
Model-Checking Agent Refinement

Lăcrămioara Aştefănoaei
astefano@cwi.nl

Frank S. de Boer
F.S.de.Boer@cwi.nl

CWI, Amsterdam, The Netherlands

ABSTRACT
We present a proof-technique for reducing the nondetermin-
ism of abstract agent specifications in a BDI framework by
means of refinement. We implement the operational seman-
tics of agent specifications in rewrite systems such that we
can automatically check if refinement between (fair) execu-
tions of agents holds.

Categories and Subject Descriptors: I.6.5 Model De-
velopment: Modeling methodologies

General Terms: Languages, Theory, Verification.

Keywords: BDI, Non-determinism, Refinement, Rewrit-
ing, Simulation.

1. INTRODUCTION
In this paper we focus on refinement as reducing the

nondeterminism of high-level agent specification languages.
Such specifications are inspired by UNITY [5], a classical de-
sign methodology which emphasizes the principles:

• “specify little in early stages of design” and

• “program design at early stages should not be based on
considerations of control flow”.

We place ourselves in the framework of BDI models [4].
As already a standard notion, an agent is defined in terms of
beliefs, desires, intentions. Beliefs and desires (goals) usually
represent the mental state of an agent, and intentions denote
the deliberation phase of an agent (often concretizing the
choice of executing a plan).

Our objective is to model-check refinement between dif-
ferent levels of abstraction of BDI agent-oriented specifica-
tions. The approach we take can be described in two steps:
we first fix the levels of abstraction as being two particular
languages, BUnity and BUpL (Belief Update programming
Language); we then prove refinement by constructing a sim-
ulation relation (on the mental states of BUnity and BUpL
agents) and by checking for the absence of deadlocks.

We introduce BUnity as an adaptation of the UNITY lan-
guage to the BDI paradigm. It is meant to represent an
agent in the first stage of design. One only needs to specify
initial beliefs and actions (what an agent can do). We make
the observation that “specify little” implies nondeterminis-

Cite as: Model-Checking Agent Refinement, Lăcr̆amioara Aştef̆anoaei
and Frank S. de Boer,Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,
pp. 705-712.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tic executions of BUnity agents (actions may be executed in
any arbitrary order, for example).

On the other hand, BUpL enriches BUnity constructions
with the notions of plans and repair rules. These are meant
to refine the early stage nondeterminism by specifying how
and when actions are executed. We have chosen BUpL as
the representation of agents in the last stage of design.

We give operational semantics to our languages which we
model into rewrite systems. In this way, we can prototype
BUnity and BUpL agents in Maude [7], a rewriting logic
software. We use the LTL model-checker [10] which comes
with Maude in order to decide whether a BUpL agent refines
a BUnity agent. Additionally, given that our languages al-
low nondeterministic choices, we explicitly model fairness as
LTL formulas, and we check whether refinement holds under
fairness assumptions.

We exploit the particular nature of nondeterminism in the
BUnity language such that we can efficiently implement the
simulation relation. This is possible because the operational
semantics of BUnity is encoded in deterministic transition
systems: though an agent makes arbitrary decisions regard-
ing which action to execute, the mental state reflecting the
effect of the chosen action is uniquely determined.

Our contribution consists of introducing a general frame-
work for modeling, and not programming agent languages.
We stress the importance of prototyping before implement-
ing complex agent platforms. It is a quick method for prov-
ing that the semantics fulfills the initial requirements. In this
setup, we emphasize simple but expressive agent languages
by introducing BUnity and BUpL, which are inspired by the
already standard GOAL [8] and 3APL [11] languages.

Related Works Considering verification techniques for
multi-agent systems, there are already some notable achieve-
ments: [2] focuses on model-checking AgentSpeak systems,
[3] proposes Temporal Trace Language for analyzing dy-
namics between agents, [14] refers to verifying deontic in-
terpreted systems. However, we are not aware of existing
proof-methods for model-checking refinement between ab-
straction levels of agent-oriented specifications.

As for prototyping executable semantics, there are already
results ([17]) promoting Maude. The initiative of modeling
agents in Maude is taken in [16] and this is, in fact, the
starting point for our implementation.

Outline The paper is structured as follows: §2 presents
the theoretical results and §3 details the syntax and the
semantics of BUnity and BUpL languages. Implementation
issues are discussed in §4 and §5 concludes the paper.

705

2. REFINEMENT AND SIMULATION
We consider labeled transition systems (LTSs) as tuples

(Σ, s0, Act, →), where Σ is a finite set of states, s0 is an
initial state, Act is a set of actions (labels), and→ describes
all possible transitions. We denote by τ a special action
called silent action. Act− {τ} is the set of visible actions.

We write s
a
→ s′ when (s, a, s′)∈→, meaning “s may be-

come s′ by performing an action labeled a”. It also means
that transition a is enabled on s. We say that a transition
system is deterministic when for any state s, and for any
action a, s

a
→ s′ and s

a
→ s′′ implies s′′ = s′. We call s

τ
→ s′

an idling transition and we abbreviate it by s → s′. The
“weak” arrow ⇒ denotes the reflexive and transitive closure
of →, and

a
⇒ stands for ⇒

a
→⇒.

A computation in a transition system is defined to be a

sequence of the form s0
l0→ s1

l1→ s2..., where li ∈ Act, i ∈ N .
It can be either finite (when there is no possible transition
from the last state), or infinite.

For a computation σ, the corresponding trace, tr(σ), is the
sequence of visible actions (a word defined on (Act−{τ})ω).
The set of all traces of a system S (the traces correspond-
ing to all computations starting with the initial state of the
system) is denoted by Tr(S).

The trace set defines the externally observable behavior
of the system. Our focus on visible actions (and not states)
is motivated by the fact that, in studying simulation, we
are interested in what we see and not how the agent thinks.
Take the case of a robot: one simulates his physical actions,
lifting or dropping a block, for example, and not the mental
states of the robot.

In nondeterministic systems that abstract from scheduling
policies, some traces are improbable to occur in real compu-
tations. In this sense, the operational semantics (given by
transition rules) is too general in practice: if the actions an
agent can execute are always enabled, it should not be the
case that the agent always chooses the same action.

We want to cast aside such traces when modeling the sys-
tems. Moreover, we want a declarative, and not imperative
solution. Our option is to follow the approach from [12]:
we may constrain the traces by adding fairness conditions,
modeled as LTL properties. Fairness is there expressed ei-
ther as a weak, or as a strong constraint:

Definition 2.1 (Justice [12]). A trace is just (weakly
fair) with respect to a transition a if it is not the case that a
is continually enabled beyond some position, but taken only
a finite number of times.

Definition 2.2 (Compassion [12]). A trace is compas-
sionate (strongly fair) with respect to a transition a if it is
not the case that a is infinitely often enabled beyond some
position, but taken only a finite number of times.

We will refer to these definitions when we detail our agent
languages and the implementation. However, in this sec-
tion, we consider the general case of constraints defined as
predicates on computations. We say a constraint holds in
an LTS if, and only if, it holds for any computation start-
ing in the initial state. We denote by Sp an LTS with a
constraint p, and we refer to Tr(Sp) as the restricted set of
traces: Tr(Sp) = {tr | tr = tr(σ) ∧ σ |= p}.

Reducing nondeterminism is refinement, usually defined
in terms of trace inclusion. Being that we can specify con-

straints on computations, we consider refinement in terms
of restricted trace inclusion.

Definition 2.3 (Refinement). Let Ip, Sq be LTS with
constraints. Ip refines Sq (Ip ≤ Sq) iff Tr(Ip) ⊆ Tr(Sq).

Proving refinement by definition is not practically feasable:
the set of traces may be infinite. Instead, refinement is
proved by simulation, which has the advantage of locality
of search: one looks for checks at the immediate (successor)
transitions that can take place. Since we are interested in
simulating only visible actions, we refer to weak simulation.

Definition 2.4 (Weak Simulation). Let I, S be LTS
with Σ, Σ′ as sets of states, and let R be a relation, R ⊆
Σ × Σ′. R is called a weak simulation if, whenever sRs′, if
s

a
⇒ t, then there exists t′ such that s′

a
⇒ t′ and tRt′.

Definition 2.5. Let I, S be LTS with s0, s′0 as initial
states. S weakly simulates I (I . S) if there exists a weak
simulation R such that s0Rs′0.

Proposition 2.6 (Soundness). Given the LTS I and
S, we have that I . S ⇒ I ≤ S.

In general, simulation is not complete. Take, for example,
the classical example described in Figure 1.

s2 s′1 s′3

s0 s1 s′0

s3 s′2 s′4

a
b

c

a

a

b

c

Figure 1: Refinement but not simulation

However, simulation is complete when the simulating sys-
tem is deterministic:

Proposition 2.7. Given an LTS I and a deterministic
LTS S, we have that I ≤ S ⇒ I . S.

Corollary 2.8. I ≤ S ⇒ I . S′, where S′ is the deter-
ministic system corresponding to S.

The proofs are easy if one considers that two deterministic
systems with the same traces simulate each other and that
it is always possible to transform nondeterministic systems
into deterministic ones by a method called “determiniza-
tion” [15]. Nevertheless, “determinization” is computation-

ally hard (2O(nlogn) in the number of states [15]).
The technique for proving refinement is to construct a left

synchronized product, where the reachable states are pairs in
a simulation relation. The absence of a deadlock pair implies
that simulation holds, hence refinement.

Definition 2.9 (Left Synchronized Product).
The left synchronized product of two transition systems, I =
(Σ, s0, Act, →1) and S = (Σ′, s′0, Act, →2), is defined as:

I ⊘ S = (Σ× Σ′, (s0, s
′
0), Act,→)

where if s
a
⇒1 t then ((s, s′)

a
→ (t, t′) iff s′

a
⇒2 t′) .

Remark 2.1. We call it left product because a transition
is possible only if the system I can fire an action. We say
the first system drives the transition relation.

706

Definition 2.10 (Deadlock). Let ⊥ be the property

(s
a
⇒1 t ∧ s′ 6

a
⇒2). The state (s, s′) has a deadlock when ⊥

holds. The product is deadlock-free if it has no deadlocks.

Remark 2.2. We make the difference between (s, s′) be-
ing a deadlock state, and (s, s′) being a terminal one (when
the only possible transition in s is the idling transition).

Theorem 2.11. Given the LTS I, S, where S is deter-
ministic, we have that I ⊘ S is deadlock-free iff I . S.

Recalling that we restrict the behavior of transition systems
by adding constraints, we extend the previous result such
that these are also reflected.

Theorem 2.12. Given the LTS I, S, where S is deter-
ministic, with the constraints p, resp. q, I ⊘ S |= p →
(q ∧ ¬⊥) iff Ip ≤ Sq.

We anticipate the description of our agent languages in
order to underline that the semantics of BUnity language is
encoded in deterministic LTS (BUnity agents cannot have
different mental states by performing the same action). This
is important: on the one hand, we can efficiently implement
the left product; on the other hand, by Proposition 2.7 weak
simulation is a complete proof method in our framework.

Note, however, that, when we say“BUnity agents are non-
deterministic”, we refer to the fact that, at each step, they
nondeterministically choose one among all the actions that
could be executed.

3. FORMALIZING MENTAL STATES AND
BASIC ACTIONS

In the current approach, the underlying logical framework
of mental states is a fragment of Herbrand logic. We con-
sider F and Pred infinite sets of function, resp. predicate
symbols, with a typical element f , resp. P . Variables are
denoted by the symbol x. Each function symbol f has asso-
ciated a non-negative integer n, its arity. Function symbols
with 0-arity are also called constants.

Terms, usually denoted by the symbol t, are built from
function symbols and variables. Formulas (denoted by the
symbol ϕ) are built from predicates and the usual logical
connectors. To sum up, the BNF grammar for terms and
formulas is as follows:

t ::= x | f(t, . . . , t)
ϕ ::= P (t, . . . , t) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

An atom is any formula P (t, . . . , t). A literal is either an
atom or the negation of an atom. A term with no variables
is called ground. A formula is either ground, or open (which
has no quantifiers). All variables which appear in a formula
are existential. The set of all ground atoms built upon F
and Pred is a Herbrand model.

Mental states are characterized in terms of beliefs. In the
current framework, we consider beliefs as ground atoms, or-
ganized in the so-called belief bases (subsets of the Herbrand
model), which we denote by B.

Given B a belief base, the satisfaction relation for ground
formulas is defined using structural induction, as usually.
For defining the satisfaction relation of open formulas, we
consider the usual notion of substitutions as functions that
replace variables with terms, denoted by [x/t] . . . [x/t]. Given

a syntactical expression e and a substitution θ, we denote
the application of θ to e by eθ, rather than by θ(e). The
composition θθ′ of two substitutions θ and θ′ is defined as
θθ′(x) := θ(θ′(x)), and is an associative operation. The sat-
isfaction relation for open formulas is as follows:

B |= ϕ iff ∃θ s.t. B |= ϕθ

Such a substitution (∃θ) is obtained by solving a matching
problem, since B is ground. We say a term s matches a
ground term t if there exists a substitution (called matcher)
such that sθ is sintactically equal to t. The matching prob-
lem extends easily to formulas and belief bases. We say
the matcher is the empty substitution (θ = ∅) when ϕ is a
ground formula satisfied in B. We use the notation θ = ⊥
when the matching has no solution.

Remark 3.1. We consider matching on its own, and not
as a particular case of unification. A linear algorithm for
matching is easy to implement, but for unification it is not.

Basic actions are functions of arity n, a(x1, . . . , xn), de-
fined as pairs (ϕ, ξ), where ϕ are formulas which we call
preconditions, and ξ are sets of literals which we call effects.
The following inclusions are required:

Var(ξ) ⊆ Var(ϕ) = {x1, . . . , xn},

where Var(e) denotes the set of variables in a syntactic ex-
pression e. We use the symbol A for the set of basic actions.
We refer to Act as the set of basic action names, with a
typical element a, or aθ.

Given a basic action a = (ϕ, ξ), if matching ϕ to B has a
solution θ, then the effect of aθ is to update the belief base
by adding or removing ground atoms from the set ξθ:�

B ⊎ lθ = B ∪ lθ, l ∈ ξ
B ⊎ ¬lθ = B \ lθ, ¬l ∈ ξ

We write B ⊎ ξθ to represent the result of an update op-
eration, which is automatically guaranteed to be consistent
since we add only positive literals.

3.1 BUnity Agents
BUnity language represents abstract agent specifications.

Its purpose is to model agents at a coarse level, using a
minimal set of constructions. A BUnity agent abstracts from
specific orderings (for example, action planning). Hence her
executions are highly nondeterministic.

The mental state of a BUnity agent is simply a belief base.
On top of basic actions, Bunity language allows a finer type
of construction, conditional actions, which are organized in
a set denoted by C.

A conditional action is built upon a basic action. It is
syntactically defined by φ � do(a), where φ is a query on
the belief base, and a is the name of an action. Intuitively,
conditional actions are like await statements in imperative
languages: await φ do a, action a can be executed only
when φ matches the current belief base.

Both basic and conditional actions are enabled when a
matching problem has a solution. However, note that the
enabling conditions of basic actions are independent of the
application, whereas those of conditional actions are appli-
cation specific.

A BUnity agent is defined as a tuple, (B0, A, C), where B0

is a set of initial beliefs. For such a configuration, we define
an operational semantics in terms of LTS.

707

Definition 3.1 (BUnity Semantics). Let (B0, A, C)
be a BUnity configuration. The associated LTS is (Σ, B0, L,
→), where:

• Σ is a set of states (belief bases)

• B0 is the initial state (the initial belief base)

• L is a set of ground action names

• → is the transition relation, given by the rule:

φ ⊲ do(a) ∈ C a = (ϕ, ξ) ∈ A B |= (φ ∧ ϕ)θ

B
aθ
→ B ⊎ ξθ

(Act)

We take, as an illustration, a known problem, which we
first found in [11], of an agent building a tower of blocks. An
initial arrangement of three blocks A, B, C is given there: A
and B are on the floor, and C is on top of A. The goal of
the agent is to rearrange them such that A is on the floor,
B on top of A and C on top of B. The only action an agent
can execute is to move one block on the floor, or on top of
another block, if the latter is free.

B0 = { on(C, A), on(A, floor), on(B, floor),
free(B), free(C), free(floor) }

A = { move(x, y, z) = (on(x, y) ∧ free(x) ∧ free(z),
{ on(x, z), ¬on(x, y), ¬free(z) }) }

C = { ¬(on(B, A) ∧ on(C, B)) ⊲ do(move(x, y, z)) }

Figure 2: A BUnity Toy Agent

The example from Figure 2 is taken in order to underline
the difference between enabling conditions (for basic actions)
and triggers (for conditional actions): on the one hand, it is
possible to move a block x on top of another block z, if x and
z are free; on the other hand, given the goal of the agent,
moves are allowed only when the configuration is different
than the final one.

3.2 BUpL Agents
The BUnity agent described in Figure 2 is highly nonde-

terministic. She can, for example, move C on the floor, B
on A, and C on B, which is the shortest execution to achieve
her goal. She can also pointlessly move C from A to B and
then back from B to A.

BUpL language allows the construction of plans as a way
to order actions. We refer to P as a set of plans, with a
typical element p, and to Π as a set of plan names, with a
typical element π. Syntactically, a plan is defined by the
following BNF grammar:

p ::= a(t, . . . , t) | π(t, . . . , t) | a(t, . . . , t); p | p + p

with ’;’ being the sequential composition operator and ’+’
the choice operator, with a lower priority than ’;’.

The construction π(x1, . . . , xn) is called abstract plan. It is
a function of arity n, defined as π(x1, . . . , xn) = p. Abstract
plans should be understood as procedures in imperative lan-
guages: an abstract plan calls another abstract plan, as a
procedure calls another procedure inside its body.

BUpL language provides a mechanism for handling the
failures of actions in plans through constructions called re-
pair rules. A plan fails when the current action cannot be

executed. Repair rules replace such a plan with another.
Syntactically, they have the form φ← p, and it means: if φ
matches B, then substitute the plan that failed for p.

A BUpL agent is a tuple (B0, A, P, R, p0), where B0, A
are the same as for a BUnity agent, p0 is the initial plan, P
is a set of plans and R is a set of repair rules.

Plans, like belief bases, have a dynamic structure, and
this is why the mental state of a BUpL agent incorporates
both the current belief base and the plan in execution. The
operational semantics for a BUpL agent is as follows:

Definition 3.2 (BUpL Semantics). Let (B0, A, P, R,
p0) be a BUpL configuration. Then the associated LTS is (Σ,
(B0, p0), L, →), where:

• Σ is a set of states, tuples (B, p)

• (B0, p0) is the initial state

• L is a set of labels, either ground action names or τ

• → represents the transition rules given in Figure 3:

p = (a; p′) a = (ϕ, ξ) ∈ A B |= ϕθ

(B, p)
aθ
→ (B ⊎ ξθ, p′θ)

(Act)

(B, p) 6→ φ← p′ ∈ R B |= φθ

(B, p)
τ
→ (B, p′θ)

(Fail)

π(x1, . . . , xn) = p

(B, π(t1, . . . , tn))
τ
→ (B, p(t1, . . . , tn))

(π)

(B, pi)
µ
→ (B′, p′)

(B, (p1 + p2))
µ
→ (B′, p′)

(+)

Figure 3: BUpL Rules

where in Rule (π) p(t1, . . . , tn) stands for p[x1/t1] . . . [xn/tn].

Note that in the rules for choice µ can be either a ground
action name or a silent step τ , in which case B′ = B, and p′

is a valid repair plan (if any).
We take as an example a BUpL agent that solves the tower

of blocks problem. She has the same initial belief base and
the same basic action as the BUnity agent.

B0 = { on(C,A), on(A, floor), on(B, floor),
free(B), free(C), free(floor) }

A = { move(x, y, z) = (on(x, y) ∧ free(x) ∧ free(z),
{ on(x, z), ¬on(x, y), ¬free(z) }) }

P = { p0 = move(B, floor, A); move(C, floor, B) }

R = { on(x, y)← move(x, y, floor); p0 }

Figure 4: A BUpL Toy Agent

The BUpL agent from Figure 4 is modeled such that it il-
lustrates the use of repair rules: we explicitly mimic a failure
by intentionally telling the agent to move B on A. Similar
scenarios can easily arise in multi agent systems: imagine
that initially C is on the floor, and the agent decides she
can move B on A; imagine also that another agent comes
and moves C on top of A, thus moving B on A will fail.

708

The failure is handled by on(x, y)← move(x, y, floor); p0.
Choosing [x/A][y/C] as a matcher, enables the agent to
move C on the floor and after she can restart her plan.

3.3 The product of BUpL-BUnity agents
We recall that we focus on the nondeterminism of agent

models, and this boils down to studying the refinement be-
tween abstraction levels of agent specifications. We have
proposed BUnity as a typical abstract specification language,
and BUpL as an implementation language.

The semantics of agents designed in these languages re-
lates to labeled transition systems. For LTS, we have pre-
sented in Section 2 the technique for proving refinement:
Theorem 2.11 states that deadlock freedom in a left synchro-
nized product implies refinement between its components.

Applying the technique to the agent framework is straight-
forward, we just instantiate such components with the LTSs
associated to BUnity and BUpL. If S1 = (Σ, (B0, p0), Act∪
{τ},→1) and S2 = (Σ′, B0, Act,→2) correspond to a BUpL,
resp. BUnity agent, then their left synchronized product is
S1 ⊘ S2 = (Σ × Σ′, 〈(B0, p0),B0〉, Act, →). The semantics
is given by the following transition rule:

B
a
→2 B

′

〈(B, p),B〉
a
→ 〈(B′, p′),B′〉

, if (B, p)
a
⇒1 (B′, p′)

Note that we consider the same initial belief base and the
same set of actions for both agents. This is not a condition,
but a choice for simplifying the notation.

Recall that the first component of a left product “drives”
the simulation. We express this by conditioning the transi-
tion rule: only when the BUpL agent executes a, the tran-
sition can take place. If the BUnity agent can execute the
same action, the product reaches a “good” state. Otherwise,
the product is in a deadlock state.

Take, for example, the BUpL and BUnity agents building
the ABC tower. Any visible action that BUpL executes can
be mimicked by the BUnity agent, thus in this case BUnity
simulates BUpL and refinement is guaranteed.

3.4 Call for Justice (or Compassion)
We imagine a scenario illustrative for cases where mod-

eling fairness constraints is a “must”. For this, we slightly
complicate the “tower” problem, by giving the agents an ex-
tra assignment to clean the floor, if it is dirty. The agents
have two alternatives: either to clean or to build.

For both BUnity and BUpL agents we add a basic action,
magic-cleaning = (¬ cleaned, {cleaned}). We enable the
BUnity agent to execute this action at any time, by adding
a conditional action ⊤ ⊲do(magic-cleaning).

We assign a mission plan to the BUpL agent, mission =
clean + rearrange(B,A, C), where clean is a tail-recursive
plan, clean = magic-cleaning ; clean.

The plan rearrange generalizes the previously defined p0:
rearrange(x, y, z) = move(x, floor, y); move(z, floor, x). It
consists of reorganizing free blocks placed on the floor, such
that they form a tower. This plan fails if not all the blocks
are on the floor, and the failure is handled by the already
defined repair rule, which we call r1.

We add a repair rule, r2, ⊤ ← mission, which simply
makes the agent restart the execution of the plan mission.

Note that it is possible that both agents always prefer
cleaning the floor instead of rearranging blocks, though this
is useless when the floor has already been cleaned. Never-

theless, such cases are disregarded if one requires that exe-
cutions are fair.

We model fairness as LTL formulas. Basically, we need
only two future operators, � (eventually) and � (always).
The corresponding satisfaction relation is defined as follows:

σ |= �φ iff (∃i > k)si |= φ
σ |= �φ iff (∀i > k)si |= φ,

where s0, . . . , sk, . . . are the states of a computation σ.
In function of the agent language, we distinguish between

different types of fairness. In the case of the BUnity agent, it
suffices to consider weak fairness: any enabled basic action
a such that there is a conditional one φ ⊲ do(a), which can
continuously often trigger a, should be infinitely often taken:

just1 =
â∈A

(�� enabled(φ ⊲do(a)) → �� taken(a)) .

where enabled and taken, predicates on the states of the left
product, are defined as:

〈(B, p),B〉 |= enabled(φ ⊲do((ϕ, ξ))) iff B |= φ ∧ ϕ

〈(B, p),B〉 |= taken(a) iff B
a
→2 B

′

For the BUpL agent, we consider two scenarios for defining
fairness with respect to choices in repair rules and plans:

The execution of rearrange has failed. Both repair rules r1

and r2 are enabled, and always choosing r2 makes it impos-
sible to make the rearrangement. This would not the case if
r1 were triggered. It follows that the choice of repair rules
should be weakly fair:

just2 =
p̂∈P

(�� enabled(φ← p) → �� taken(p)) .

The repair rule r1 has been applied, and all three blocks
are on the floor. Returning to the initial mission and be-
ing in favor of cleaning leads again to a failure (the floor is
already clean). The only applicable repair rule is r2 which
simply tells the agent to return to the mission. Thus, it can
be the case that, though rearranging the blocks is enabled, it
will never happen, since the choice goes for magic-cleaning
(which always fails). Therefore, because plans are not con-
tinuously enabled, their choice has to be strongly fair:

compassionate =
p̂∈P

(�� enabled(p) → �� taken(p))

In the above scenarios enabled and taken are defined sim-
ilarly as in the case of BUnity language: a repair rule is
enabled when its precondition is satisfied in the belief base;
a plan is enabled when the precondition of its first action is
satisfied; a plan is taken when its first action is taken.

We pose the question whether fair executions of the BUpL
agent refine fair executions of the BUnity agent. Conform-
ing to Theorem 2.12, the answer is positive if the formula
(compassionate ∧ just2) → (just1 ∧¬⊥) is satisfied in the
left product.

It is possible to prove by hand that this is the case, by an-
alyzing all possible executions. However, we consider it is of
interest to prove it automatically. This is the reasoning un-
derlying our implementation, which constitutes the subject
in the next section.

709

4. EXECUTABLE BUNITY-BUPL
Our approach in implementing the operational semantics

of BUnity and BUpL languages is to map them into rewrite
theories, which are rewriting logic [13] specifications.

Rewriting logic is a logic of becoming and change, in the
sense that it reasons about the evolution of the systems: a
rewrite theory is mainly a signature and a set of rewrite
rules; the signature describes the states of a system, and the
rewrite rules are executions of the transitions.

We choose Maude [6] as a rewriting logic language imple-
mentation. The main objective of Maude is to support ex-
ecutable specifications, formal method applications, and re-
flective computations. The reflective capabilities of Maude
make it possible to extend it to an user-definable system.
Furthermore, Maude comes with an LTL model-checker.

Maude’s basic statements are equations and rules. Maude
programs containing only equations are called functional
modules, while those containing in addition rules are called
system modules. We use functional modules to define the
syntax of our agent languages, and system modules to de-
fine the semantics.

For example, assume a functional module SYNTAX where
we write constructions common to both languages. The top-
level syntax will then be:

fmod SYNTAX i s
. . .
endfm

with ’. . . ’ standing for actual declarations and statements.
The first thing to declare in a specification are the types

(sorts) which can be ordered via a subsort relation. For
example, we declare Belief, BeliefBase at once using the
keyword sorts, and that Belief is a subsort of BeliefBase:

s o r t s B e l i e f Be l i e fBa s e .
subso r t B e l i e f < Be l i e fBa s e .

A belief base is a set of beliefs, and this definition corre-
sponds to the declaration of an operator ’;’:

op ; : Be l i e fBa s e Be l i e fBa s e −> Be l i e fBa s e
[a s soc comm] .

where ’;’ is in mixfix form, and assoc, comm are attributes
declaring that the set is associative and commutative.

In some cases, the notation in the code differs from the
one used previously (for example the above ’;’ instead of ’,’).
This is not a discrepancy, but a natural consequence since
certain symbols have a standard meaning in Maude, not
compatible with ours. However, the correspondence between
notations should be clear from the context.

Using op 〈Name〉 : 〈Sort1〉 . . . 〈Sortk〉 -> 〈Sort〉 as the
general statement for declaring operators, a query is:

subso r t Term < Query .
op ˜ : Query −> Query .
op /\ : Query Query −> Query .
op \/ : Query Query −> Query .

where Term is a metalevel construction, and in order to use
it, we need to add protecting META-LEVEL . after the dec-
laration fmod SYNTAX is.

Predicates are a particular type of terms, and because we
want to simplify the notation, we consider any term as a
query (by declaring Term as a subsort of Query).

The matching problem is defined inductively on the struc-
ture of queries. We present only the case of terms. At this
point, the reflective features of Maude come in handy.

The reflective kernel of Maude is the built-in META-LEVEL

module, where Maude terms are reified as elements of a type
Term of terms, and Maude modules are reified as terms in
a type Module of modules. The META-LEVEL provides the
capacity of representing theories (including itself) as data.

Matching a term to a belief means simply invoking the
metaMatch function:

op match : Query Be l i e fBa s e Nat −> Subs t i t u t i on .
var T : Term . var B : B e l i e f . var N : Nat .
eq match(T, B, N) =

metaMatch (upModule (’AGENT−EXAMPLE, f a l s e) ,
upTerm(T) , upTerm(B) , n i l , N) .

Note that functions are defined by statements eq 〈Term1〉 =
〈Term2〉 . and variables are declared with the keyword var.

The metaMatch tries to match at the top the metarepre-
santations of the terms T and B in the metarepresantation
of the module AGENT-EXAMPLE, where T and B are instanti-
ated. The result is either an element of sort Substitution

or the constant noMatch, already defined at the metalevel.
The matching might have multiple solutions, and N indicates
which one should be returned.

We could have implemented our own matching function,
but there is no point “reinventing the wheel”, since Maude
provides us with a very efficient matching. Besides, it is a
good occasion to advocate the elegance of metaprogramming,
combining up and down moves between reflection levels.

A basic action is an element of sort B-Act, defined as a
pair of a query and an effect, where effect is a set of literals,
and a literal is a term or its negation:

s o r t s L i t E f f e c t . subso r t L i t < E f f e c t .
subso r t Term < Li t . op neg : Term −> Li t .
op ; : E f f e c t E f f e c t −> E f f e c t [a s soc comm] .
s o r t B−Act . op [,] : Query E f f e c t −> B−Act .
op e f f e c t : B−Act −> E f f e c t .
eq e f f e c t ([Q: Query , E: E f f e c t]) = E .

The effect of a basic action is to add (remove) literals to
(from) the belief base, where add, remove are basic opera-
tions on sets. The function update is defined recursively:

var T : Term . var L : L i t . var R : E f f e c t .
var BB : Be l i e fBa s e .
eq update (BB, neg (T)) = remove (BB, T) .
eq update (BB, T) = add (BB, T) .
eq update (BB, L ; R) = update (update (BB, L) , R) .

The syntax of BUnity language is defined in the module
BUNITY-SYNTAX, where, besides including the already defined
constructions from SYNTAX, we declare BUnity specifics: con-
ditional actions (elements of sort C-Act) and mental states
(elements of sort ByMentalState):

fmod BUNITY−SYNTAX i s
p r o t e c t i ng SYNTAX .
s o r t s C−Act ByMentalState LabelA .
op do () : Query B−Act −> C−Act .
op < > : Be l i e fBa s e −> ByMentalState .
op [] : LabelA ByMentalState

−> ByMentalState [f r o z en] .
endfm

Note the declaration [_]_ with the use of the attribute
frozen. We need this construction in the implementation
of the left synchronized product.

The BUnity semantics is encoded in system modules (note
the mod . . . endm). BUnity has only one transition rule, which
we map into a conditional rewrite rule, using the statement
crl [〈Label〉] : 〈Term1〉 => 〈Term2〉 if 〈C 1〉 ∧ · · · ∧ 〈C k〉 .

710

mod BUNITY−SEMANTICS i s
p r o t e c t i ng BUNITY−SYNTAX .
op eqS : −> EquationSet .
eq eqS = upEqs (’AGENT−EXAMPLE, f a l s e) .
var BB : Be l i e fBa s e . var A : B−Act .
c r l [act1] : < BB > => < update (BB, e f f e c t (A)) >

i f (Q: Query do (A)) in iniC (eqS , BB, 0) .
c r l [act2] : < BB > => [name(A)]

< update (BB, e f f e c t (A)) >

i f (Q: Query do (A)) in iniC (eqS , BB, 0) .
endm

where iniC returns the set of instantiated conditional ac-
tions such that the preconditions are true in the belief base.
It analyzes recursively all equations from the module AGENT-
EXAMPLE. For each equation defining a conditional action, it
matches the precondition to the belief base and it returns
all possible solutions:

var BB : Be l i e fBa s e . vars Q1 Q2 : Query .
var L : L i tSe t . var N : Nat .
vars T T’ : Term . var S : Subs t i t u t i on .
ceq iniC (eq T = T’ [l a b e l (’ c−act)] . , BB, N)

= downTerm(sub s t i t u t e (T, S) , e r r)
in iC (eq T = T’ [l a b e l (’ c−act)] . , BB, N + 1)
i f Q1 do ([Q2 , L]) := downTerm(T’ , e r r)
/\ S := match(Q1 /\ Q2, BB, N)
/\ S =/= noMatch .

We provide two rewrite rules: the first one [act1], is
used when model-checking BUnity agents on their own, the
last one is needed when model-checking left synchronized
products. In the latter case we need only one step successors,
and we enforce such a result by freezing the BUnity agent
after performing one step (configurations like [_]_ have no
applicable rewrite rules). It is up to the left product to
“defrost” the agent.

The procedure for implementing BUpL language is simi-
lar, although longer. Due to lack of space we do not include
it here. In exchange, we present it for the left product. The
syntax is simply a triplet of a label and the mental states of
a BUnity and a BUpL agent:

s o r t Label . s o r t LeftProduct .
op < , , > : BpMentalState ByMentalState Label

−> LeftProduct [f r o z en] .

We use the attribute frozen in the declaration of the left
product such that it is forbidden to rewrite the BUpL (resp.
the BUnity agent) on its own. This is because the left prod-
uct is synchronous (one agent executes an action only if the
other one does):

vars Bp Bp’ : BpMentalState . var LA : LabelA .
vars By By ’ : ByMentalState . var LP : LabelP .
c r l [act] :

< Bp, By , L : Label > => < Bp’ , By ’ , LA >

i f Bp => [LA] Bp’ /\ By => [LA] By ’ .

c r l [tau] :
< Bp, By , L : Label > => < Bp’ , By , LP >

i f Bp => [LP] Bp’ .

Note that in Maude conditions are evaluated from left to
right, and, therefore, the order in which they appear, al-
though mathematically inessential, is very important oper-
ationally [7]. This suits perfectly our setup, since the left
product is driven by its first component.

Note also how defrosting works: by doing one step each
agent reaches a configuration from where no rewrite is pos-
sible. However, in the right hand side of the Rule [act] the
agent is enabled to do one step again.

Recall Th. 2.11 states that no deadlock under fairness in
the left product implies refinement between the components
of the product. Deadlock and fairness are modeled as pred-
icates on the states of the left product.

A state predicate is an operator of sort Prop. Its meaning
is given by: op _|=_ : State Prop -> Bool. For exam-
ple, we present the predicates needed for just1, like in §3.4.
For the rest, the procedure is similar.

subso r t LeftProduct < State .
op taken : B−Act −> Prop .
ceq < Bp, By , L > |= taken (A) i f name(A) == L .
op enabled : C−Act −> Prop .
ceq < Bp, < VB >, L > |= enabled (Q do (A))

i f C in iniC (eqS , VB, 0) .
op ju s t 1 : C−Act −> Prop .
ceq ju s t 1 (C) = <>[] enabled (C) −> []<> taken (A)

i f Q do (A) := C .

The variables in the fragment of code are the usual ones de-
fined in previous examples. The function just1 is extended
inductively for the set of all conditional actions.

The examples presented in this section are fragments from
the implementation, hence not executable on their own. The
complete code, available for download, can be used for fur-
ther refinement testing of BUnity and BUpL instances. Given
the existing implementation, all that is left to the user is to
write Maude code for BUnity and BUpL agents, and to use
the Maude command red modelCheck(...).

If, for example, the user may want to input the building
agents from §3.4, then the fragment corresponding to the
BUnity agent would look like:

s o r t s Block . ops a b c f l : −> Block .
op on : Block Block −> Be l i e f .
op f r e e : Block −> Be l i e f .
op bb : −> Be l i e fBa s e . vars X Y Z : Block .
eq bb = on (c , a) ; f r e e (c) ; on (a , f l) ;

on (b , f l) ; f r e e (b) ; f r e e (f l) .

op move : Block Block Block −> B−Act .
eq [b−act] : move(X, Y, Z) =

[on (X, Y) /\ f r e e (X) /\ f r e e (Z) ,
neg on (X, Y) ; on (X, Z) ; f r e e (Y) ;
neg f r e e (Z) ; f r e e (f l)] .

op c : Block Block Block −> C−Act .
eq [c−act] : c (X, Y, Z) = ˜ (on (b , a) /\

on (c , b)) , do (move(X, Y, Z)) .
op by : −> ByMentalState . eq by = < bb > .

Assuming the same is done for the BUpL agent called bp,
and that lp is the left product of bp and by, the user may
check for refinement under fairness assumptions. The result
would look like:

Maude> red modelCheck (lp , (j u s t 2 /\ compassion)
−> (j u s t 1 /\ [] ˜ deadlock)) .

reduce in AGENT−EXAMPLE : modelCheck (lp , (j u s t 2
/\ compassion) −> (j u s t 1 /\ [] ˜ deadlock)) .
r ew r i t e s : 38617 in 670ms cpu (2103ms r e a l)
(57560 r ew r i t e s / second)
r e s u l t Bool : t rue

The result of model-checking in Maude is either the boolean
value true, or a counterexample, which is defined as a pair
consisting of a finite path and the cycle which can be reached
(for any unsatisfiable LTL formula such a counterexample
exists, [9]). We obtained true, which means that the BUpL
agent refines the BUnity agent, as it was expected.

711

4.1 What else can model-checking do?
Though we have focused only on model-checking refine-

ment, note, however, that model-checking LTL properties
for single agents is derived within. Moreover, it is known
that refinement preserves safety properties, thus safety prop-
erties are intrinsically true for a BUpL agent if they are true
for the BUnity specification.

As for liveness properties, the most we can do is to con-
clude that under fairness assumptions something good even-
tually will happen. For example, we can define the predi-
cates goal1, goal2 on the states of BUnity:

eq < on (a , f l) ; on (b , a) ; on (c , a) ;
BB: Be l i e fBa s e > |= goa l1 = true .

eq < c leaned ; BB: Be l i e fBa s e > |= goa l2 = true .

meaning that if, eventually, the rearrangement succeeds then
goal1 is achieved, in which case the implementation is cor-
rect. Model-checking �goal1 returns a counter-example: the
trace consisting of an infinite loop magic-cleaning. However,
justice implies correctness: model-checking just1 → �goal1
returns true. The same reasoning applies for ��(goal1 ∨
goal2): if the BUnity agent is just, then it is always the case
that she will eventually achieve one or the other goal.

5. CONCLUSIONS AND FUTURE WORK
We have addressed the problem of model-checking agent

refinement. We have first presented the underlying the-
ory, which we have implemented in Maude. The complete
implementation is available for public download at http:

//homepages.cwi.nl/~astefano/agents.
Note that our proof technique is semi-decidable. A suffi-

cient condition for being decidable is to allow only variables,
constants and predicates in the model. If one allows even
one functional symbol, the Herbrand model is infinite. To
be precise, with just one function we can encode natural
numbers: consider a belief base with one belief p(0), and a
basic action inc(X) = (p(X), {¬p(X), p(s(X))}), where s is
the usual succesor function. The plan flyToInfinite(X) =
inc(X); flyToInfinite(X) is not terminating and, moreover,
gives rise to infinite reachable states. In this case, model-
checking fails, but one can still try the Maude search com-
mand, which is based on a breadth first search.

However, forbiding any functional terms as parameters of
the predicates in the belief base keeps the system on the
safe side. When the restriction is too strong, abstraction
techniques are of great interest. In such cases, refinement
evolves on two axes: one is the refinement of nondetermin-
istic choices (which has been considered in this paper), and
the other is the refinement of data (which needs to be in-
vestigated). The basic idea is to make BUnity agents finite
state systems such that they faithfully represent the behav-
iors of infinite state BUpL agents. Future work consists of
implementing such abstraction techniques.

Though we have considered only single agents, our results
extend to multi agent systems by incorporating an action-
coordination mechanism. Theoretically, we have that re-
finement is compositional: if the agents in a MAS refine
the agents in another MAS, then the refinement relation
between the two MAS is preserved in the presence of a co-
ordinator. Practically, we have already experimented with
Reo [1] as a platform for implementing coordinators. Future
work concerns extending the current implementation, which
is available at the above mentioned location.

6. REFERENCES
[1] F. Arbab. Reo: a channel-based coordination model

for component composition. Mathematical Structures
in Computer Science, 14(3):329–366, 2004.

[2] R. H. Bordini, M. Fisher, W. Visser, and
M. Wooldridge. Verifying multi-agent programs by
model checking. Autonomous Agents and Multi-Agent
Systems, 12(2):239–256, 2006.

[3] T. Bosse, C. M. Jonker, L. van der Meij,
A. Sharpanskykh, and J. Treur. Specification and
verification of dynamics in cognitive agent models. In
IAT, pages 247–254, 2006.

[4] M. Bratman. Intentions, Plans, and Practical Reason.
Harvard University Press, 1987.

[5] K. M. Chandy and J. Misra. Parallel Program Design:
A Foundation. Addison Wesley Publishing Company,
Inc., Reading, Massachusetts, 1988.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting
logic. Theoretical Computer Science, 2001.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. L. Talcott. All
About Maude - A High-Performance Logical
Framework, volume 4350 of Lecture Notes in
Computer Science. Springer, 2007.

[8] F. S. de Boer, K. V. Hindriks, W. van der Hoek, and
J.-J. C. Meyer. A verification framework for agent
programming with declarative goals. J. Applied Logic,
5(2):277–302, 2007.

[9] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.
Model checking. MIT Press, Cambridge, MA, USA,
1999.

[10] S. Eker, J. Meseguer, and A. Sridharanarayanan. The
Maude LTL model checker and its implementation. In
Model Checking Software: Proc. 10 th Intl. SPIN
Workshop, volume 2648 of LNCS, pages 230–234.
Springer, 2003.

[11] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. C. Meyer. Agent programming in 3apl.
Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[12] Z. Manna and A. Pnueli. The temporal logic of
reactive and concurrent systems. Springer-Verlag New
York, Inc., New York, NY, USA, 1992.

[13] J. Meseguer and G. Rosu. Rewriting logic semantics:
From language specifications to formal analysis tools.

[14] F. Raimondi and A. Lomuscio. Automatic verification
of multi-agent systems by model checking via ordered
binary decision diagrams. J. Applied Logic,
5(2):235–251, 2007.

[15] S. Safra. Complexity of automata on infinite objects.
PhD thesis, Rehovot, Israel, 1989.

[16] M. B. van Riemsdijk, F. S. de Boer, M. Dastani, and
J.-J. C. Meyer. Prototyping 3apl in the maude term
rewriting language. In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous
agents and multiagent systems, pages 1279–1281, New
York, NY, USA, 2006. ACM Press.

[17] A. Verdejo and N. Mart́ı-Oliet. Two case studies of
semantics execution in maude: Ccs and lotos. Form.
Methods Syst. Des., 27(1/2):113–172, 2005.

712

