction
impacts learning performance.

One reflection of this uncertainty is the variety in moti-
vations for applying temporal abstraction in RL. For exam-
ple, the idea behind the popular options framework [14] is
“to permit one to add temporally extended activities to the
repertoire of choices available to an RL agent, while at the
same time not precluding planning and learning at the finer
grain of the core MDP. The emphasis is therefore on aug-
mentation rather than simplification of the core MDP” [1].
In contrast, other researchers created temporal abstractions
to constrain the choices available to an RL agent: “There are
many reasons to introduce hierarchical reinforcement learn-
ing, but perhaps the most important reason is to create op-
portunities for state abstraction,” so that “individual MDPs
within the hierarchy can ignore large parts of the state space”
[3]. We can’t effectively design algorithms to discover tem-
poral abstractions without knowing whether we’re trying to
augment or to abstract the learning problem!

The discovery algorithms proposed so far attempt to cap-
ture intuitions about what constitutes a useful abstract ac-
tion. Most of these algorithms look for subgoal states and
then define abstract actions that attempt to reach the dis-
covered subgoals [7, 8, 10]. In principle, the creation of
a subgoal decomposes the learning problem into at least
two smaller problems: learning to attain the subgoal and
learning optimal behavior from a subgoal state. In practice,
prior work has not made clear how these approaches improve
learning performance.

In this paper, we investigate and clarify the conditions un-
der which temporal abstractions improve the performance
of RL agents. Our experiments reveal that the conventional
approach to formalizing and deploying abstract actions con-
flates the benefits of temporal abstraction with the benefits
of other techniques. We suggest new directions for the study
of temporal abstraction in general and hierarchy discovery
in particular.

2. BACKGROUND
An RL agent assumes that its environment is a Markov

decision process (MDP) [9]. An MDP M = 〈S, A, T, R〉
comprises a finite set of states S, a finite set of actions A,
a transition function T : S × A × S → [0, 1], and a reward
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function R : S × A → R. Given that the agent is in state
s ∈ S and executes action a ∈ A, it receives an expected
immediate reward R(s, a) and transitions to successor state
s′ ∈ S with probability T (s, a, s′).

The goal of an RL agent is to learn a policy π : S → A

that maximizes its expected cumulative reward [13]. To this
end, the agent estimates the optimal value function, which
satisfies the Bellman equations for each state s ∈ S:

Q(s, a) = R(s, a) + γ
X

s′

T (s, a, s
′)V (s′) (1)

V (s) = max
a

Q(s, a), (2)

where γ ∈ [0, 1] is a discount factor that weights the value of
future rewards. Intuitively, V (s) is the expected cumulative
reward given optimal behavior from state s; Q(s, a) is the
expected cumulative reward given the execution of action a

in state s and optimal behavior thereafter. An agent can
define an optimal policy from the optimal value function
simply by choosing π such that Q(s, π(s)) = V (s) for all
s ∈ S.

An agent could compute the optimal value function di-
rectly if it knew the parameters of the MDP, but in the
RL setting only the state space S and action space A are
known a priori. Instead, the agent must estimate Q using
data sampled from its environment. The seminal Q-learning
algorithm [15] applies a simple update rule after a time step
t in which the agent executed action at in state st and ob-
served an immediate reward rt+1 and a transition to state
st+1:

Q(st, at)
αt← rt+1 + γV (st+1), (3)

where α ∈ [0, 1] is the learning rate and the notation x
α
← y

denotes the assignment to x of the value (1 − α)x + αy, so
that x is a stochastic approximation of the random variable
sampled by y. Q-learning converges in the limit to the opti-
mal value function, if the agent tries each state-action pair
infinitely often and if αt converges to 0 at a suitable rate.1

A common exploration policy is the ε-greedy policy, which
selects a random action with probability ε and otherwise
chooses an action that maximizes Q(s, ·).

2.1 Options
Q-learning remains the most popular RL algorithm due

in large part to its simplicity and its theoretical conver-
gence guarantees, but in practice it converges too slowly for
most real-world autonomous agents. Research into hierar-
chical RL attempts to speed up learning by allowing agents
to learn tasks by reasoning in terms of high-level abstract
actions, which are in turn defined as the solutions to sub-
tasks. In this paper, we adopt the options framework [14]
for temporal abstraction, to remain consistent with the vast
majority of prior work. An option o = 〈Io, πo, βo〉 comprises
an initiation set Io ⊆ S, an option policy πo : S → A, and
a termination function βo : S → [0, 1]. The initiation set
Io specifies the set of states in which the option is avail-
able as an (abstract) action. The option policy πo specifies
the primitive actions the option selects during its execution.
The termination function βo gives the probability βo(s) that
option o will terminate upon transitioning into state s.

Options have become the most popular formulism for tem-
poral abstraction in part due to their simplicity. An agent

1
P

∞

i=t
αi =∞ and

P

∞

i=t
α2

i = 0

may simply treat an option as an action that may take
more than one time step to execute. The addition of op-
tions transforms an MDP into a semi-Markov decision pro-
cess (SMDP), in which the transition function specifies, for
each state-action pair, a joint probability distribution over
successor states and durations of execution [14]. RL algo-
rithms designed for standard MDPs typically have trivial
extensions to the SMDP case, so options are easy to deploy.
For example, SMDP Q-learning simply revises the update
rule in Equation 3 by appropriately discounting the value of
the successor state and by replacing the immediate reward
with the discounted reward accumulated during the option’s
execution:

Q(st, ot)
αt←

 

k
X

i=1

γ
i−1

rt+i

!

+ γ
k
V (st+k), (4)

where ot is the potentially abstract action executed, k is the
duration of the action’s execution, and st+k is the successor
state, in which the action terminated. However, only making
one update to the value function each time an action termi-
nates is too inefficient in practice. Most implementations of
SMDP Q-learning use techniques such as intra-option learn-
ing [14] to generate additional updates to the value function.

3. LEARNING OPTION POLICIES
A thesis of this paper is that the options framework’s sim-

plicity and convenience belie subtleties in how precisely op-
tions improve agents’ learning performance. One important
subtlety arises from the formal definition of an option not
as a subtask in a learning problem but as a solution to a
subtask. For an illustration of how this distinction has im-
pacted research in hierarchical RL, we consider the work on
option discovery.

3.1 Option Discovery
Most existing algorithms for discovering temporal abstrac-

tions fit the same overall pattern. They identify certain
states as subgoals, whether by finding states that frequently
occur in successful episodes [8], that correlate with finding
novel states [10], or that connect clusters of a state transition
graph [7]. The agents then define options that transition
to these subgoal states, obtaining the option policy using
Experience Replay [6], a technique originally developed to
speed the convergence of Q-learning. This technique works
by simply applying the appropriate update rule (Equation 3
or 4) in batch fashion to saved trajectories of experience, so
that each piece of data is used for more than one update.
Given a newly discovered subgoal state, an agent can create
an option by first defining an RL subproblem in which this
state has high value. The agent then uses Experience Re-
play to propagate this value back through the option’s state
space, obtaining a local value function and the option policy.
SMDP Q-learning [14] with the resulting options, discovered
online, is then shown to improve upon standard Q-learning.

Although previous work demonstrated algorithms that out-
perform basic Q-learning, it offered at best an incomplete
picture of the benefits of temporal abstraction. Given the
procedure followed by most of the existing work on option
discovery, one important question concerns the relative con-
tributions of Experience Replay and of temporal abstrac-
tion to the performance improvements. In particular, could
Experience Replay alone provide the same benefit as using
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options whose policies are learned using Experience Replay?
McGovern and Barto briefly addressed this issue in their

work on option discovery [8]. In their experiments, they
included a condition that used Experience Replay without
options, but they limited Experience Replay to the same
number of value updates as they used to learn their option
policies. If Experience Replay was thus applied to the entire
learning problem, it performed worse that using the same
number of backups to learn option policies. However, simply
limiting Experience Replay to the states in the proposed
option’s initiation set provided the same benefit as learning
the option policy, without actually creating an option.

This latter result alone should cast doubt over the contri-
bution of temporal abstraction in this particular scenario,
since the benefit seems to arise simply from focusing the
efforts of Experience Replay to states near the discovered
“subgoal” state. We argue that the problem is even deeper,
since using subgoals to focus Experience Replay in this man-
ner only makes sense if we assume that enough computation
time exists to perform Experience Replay but not enough to
apply it more globally. Most evaluations of RL performance,
including those in the literature on option discovery, mea-
sure reward earned as a function of the amount of data used,
not the amount of computation time. Nevertheless, recent
work in temporal abstraction discovery continues to appeal
to the unproven intuition that subgoal discovery helps to
decompose learning tasks into simpler subtasks.

To clarify the interaction between Experience Replay and
options, we conduct our own experiments with these two
techniques in Section 3.4. First, we introduce in Section 3.2
the learning algorithm we use throughout this paper, and
in Section 3.3 we describe the environment in which our
experimental agents learn.

3.2 An SMDP Learning Algorithm
The experiments in this paper use the learning algorithm

shown in Algorithm 1, adapted from Singh, Barto, and Chen-
tanez [11]. The notation O(s) denotes the set of options
that include s among their initation sets: O(s) = {o ∈
O | s ∈ Io}, and δx

s is 1 if s = x and 0 otherwise. This
algorithm augments Q-learning with a mechanism reminis-
cent of Dyna [13] to update the value function for options
using learned models of those options. By learning models,
the agent can predict the state to which each option will
transition, as well as the expected rewards that will accrue
during the execution of the option [14].

In each experiment, ε-greedy action selection was used
with ε = 0.1. The random action is selected from the avail-
able set of both primitive actions and options. The other
parameters used were α = 0.3 and γ = 0.9. Unless other-
wise specified, the value function was initialized to 0.0.

Following Sutton, Precup, and Singh [14], we also allow
the agent to interrupt the execution of an option if it enters a
state where another action has higher value than the option
being executed (see Line 25).

3.3 The Four-Room Gridworld
For consistency with prior work, we conduct our experi-

ments in the simple four-room gridworld employed by Sut-
ton, Precup, and Singh [14], shown in Figure 1. Each cell in
the grid represents a state that the agent may occupy. From
each cell, the agent can take one of four primitive actions:
left, right, up, or down. Each primitive action is stochastic,

Algorithm 1

1: loop

2: Current state st, current primitive action at

3: Current option (or primitive action) ot

4: Obtain reward rt+1 and observe next state st+1

5:
6: // Update option models
7: for all options o ∈ O do

8: if at = πo(st) then

9: for all x ∈ S do

10: T (st, o, x)
α
← (1 − βo(st+1))γT (st+1, o, x) +

βo(st+1)δ
x
st+1

11: end for

12: R(st, o)
α
← rt + γ(1− βo(st+1))R(st+1, o)

13: end if

14: end for

15:
16: // Update value of primitive action

17: Q(st, at)
α
← rt + γV (st+1)

18:
19: // Update values of options
20: for all options o ∈ O(st) do

21: Q(st, o)
α
← R(st, o) + γ

P

x∈S
T (st, o, x)V (x)

22: end for

23:
24: // Choose option (or primitive action)
25: if ot is primitive or V (st+1) > Q(st+1, ot) or with

probability βot(st+1) then

26: Choose ot+1 ∈ A ∪O(st+1) // ε-greedy
27: else

28: // Keep executing option ot

29: ot+1 ← ot

30: end if

31:
32: // Set next primitive action
33: if ot+1 ∈ O then

34: at+1 ← πot+1(st+1)
35: else

36: at+1 = ot+1

37: end if

38: end loop
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G

Figure 1: The four-room gridworld

taking the agent to the desired cell with probability 0.8 and
in a perpendicular direction with probability 0.2. For exam-
ple, when selecting the up action, the agent would move up
80% of the time, left 10% of the time and right 10% of the
time. If the effect of the movement would place the agent in
a wall, then the agent remains in its current cell. The agent
starts each episode at a random location in the upper left
room and the goal is a state near the lower right corner of
the grid-world. The immediate reward is 0 at each state in
the world, except at the goal, where the reward is 1.

This environment is clearly quite simple, and it was used
in prior work presumably due to its suitability for learn-
ing with temporal abstraction. In particular, the doorway
states are intuitive subgoals for an agent that must navigate
this world. Nevertheless, we shall see in the experiments in
this paper that even in this simple domain, the utility of
temporal abstraction depends on numerous factors.

3.4 Options and Experience Replay
In this section we conduct experiments that reproduce the

conditions used in recent work on option discovery. In par-
ticular, we compare standard Q-learning against an agent
that, in the middle of learning, introduces options with poli-
cies obtained using Experience Replay. However, we also
compare against an agent that simply applies Experience
Replay without creating options, at the same point in the
learning process.

Both agents that use Experience Replay save each expe-
rience 〈st, at, rt+1, st+1〉 at each time step. Instead of repli-
cating the various subgoal discovery algorithms in past re-
search, we give the option-learning agent the benefit of the
doubt, and allow it access to the correct subgoal states, cor-
responding to the doorways between rooms, after 20 episodes
of learning. Each subgoal thus defines an option that ter-
mintes only at that subgoal, has an initiation set that in-
cludes every other state, and whose policy is learned using
Experience Replay.

We compared this method to Q-learning using Experi-
ence Replay only. For this agent, saved experience is simply
played back in reverse order after 20 episodes to update the
value function. The agent was allowed the same number of
updates that were used to learn the four option policies, so
it replayed the complete set of experiences four times.

Figure 2 compares the learning performance of the three
agents. All three algorithms exhibit the same performance
until episode 20, since they all use only standard Q-learning
until then. The agent that defines options exhibits a marked
improvement over the agent that simply continues to use Q-
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Figure 2: Learning performance of three agents that

use standard Q-learning until episode 20, when one

agent defines options using Experience Replay and

another just uses Experience Replay to update its

value function. Each line shows the number of steps

required to reach the goal state, averaged over 50

independent runs.

learning, but the agent that just applies Experience Replay
exhibits the same improvement.

3.5 Dynamic Option Policies
Section 3.4 demonstrated that at least in one simple learn-

ing task, the benefits of introducing options defined using
Experience Replay were subsumed by simply using Expe-
rience Replay alone. Many of the experiments in previous
work intended to prove the effectiveness of various subgoal
discovery algorithms may in fact have proven only the effec-
tiveness of Experience Replay! This disconnect stems from
the fact that introducing an option into an agent’s action
space conflates the contributions of at least two procedures:
first, the identification of a subgoal that potentially decom-
poses the learning problem into subproblems, and second,
the solution of one of those subproblems. This observation
suggests that to isolate the benefit of using temporal ab-
straction, agents should be able to define subproblems with-
out immediately solving them. Intuitively, we would like an
agent to propose a subtask and then to learn how to perform
that subtask concurrently with learning how to perform the
overall task that may invoke the subtask.

To this end, we propose revising the option formalism
to define an abstract action as a subproblem instead of as
the solution to a subproblem. In the rest of this paper,
we will use the term subtask to refer to a “partial option”
o = 〈Io, Ao, Go, βo〉. A subtask o thus corresponds to the
following problem. From an initial state s ∈ Io, select ac-
tions from Ao in such a way as to maximize the expected
cumulative reward, given that a transition into state s′ ter-
minates the subtask with probability βo(s′) and generates a
“goal reward” of Go(s′). A solution to a subtask defines an
option, by specifying the option policy πo : S → Ao.

In general, an agent may learn the option policy by re-
cursively applying RL to learn in the subtask MDP Mo =
〈S, Ao, T o, Ro〉 where the state space S is inherited from the
original MDP and the transition and reward functions are
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determined by the set of child actions Ao. Note that in gen-
eral, the option may only be capable of visiting a subset
of S, corresponding to the states reachable from Io given
the set of child actions Ao and the termination function βo.
The subtask may thus be thought of as an agent in its own
right, attempting to learn only a part of the original prob-
lem. However, from the perspective of the agent that invokes
the subtask, it is just an action whose behavior may change
over time. This nonstationarity may complicate learning,
but it permits the concurrent learning of subtasks with the
overall task that must orchestrate those subtasks.

Figure 3 compares the performance of standard Q-learning
against an algorithm that learns the option policies in par-
allel with the value function for the entire task. The option
learner is given the four correct subtasks as prior knowl-
edge, and it applies four instances of Q-learning in parallel
with Algorithm 1 to learn the option policies. The results
show a substantial decrease in performance for the agent
that employs temporal abstraction, but perhaps surprisingly
this poor performance does not seem to be a result of the
evolving option policies. Instead, the agent exhibits some
pathological initial exploratory behavior, as investigated in
more detail in Section 4.1.

4. OPTIONS AND EXPLORATION
In this section, we will demonstrate than an important

way in which options impact the performance of an RL
agent is by affecting the agent’s exploration behavior. When
and where abstract actions become available can drastically
change the structure of a learning problem.

4.1 The Initiation Set
From the perspective of evaluating the utility of tempo-

ral abstractions, prior work has also neglected to address
the impact of when a discovered option becomes available
during learning and how broadly applicable it is. For exam-
ple, existing option discovery methods typically define the
initiation set heuristically as the set of states historically vis-
ited a few time steps before the identified subgoal state [8,
10]. These methods then add the newly created options to

the action space in the middle of learning the current task.
Evaluations of temporal abstractions in this context are con-
strained in at least two ways. First, temporal abstraction
is only applied when the value function is already partially
learned. Second, the initiation set is in general only a subset
of the possible states in which the option could reasonably
be defined. These constraints have practical ramifications in
situations when hierarchies are being learned in one task for
use in a related task (in a transfer learning setting). Perhaps
more importantly, they limit our theoretical understanding
of the utility of temporal abstractions in general.

For an illustration of how these issues can lead to prob-
lems, consider the behavior of the subtask-learning agent
whose performance is shown in Figure 3. It was given as
prior knowledge four subtasks, corresponding to navigat-
ing to each of the four doorways from anywhere else in the
environment. The addition of these four abstract actions
drastically changes the apparent structure of the environ-
ment. Since the value function is initialized to 0 and the
only nonzero reward occurs at the goal state, then the typi-
cal ε-greedy exploration policy will conduct a random walk
until finding the goal at least once. However, every time the
agent randomly selects one of the options, it will end up at
one of the doorways, at least five steps from the goal. The
agent cannot reach the goal until it randomly generates a
sequence of actions that doesn’t include any of the options
but that does reach the goal, which becomes exponentially
unlikely in the distance of the goal from the options’ subgoal
state.

To investigate this phenomenon, we compare four learning
agents in Figure 4. The “Q-learning” agent performs stan-
dard Q-learning, as usual. The “options” agent is given four
correct options at the very beginning of learning, including
the optimal option policy for each subtask. These subtasks
all include the entire state space (except for the one subgoal
of each subtask) in their initiation sets. The “delayed op-
tions” agent receives the same four options, but only after
the first 20 episodes of learning. Finally, the “limited op-
tions” agent receives options immediately, but the initiation
sets of these options do not include any state in the room
containing the goal state.

We see that the agent that has immediate access to the
optimal option policies in all states performs the worst, for
the reasons described above. The “delayed options” agent
avoids the pathological exploration behavior by not invoking
any options until it has a partially learned value function
that allows it to learn not to select the options in states with
higher value than the subgoal state. This agent performs
identically to the Q-learning agent until after episode 20, at
which point its performance rapidly improves to the optimal
policy. Of course, this agent forfeits any possible benefit that
temporal abstraction might provide in the initial stages of
learning.

The “limited options” agent essentially uses prior knowl-
edge to allow the options to execute only when navigating
to a doorway might be helpful. Eliminating the state in
the lower-right room from the initiation sets effectively pre-
vents the agent from allowing an “earlier” subtask to inter-
fere with completing the final steps of a solution. In a sense,
existing option-discovery algorithms already apply this idea
heuristically, by only adding to the initiation set the states
experienced just before the candidate subgoal state.

Note that both of the agents that improve over Q-learning
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Figure 4: Comparison of learning agents with vary-

ing access to correct temporal abstractions. The

Q-learning agent never uses options. The “options”

agent gains immediate access to the correct options

everywhere. The “delayed options” agent gains ac-

cess to these options after 20 episodes. The “limited

options” agent gains immediate access to these op-

tions except in the lower-right room. Each learning

curve is the average of 50 independent runs.

do so by artificially limiting the availability of the abstract
actions. This phenomenon is nonintuitive to the extent that
we can think of options as subroutines, which typically one
would design to be as general as possible.

4.2 Optimistic Initialization
The previous section illustrated the perhaps nonintuitive

possibility that introducing options might worsen learning
performance, even when the agent retains direct access to
all of the primitive actions. The reason is that the addi-
tion of such temporal abstractions changes the qualitative
structure of the learning problem. The random exploration
mechanisms employed in practice by most implementations
of RL suffice in environments where the actions exhibit some
degree of symmetry, so that random walks eventually reach
every region of the state space. Introducing abstract ac-
tions that only terminate at subgoals biases random walks
to states near those subgoals, since a single random selection
of an option can erase the effort of several primitive actions
that were carrying an agent away from the subgoal states.

One way to prevent options from interfering with the ex-
ploration behavior of an agent is to use an exploration mech-
anism that never relies on a random walk. A simple heuristic
often used to encourage exploratory actions is optimism in
the face of uncertainty, in which an agent assigns optimistic
values to unfamiliar state-action pairs. This idea underlies
the known finite-time convergence proofs for RL [2, 5, 12].

This heuristic can be applied to Q-learning simply by ini-
tializing the value function to some upper bound on the true
optimal value function. This optimistic initialization causes
most updates to the value function to decrease the value
of state-action pairs just executed, making the agent more
likely to select a different action the next time it revisits that
state. This technique would prevent an agent from indefi-
nitely returning to a subgoal state by driving the value of
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Figure 5: Performance of two learning agents that

use optimistic initialization. The agents have iden-
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the corresponding option below the optimistic initial values
of primitive actions that lead away from the subgoal.

Unfortunately, this technique also prevents the learning
algorithm from continuing to select options when they are
actually optimal! To converge to a stable optimal policy
that selects an option in a certain state, the learning algo-
rithm must first learn that every other primitive action (and
option) has a lesser (or equal) value. Of course, at least one
primitive action has the same value as the option: the action
that the option’s policy selects at that state.

Therefore, it’s not clear that augmenting the action space
of an agent with options can ever meaningfully impact learn-
ing performance. Regardless of the presence of options,
the agent must execute every suboptimal state-action pair
enough times to learn that they have smaller values than
the optimal state-action pairs.

To demonstate this phenomenon, we conduct an exper-
iment in which each agent uses optimistic initialization to
probably approximately converge to the optimal policy in
finite time. The first agent simply uses Q-learning, the sec-
ond is given correct subtasks and learns the option policies
dynamically, and the third is given optimal option policies
as prior knowledge. To underscore our point, the last agent
additionally receives as prior knowledge an option that nav-
igates to the goal state optimally. Therefore, one optimal
policy for this agent is simply always to select this option,
in every single state. Nevertheless, we see in Figure 5 that
all three agents exhibit the same learning performance.

4.3 Augmentation versus Abstraction
The preceding sections demonstrate that temporal ab-

stractions benefit RL in only limited situations. Allowing
the use of options in the wrong regions of the state space
at the wrong stages of learning can lead to pathologically
bad exploration. Much of the benefit when options do help
might be more easily obtained by applying Experience Re-
play. The use of optimistic initialization, the only means
for ensuring finite-time convergence to an optimal policy,
completely precludes options from impacting learning per-
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formance at all.
Hauskrecht et al. consider another possible application of

options: to abstract, rather than augment, the MDP [4].
Their work, in the context of planning given the MDP pa-
rameters, showed that planning with only an appropriate set
of options can dramatically reduce the computational effort
required to obtain an optimal policy. In contrast, they show
that planning with both options and primitive actions can
converge much more slowly than planning with primitive
actions alone, given an optimistic initialization of the value
function. These results do not translate directly to the RL
context, where the emphasis is on sample complexity in-
stead of computational complexity. For example, we have
already seen that learning with options in addition to prim-
itive actions does not hurt (or help) learning performance
given optimistic value-function initialization.

One obvious danger in using only options to learn a task is
the possibility that pruning away the primitive actions will
remove the agent’s ability to behave optimally. For example,
an agent in our four-room gridworld that only selects from
among the four subtasks that navigate to a doorway could
only generate an optimal policy if the goal state were in
one of the doorways. In the case of planning, analysis of the
MDP can determine the goal state and create an appropriate
option. For an RL agent, in the absence of prior knowledge
about the goal state, the primitive actions must be available,
at least in the vicinity of the goal. In our example domain,
the agent only needs access to the primitive actions in the
bottom-right room.

Figure 6 compares two agents that ignore primitive ac-
tions outside the bottom-right room against a standard Q-
learning agent. One of these two agents uses only options
until it reaches the last room, after which it uses both op-
tions and primitive actions (unless it leaves the room with-
out reaching the goal). The other agent only uses primitive
actions in the last room. We see that the agent that uses
options in the last room exhibits the same pathological ex-
ploration behavior as the “options” agent in Figure 4: trying
any of the options with an exploratory action takes the agent
at least five steps away from the goal.

The agent that only uses primitive actions in the last room
learns very quickly. Note that after executing any option, it
can be in only one of four states. After executing a primi-
tive action, it can be in only one of 24 states, since it only
executes these actions in the bottom-right room (or its two
doorways). As a result, this agent learns in a much smaller
state space than the 104-state space explored by the agents
that may always execute primitive actions.

This abstracted agent learns this simple task about as ef-
ficiently as the “limited options” agent in Figure 4. The
primary difference between the two agents is that the op-
tions produce a “soft” bias in the “limited options” agent
towards the subgoal states (except the in the bottom-right
room). The abstracted agent uses the options to enforce a
hard bias, so that it never needs to explore any actions in
any states outside of the doorway states and the last room.
A key theoretical benefit of this hard bias is that it allows
an abstracted agent to employ techniques such as optimistic
initialization without wiping out the benefit of temporal ab-
straction. Since the agent cannot explore from the states
that were abstracted away, it can avoid a needlessly thor-
ough exploration of every primitive action from every state.
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move primitive actions.

5. DISCUSSION
The benefit of employing temporal abstraction in RL de-

pends on a surprising number of factors. These factors in-
clude the precise learning algorithm used, when and where
the abstraction becomes available, and the availability of the
primitive actions or other abstract actions. When simply
augmenting an action space that includes primitive actions,
temporal abstractions cannot hurt the asymptotic perfor-
mance of an RL algorithm, but they are only likely to im-
prove learning speed by reducing the number of backups
to converge the value function. In algorithms that employ
the theoretically motivated principle of optimism in the face
of uncertainty, they cannot improve sample complexity; in
other algorithms they may actually impede learning.

One way to construe the introduction of options into an
agent’s action space is as the introduction of bias in its ran-
dom exploration. Random actions become much more likely
to bring the agent to one of the indicated subgoal states.
Introducing this bias too early in learning can prevent the
agent from reaching the goal, which is the necessary first step
in backing up positive values throughout the state space.
Only later in learning can the options benefit, by backing
value across multiple states at once and by biasing learn-
ing to important parts of the state space. Optimistic ini-
tialization, by removing much of the random element from
exploration, eliminates any bias, beneficial or otherwise. By
using options to replace primitive actions instead of to aug-
ment them, an agent can constrain exploration, including
the effects of optimistic initialization.

This result highlights the difficulty in discovering truly
useful options automatically. The agents described in Sec-
tion 4.3 benefited from options because these options pre-
vented them from ever thoroughly exploring three of the
four rooms in the domain. How could an agent in this en-
vironment discover this temporal abstraction without first
spending effort to explore those three rooms, thus negating
the possible benefit? One possible answer is that a useful
abstract action must somehow generalize from past expe-
rience. An agent that fully explores several empty rooms
may soon learn just to pass through empty rooms in the
future. By introducing an approriate abstract action, the
agent dynamically adapts its generalization. This idea sug-
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gests an important connection between temporal abstraction
and state abstraction or function approximation.

Another consequence of these results for algorithms that
discover hierarchy is that candidate abstract actions may not
always be evaluated in isolation. The benefit of adding one
action may depend on the agent’s ability to consequently
remove others. This behavior depends on the action hier-
archy as a whole, which determines the contexts in which
each action executes and the possible state-action pairs that
must be explored to learn each option’s policy.

An important direction for future research is to investigate
how temporal abstraction affects the computational com-
plexity of RL. The fact that Experience Replay can subsume
the benefits of using options in certain cases suggests that
reducing the number of value function updates is one way
in which options can help, but the work of Hauskrecht et al.
indicates that options can actually increase the amount of
computation required. More research is needed in the area of
model-based algorithms, which more explicitly separate the
gathering of data (exploration) from the computation of the
value function from that data [5]. In particular, given the
interaction between temporal abstraction and optimistic ini-
tialization, one open question is how to incorporate options
into algorithms that currently offer finite-time convergence
guarantees.

6. CONCLUSION
We investigated the utility of temporal abstraction using

the standard options framework. Even in a simple envi-
ronment designed to illustrate the effectiveness of options,
the augmentation of the action space with options can eas-
ily worsen learning performance by leading to pathological
exploration behavior. Using common heuristics that elimi-
nate this pathological behavior also eliminates any potential
benefit of using options. Finally, since an option is formally
defined as the solution to a subtask, the benefit of using
options is easily conflated with the benefit of the technique
used to obtain the option policy. Nevertheless, temporal ab-
straction can help learning performance by biasing or con-
straining exploration. Future work in discovering options
should be aware of how an individual abstract action inter-
acts with other actions to shape these biases or constraints.
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