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ABSTRACT
Effective teamwork in highly dynamic environments requires
a delicate balance between giving agents the autonomy to
act and react on their own and restricting that autonomy
so that the agents do not work at cross purposes. In this
article we describe the problems involved in coordinating
behavior based upon a highly dynamic object, a soccer ball,
for agents with sensing and communications limitations. We
then present a system for coping with these problems and ex-
amine its success in light of its performance at the RoboCup
2007 championship.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics—performance mea-
sures

General Terms
Algorithms, Design, Performance

Keywords
RoboCup, cooperation, localization

1. INTRODUCTION
Soccer presents a challenging environment for multi-agent

systems. Agents must cooperate to defeat a group of op-
posing agents. The soccer ball’s movement is highly unpre-
dictable: it is constantly being propelled by different players;
it is affected by spin and uneven surfaces; and occasionally
it “teleports” when moved by referees. Control of the ball is
crucial to success in soccer, so it is of paramount importance
for the agents on a team to share information and coordi-
nate their roles. At the same time, however, agents must
also have the freedom to react quickly without waiting to
hear from their teammates.

In soccer teams try and maximize their possession of the
ball. It follows that in order to gain possession, it is strate-
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gically important for an agent to get to the ball as quickly
as possible [3]. We define chase time as the estimated time
it will take a robot to get to the soccer ball. Minimizing
chase time is our goal, and can be achieved in a variety of
ways. Most obviously, a robot’s walk speed can be opti-
mized. However, In the Standard Platform League, where
teams use equivalent hardware, machine learning has been
applied successfully to this problem to the point where most
of the top teams move at virtually identical speeds. To win
at robot soccer, our team has two core beliefs: one, that ev-
ery agent must have current, accurate knowledge of where
the soccer ball is on the field at all times; and two, that only
one agent approach the ball at any given time.

We begin this article with a discussion of RoboCup and
the Standard Platform League. Second, we discuss our use
of a hybrid ball model. Next, we present our coordination
system, developed for use by the Northern Bites in the Stan-
dard Platform league. Finally, we finish with results from
competition.

2. THE ROBOCUP DOMAIN
The system we describe is a vital component for a com-

petitor in the RoboCup Standard Platform League (formerly
the Four-Legged League). The robot platform is the Sony
Aibo. Although an inexpensive and fairly robust robot, the
Aibo presents major sensing challenges.

For example, accurate distance estimation is difficult due
to the robots’ low resolution CMOS cameras (208x160 pix-
els). With narrow viewing angles (57 degree horizontal, 45
degree vertical), the robots must spend a significant amount
of their time searching for the ball (especially when the ball
is close to the robot). There are also significant blurring
issues with the low shutter speed of the Aibo’s camera, as
well as a documented chromatic distortion problem [2].

As with vision, accurately modeling odometry is not an
easy feat. For example, there is no standard carpet surface
within the Standard Platform League, and thus odometry
varies from location to location. Further, during matches,
robots frequently push one another, thereby shifting their
positions. Odometry in our domain is challenging, but com-
plements vision as the second, necessary half of the problem.
Despite these sensing challenges with the game and the plat-
form, accurate self-localization is possible using standard
techniques such as Monte Carlo methods or Kalman Fil-
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ters [3, 5, 7]. Nonetheless, crucial localization errors impact
games on a regular basis.

The other major hurdle facing coordination behavior in
the RoboCup domain is poor communication. The compe-
tition environments are well known for being high in packet
loss and packet lag time [6]. Packet delays on the order of
seconds (and occasionally minutes) are not unusual due to
the amount of wireless interference at competition venues.
Communication systems must be specifically designed to
withstand less-than-ideal conditions (and not just in the
lab). These conditions necessarily impact the sort of dy-
namic role switching inherent in soccer.

3. SHARING BALL INFORMATION
The ball localization problem requires a solution that com-

bines local and global data. Most teams in our league have
agreed on the necessity of sharing information between agents,
but have differed in approaches. One approach is to main-
tain two completely different ball models, based on particle
filters, and switch between the two depending on the quality
of local data [5]. Others consider teammate information for
merging and pruning after arriving at their own ball esti-
mates [7]. Our approach is similar to other teams that use
teammate information as input to the ball filter, but only in
the absence of more reliable local information [3].

Reliable ball estimates start with reliable self-localization
estimates. Our system is an implementation of an Extended
Kalman Filter [1], or EKF, which is popular in the Standard
Platform League [3, 7, 4].

Communication is the next component of our localization
system. In our implementation, we use a broadcast UDP
framework. Each agent broadcasts information at about six
packets a second out to its fellow agents (at competition,
only 3-4 may be received due to packet-loss). The broad-
cast rate was deduced through experimentation: sending
more packets worsened our overall packet-loss, while sending
fewer made our response to teammates unacceptably slow.
Further, to keep our communication as fast and robust as
possible, we keep overhead extremely low.

Sensing error and communication lag must play an im-
portant role in the architecture of a system that coopera-
tively tracks a moving object across multiple agents. High
sensing error relayed from other agents can potentially ruin
accurate locally-derived data. Alternately, if the environ-
ment operates at a faster pace than the communications
network, then individual agents cannot depend on shared
information being up-to-date. Unfortunately, both of these
problems exist in our competition environment. In our lab,
with a highly tuned vision calibration and a low latency,
low packet-loss wireless network, our robots reliably perform
very well. At competition, however, new fields and lighting
conditions (bad for odometry and vision, respectively) can
often greatly reduce the accuracy of localization. Typical
competition setup also involves severe WLAN interference
problems. Therefore, our system necessarily needs to move
away from a full sharing model.

In our system, each agent will either ignore or integrate
shared ball data depending on the quality of its locally de-
rived data. In robot soccer terms, this translates to: ‘If I
see the ball, I’ll ignore my teammates’ and ‘If I haven’t seen
the ball recently, I’ll listen to my teammates.’ The primary
qualifier for deciding when to use information reported by
fellow agents is a buffered time threshold of three frames, to

handle the frequent case when an agent loses the ball only
momentarily (typically due to ball being occluded). Another
qualifier is the uncertainty of information relayed by other
agents; again in soccer terms: ‘If I haven’t seen a ball re-
cently, and my teammate has, only trust my teammate if
it is confident.’ This ball uncertainty is calculated by the
EKF and shared in every packet. If shared information is
used, it is fed into the localization system as if it were locally
generated.

It is important to note here that the information is being
broadcast by each agent regardless of whether a particular
agent decides to use it. Also, note that this approach de-
pends heavily on the quality of each agent’s sensors; if an
agent’s sensors are reporting falsely, its fellow agents’ infor-
mation will not help. This trade-off we believe is necessary
due to the fast-paced game and unreliable communications.

The system we describe results in a group of n agents with
n distinct ideas of the ball at any given time t. The goal in
terms of implementation is to make these estimates, while
distinct, as consistently accurate as possible. Our system
works like this: if at t all n agents see the ball, then none use
shared information, but if none of the n agents see the ball,
then ball estimates are unaffected and no shared information
is used. In the majority of situations, this system provides a
strong cycle of information: agents who see the ball improve
the ball knowledge of those agents that do not see the ball.

4. ROBUST COORDINATION
The hybrid ball model creates a system where each robot

has an independent notion of the ball’s location. Any coop-
erative behavior in this environment needs to work despite
disagreements among team members about crucial factors
such as who is closest to the ball. The discussed com-
munication issues and the speed of the game serve to fur-
ther limit the sorts of decision-making processes available
for dynamically-assigning specific roles to enable a team to
function smoothly. Following other teams, we believe it is
not reasonable to implement a negotiation strategy or to
have one robot make decisions unilaterally [5, 3]. The time
required to assign roles and the need for quick responses
trumps any possible advantages of a centralized approach.

With our primary goal of minimizing chase time to the
ball, waiting even half a second for orders can impact pos-
session. To be maximally effective, a robot cannot wait
for a reply from a teammate on whether the robot should
chase a ball coming toward it. Each agent must be able to
switch its role independently as necessary, while using the
best information about its teammates’ whereabouts. With
these issues in mind our system is based upon several prin-
ciples. First, we want it to work well even in the face of
poor communication. Second, it must be highly responsive
to cope with the dynamic environment of soccer. Finally,
even though individual agents must be able to switch roles
on the fly without confirmation from their teammates, it is
mandatory that agents keep their mutual interference to a
minimum.

Our general soccer strategy is for one, and only one, robot
to chase the ball at any given time (and that any robot, save
the goalie, can become chaser). Our cooperative system
is comprised of four roles: chaser, attacker, defender, and
goalie. Chase time is calculated using odometry and assumes
no delays (obstruction, losing the ball, etc). Each agent in-
dependently calculates its own chase time every frame and
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compares it to the last reported chase time of all other
agents. The agent with the lowest chase time should be
the chaser and therefore maximize the chances of our team
gaining possession. To reflect our overall aims of scoring a
goal, we reduce the assumed chase time in special circum-
stances – such as an agent lined up behind the ball going
towards the opponent’s goal. Lowering the chase time im-
proves the likelihood that an agent not closest to the ball,
but still in the best position to score, will become chaser.

A team of mobile agents should be able to independently
make decisions and have their overall decision be consistent.
For example, in a situation where the ball is 50 cm from
one agent, 150 cm from another, and 300 cm from a third,
choosing who chases the ball may be easy. However, when
three robots are roughly equidistant to the ball, the deci-
sion making process becomes more difficult. Information lag
and system noise incurred from sensor data may cause the
agents’ divergent world models to bring about different con-
clusions as to which robot has the shortest chase time. To
combat this error while maintaining our non-negotiated sys-
tem, we use a tiebreaker, which draws its inspiration from
real sports, where certain players “call off” others (i.e. a
goalie can call off a defender). For our system we use player
numbers (each robot has a unique number 1-4), such that in
a tie-break situation the higher player number can call off a
lower player number.

If Robot A believes it might be the fastest to the ball (it
is within a small threshold ε of the minimum chase time for
all the robots), it will start pursuing and calling the ball
(“I got it!”). Robot A will continue to chase the ball until
a higher ranked robot calls it off, and/or any lower ranked
robots receiving Robot A’s call discontinue chasing. Thus
Robot A is committed to chasing the ball. It cannot stop
chasing and calling the ball until its chase time is outside a
larger threshold δ (that is δ > ε). This prevents hysteresis,
where robots oscillate back and forth between roles due to
small changes in the data. There is a third important thresh-
old, λ, which ensures that a robot should stop listening to
a higher ranked teammate if its chase time is less than that
teammate’s chase time by the value of λ. This ensures that
when there is a discrepancy between local information and
communicated information the robot relies on its local in-
formation. When things rapidly change on the field, a robot
must not wait for a message from the current chaser with
higher rank before it acts. In summary Robot A will chase
the ball if:

1. chasetime(A) − min(chasetime(A, B)) < ε and no
higher robot is calling off A, or

2. chasetime(A)−min(chasetime(A, B)) < δ and it was
already chasing and no higher robot is calling off A, or

3. chasetime(A) < chasetime(B) − λ where the Robot
B is the higher ranked robot calling off A

Each threshold controls a feature of the robots’ coopera-
tion. Increasing ε makes it more likely that a robot who is
farther from the ball will ultimately end up being chaser, but
makes it less likely that no robot will be chaser. δ controls
how willing robots are to switch roles. Increasing the δ value
decreases how often the robots will switch roles, which can
leave the wrong robot chasing the ball, but protects against
robots oscillating back and forth about who should chase.

λ controls how much a robot should rely on local informa-
tion. Increasing λ makes it less likely two robots will chase
the ball, but slows down reactions to a ball suddenly being
closer to a non-chaser robot.

After deciding on which robot should become the chaser,
the remaining field players must decide which robot is to
become the defender and which should become the support-
ing attacker. The decision making process for this issue is
the same as in determining the chaser, only the determining
metric is distance to own goal instead of chase time. We
structure the tie-breaking thresholds about defense to en-
sure there is always a defender when communicated data
deteriorates.

To summarize, our goal was to build a robust system for
dynamic role selection to work within a domain, where all of
the agents have theoretically equivalent skills and thus can
take on any role at any given time. We have taken specific
steps to combat three major problems inherent in dynamic
role switching with a decentralized decision making process.
These problems are:

1. hysteresis - where robots switch roles back and forth
in a cycle

2. deadlock - where robots apparently have equal claim
on an important role, and

3. information lag - where information about other robots
lags behind what a robot can directly sense.

Probably the most crucial element of our solution is the
idea of error buffering. For example, when a robot deter-
mines if it should be the chaser it does not use a strict
threshold algorithm, but thresholds based on the fact that
error is built into the system. The error being buffered can
also be temporal as a robot waits for updates from its team-
mates. It might seem as if all of these hedges could easily
lead to poor behavior such as swarming, but what typically
happens in a real game is that the robots move into an ini-
tial formation and the formation itself (on the basis of the
relative spacing between robots) ensures that most decisions
can be made cleanly. The only breakdowns of our team play
in competition have occurred in the case of a catastrophic
loss of communication. During such times coordinated team
play is nearly impossible unless every agent can localize its
teammates independently (something no team in our league
can do). In our system agents continually monitor how long
it has been since they have received any information from
their teammates. If a robot determines that it is no longer
communicating with teammates default behaviors are per-
formed. Such default behaviors cannot be robot specific,
(e.g. player 1 is the chaser) since some robots may not be
functioning. For this reason our default behaviors amount
to taking a defensive position unless the ball comes within
a fixed range.

5. RESULTS
RoboCup provides some obvious metrics to measure the

total quality of the team: wins, losses, goals scored, and
goals against. However, there are many factors beyond the
team play described in this article that impact whether or
not goals are scored. For instance the robots’ walk speed,
ability to effectively kick, effectiveness of goal keeping, etc.
In addition there are wide variations in quality among RoboCup
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Table 1: Analysis of how often our team got to the
ball first on different out-of-bounds situations. The
first number in each column is how many times our
team got to the ball first, the second number is the
total number of times the ball went out of bounds.

Opponent Sideline Endline Total
Team A 18 / 30 11 / 15 29 / 45
Team B 17 / 27 7 / 8 24 / 35
Team C 18 / 31 14 / 16 32 / 47
Totals 53 / 88 32 / 39 85 / 127

teams. Teams that are brand new to the league, for ex-
ample, cannot be expected to provide strong competition.
With those things in mind we have created several statistics
to help judge the effectiveness of our coordination strategy.

We have identified two key types of events relevant to
the notion of ball control that can be easily extracted by
watching tapes of the competition. The first is a side effect
of the rules. When the ball is knocked out of bounds in
RoboCup it is replaced on the field according to which team
knocked it out and whether it was knocked out over a sideline
or an endline. It is clearly an advantage to be the first team
to the ball after it is replaced. Since at the highest levels of
competition there is not much difference in robot speed, the
likelihood of getting to the ball first is dependent mainly on
positioning – which comes as a direct result of coordinated
team play. In order to avoid skewing our results we have
limited our analysis to games in the final three rounds of
the tournament where only the top competitors remained.
The results are summarized in Table 1. Overall we got to
the ball first more than twice as often as our opponents when
the ball was replaced after going out-of-bounds. When the
out-of-bounds occurred over an endline this shot up to a
ratio better than four to one.

Another quality metric is based upon style of play in
RoboCup. The top teams in RoboCup generally advance
the ball by first having a robot trap the ball under its chin
and then, when control has been gained, kicking it down
the field. If our goal is to get to the ball more quickly, it
stands to reason that more successful teams will attempt
more traps. We have analyzed how often each team at-
tempted to trap (and how often the traps were successful).
Since robot speeds are relatively equal, this is another case
where positioning should be the deciding factor. Once again
we will limit our results to matches played from the quar-
terfinals on. The results are summarized in Table 2. The
results show that our team attempted traps more than twice
as often as our opponents. We also trapped successfully at
a similar ratio to our opponents. The successful trap ra-
tion reflects the fact that many of the basic soccer skills in
RoboCup are close to being optimized for the top teams.

We attribute our team’s ability to get to the ball faster
than our opponents as being the primary factor enabling us
to win the RoboCup championship.

6. CONCLUDING REMARKS
It might seem like many of the problems outlined in this

article will evaporate as robot sensing and communication
improves. Experience in robotics has shown that this is not
the case, that improvements in sensing and communications
either simply move the problem down to a finer level of de-

Table 2: Number of traps attempted, and successes,
by our team and our opponents by game. The first
two columns represent the figures for our team, the
next two columns for our opponents.

Opponent Attempts Success Attempts Success
Team A 93 67 49 32
Team B 123 71 39 19
Team C 100 67 57 45
Total 316 205 145 96

tail, or lead to increasingly difficult problems being tackled
where the relative limitations go right back into effect. Fur-
ther, it is a fundamental property of the real world that
things break down at least occasionally. The system pre-
sented here works to balance an agent’s ability to act au-
tonomously against its need to work with its teammates. It
also strives to balance performance in optimal laboratory
conditions against the ability to handle more adverse real-
world conditions.
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