
Continual Collaborative Planning for Mixed-Initiative
Action and Interaction

(Short Paper)
Michael Brenner

Institute for Computer Science
Albert-Ludwigs-University

Freiburg, Germany
brenner@informatik.uni-freiburg.de

ABSTRACT
Multiagent environments are often highly dynamic and only
partially observable which makes deliberative action plan-
ning computationally hard. In many such environments,
however, agents can take a more proactive approach and sus-
pend planning for partial plan execution, especially for ac-
tive information gathering and interaction with others. This
paper presents a new algorithm for Continual Collaborative
Planning (CCP) that enables agents to deliberately inter-
leave planning, acting, perception and communication. Our
implementation of CCP has been evaluated with MAPSIM,
a tool that automatically generates multiagent simulations
from formal multiagent planning (MAP) domains. For dif-
ferent such simulations, we show how CCP leads to collab-
orative planning and acting and, despite minimal linguistic
capabilities, to fairly natural dialogues between agents.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms, Design, Languages

Keywords
Multiagent planning; BDI, speech act theory; Distributed
problem solving; Reactive vs deliberative behaviour

1. INTRODUCTION
Multiagent environments are often highly dynamic and

only partially observable which makes deliberative action
planning computationally hard. In many such environments,
however, agents can take a more proactive approach and
suspend planning for partial plan execution, especially for
active information gathering and coordinating with others.
By employing such a Distributed Continual Planning (DCP)
[5] approach agents can reduce their uncertainty about the
present and constrain possible contingencies in the future

Cite as: Continual Collaborative Planning for Mixed-Initiative Action
and Interaction (Short Paper), Michael Brenner, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(1) Anne: ”Please bring me the coffee, R2D2.”
(2) R2D2: ”Okay.”
(3) R2D2: ”Where is the coffee, Anne?”
(4) Anne: ”The coffee is in the kitchen.”
(5) R2D2: ”Thanks, Anne.”
(6) R2D2: ”Please open the kitchen door, Anne.”
(7) Anne: ”Okay.”
(8) Anne opens the kitchen door.
(9) R2D2: ”Thanks for opening the kitchen door, Anne.”

(10) R2D2 moves to the kitchen.
(11) R2D2 takes the coffee.
(12) R2D2 moves to the living room.
(13) R2D2 brings Anne the coffee.
(14) Anne: ”Thanks for bringing me the coffee, R2D2.”

Figure 1: Collaborative problem solving and dia-
logue between artificial agents in MAPSIM (House-
hold domain).

effectively. This paper introduces a novel DCP algorithm
called Continual Collaborative Planning (CCP) that enables
agents to reason about and affect their respective (mutual)
beliefs, perceptions and goals. CCP models how agents ac-
tively gather new information (by active sensing or by com-
munication) and how collaboration arises from goal revision
and goal adoption during the continual planning process.

For evaluating CCP (and other DCP algorithms), we have
developed MAPSIM, a multiagent simulation environment
in which agents can plan, act and interact. Crucially, MAP-
SIM creates the simulation automatically by analyzing a for-
mal planning domain. Since no domain-specific program-
ming is needed MAPSIM can be used to quickly evaluate
DCP on a wide range of domains and problems. Since CCP
switches between planning, execution and communication as
necessary it is particularly suited for domains where commu-
nicative and physical actions must be mixed. Additionally,
the continual update of the agents’ goals during CCP leads
to fairly natural mixed-initiative dialogues (as exemplified
by the MAPSIM output shown in Fig. 1).

2. MULTIAGENT PLANNING FORMALISM
Planning in dynamic MA environments means reasoning

about the environment, about (mutual) beliefs, perceptual
capabilities and the possible physical and communicative ac-
tions of oneself and of others. All of these elements can be
modeled in the multiagent planning language MAPL that we

Estoril, Portugal, pp. 1371-1374.



have developed. In this section, we introduce MAPL infor-
mally and discuss its suitability for DCP; formal definitions
can be found in a supplemental technical report [3].

MAPL is a multiagent variant of PDDL, the de facto stan-
dard language for classical planning [7]. One important ex-
tension in MAPL is the use of multi-valued state variables
(MVSVs) instead of propositions. For example, a state vari-
able color(ball) would have exactly one of its possible domain
values red, yellow, or blue compared to the three semanti-
cally unrelated propositions (color ball red), (color ball yel-
low), (color ball blue), all or none of which could be true in a
given STRIPS state. MVSVs have been used successfully in
classical planning in recent years [10], but they also provide
distinctive benefits when used for multiagent planning. In
particular, we can use MVSVs to model knowledge and ig-
norance of agents: If no value is known for a state variable it
is unknown (contrast this with the closed world assumption
of classical planning where what is not known to be true
is false). This concept can also extended to beliefs about
other agents’ beliefs and mutual beliefs which are modeled
by so-called belief state variables.

MAPL actions are similar to those of PDDL. In MAPL,
every action has a controlling agent who will execute the
action and, in particular, controls when this will happen.
Agents are fully autonomous when executing actions, i. e.
there is no external synchronization or scheduling compo-
nent. As a consequence an action will only be executed
if, in addition to its preconditions being satisfied, the con-
trolling agent knows that they hold. Implicitly, all MAPL
actions are extended with such knowledge preconditions.
Similarly, there are implicit commitment preconditions,
intuitively describing the fact that another agent will only
execute actions if he has agreed to do so.

A MAPL domain can define three different ways to af-
fect the beliefs of agents (necessary, e. g.in order to satisfy
knowledge preconditions): Sensing, copresence (joint sens-
ing) and communication. All three are MAPL actions that
have knowledge effects. Sensor models describe the cir-
cumstances in which the current value of a state variable can
be perceived. Copresence models are multiagent sensor
models that induce mutual belief about the perceived state
variable. Informally, agents are copresent when they are in a
common situation where they do not only perceive the same
things but also each other. Individual and joint sensing are
important for multiagent systems because they help avoid-
ing communication: An agent does not need to ask for what
he senses himself, and he does not need to verbalize what
he knows to be perceived by the other agents as well. Com-
municative acts come in two forms: as declarative state-
ments, i. e. actions that (similarly to sensory actions) can
change the belief state of another agent in specific circum-
stances, or as requests which correspond to questions and
commands. Requests do not have to be modeled explicitly
in the MAPL domain, but automatically generated during
CCP; this is discussed in the next section.

MAPL goals correspond to PDDL goal formulae. How-
ever, MAPL has two additional goal-like constructs: Tem-
porary subgoals (TSGs) are mandatory, but not necessar-
ily permanent goals, i. e. they must be satisfied by the plan
at some point, but may be violated in the final state. Asser-
tions, on the other hand, describe optional “landmarks”, i. e.
TSGs that may helpful in achieving specific effects in later
phases of the continual planning processes, which cannot be

fully planned for yet because of missing information [4, 3].
For example, the MAPL domain used for Fig. 1 contains an
assertion which, informally speaking, states that in order to
get something one must first know where it is. Assertions
are related to HTN methods but do not need an explicitly
given decomposition hierarchy.

MAPL plans differ from PDDL plans in being only par-
tially ordered. This is inevitable since we assume that there
is no central executive which could guarantee a totally or-
dered execution. We use the term asynchronous plans
since MAPL plans also allow for concurrent occurrence of
actions. An asynchronous plan that guarantees that the im-
plied knowledge preconditions will be satisfied during execu-
tion (e. g. by explicitly naming the perceptions to be made
and speech acts to be used) is called self-synchronizing
plan because it “explains” how the agents can coordinate
their behavior during execution.

3. CONTINUAL COLLABORATIVE PLAN-
NING

Continual Collaborative Planning (CCP) agents switch
between planning, partial plan execution, monitoring, plan
adaptation and communication. Alg. 1 gives a high-level de-
scription of the CCP algorithm. CCP is specified as a Dis-
tributed Algorithm, i. e.the current state of the algorithm
not only depends on what the agent has been doing, but
also on the messages received from others.

Algorithm 1 CCP Agent(S, G)

P = ∅
Received no message:

if S satisfies G do
return “goal reached”

else
P = MonitoringAndReplanning(S, G, P )

if P = ∅ then
return “cannot achieve goal G”

else
(S, P ) = ExecutionAndStateEstimation(S, P )

Received (tell-val vx) from agent a:
add v

.
=x to S

Received request(e) from agent a:
sg = TranslateRequestToGoal(e)
P = MonitoringAndReplanning(S, G ∪ sg, ∅)
if P = ∅ then

send “cannot execute request e” to a
else

add sg to G as temporary subgoal

We will first discuss the base case where no messages have
been sent or received yet by the CCP agent. Roughly speak-
ing, the agent alternates between (re-)planning and acting
in this case. The two phases are detailed in Algs. 2 and 3.
Alg. 2 shows how a new planning phase is triggered: The
agent monitors whether his current plan has become invalid
due to unexpected events or changes in his goals. If this
is the case, the agent adapts its plan by replanning those
parts that are no longer executable. In order to exploit the
power of state-of-the-art planning systems, Alg. 2 uses an
unspecified classical planner Planner; cf. the next section
for details about the planner used in our implementation.

As soon as a CCP agent has found (or repaired) a valid
plan it enters the execution phase, described in Alg. 3. First,



Algorithm 2 MonitoringAndReplanning(S, G, P )

if res(S, P ) 6⊇ G
RemoveObsoleteSuffixGraph(P)
P ′ = Planner(A, res(S, P ), G)
P = concat(P, P ′)

return P

an action on the first level of the plan, i. e. one whose pre-
conditions are satisfied in the current state, is chosen non-
deterministically. If the action is controlled by the CCP
agent himself, it is executed. If not, the planning agent tries
to determine whether the action was executed by its control-
ling agent. In both cases, the CCP agent will try to update
its knowledge about the world state based on the expected
effects and the actual perceptions made (Fuse function).

Algorithm 3 ExecutionAndStateEstimation(S, P )

e = choose a first-level event from P
if e =’negotiate plan with agent a’

r = SelectBestRequest(P, a)
send request(r) to a

else if agt(e) = self then
execute(e)

S′ = app(S, e)
exp = ExpectedPerceptions(S′, As)
perc = GetSensorData()
if perc ⊇ exp or exp = ∅ then

remove e from P
S = Fuse(S′, perc)
return (S,P)

The most important case for collaboration is the one where
the chosen action is negotiate plan. This means that the
CCP agent is in a situation where he can communicate with
another agent that he intends to collaborate with, i. e. his
plan includes at least one action controlled by the other that
the latter has not yet committed to. In this case, the CCP
agent will send a request to the corresponding agent. How-
ever, if a plan contains several actions by another agent, i. e.
a whole subplan, it is often best not to request execution of
the actions individually, but to simply ask for the the final
action in the subplan or its end result. In other situations it
may even be reasonable to request the achievement of sub-
plans that include more than one agent. CCP does not stip-
ulate a specific implementation of SelectBestRequest.
Several variants will be discussed in Section “Analysis”.

When an agent receives a request, Alg. 1 enters into a new
phase. First the request is translated into a goal formula [2]
and tested for achievability. There are several reasons for
this: What matters to the other agent is usually not the
exact action, but its result, i. e. the achievement of a goal or
precondition for a subsequent action by the requesting agent.
Additionally, when interaction happens in natural language,
e. g. in HRI, requests use referring expressions (e. g. “clean
the dirty plates”) which are easier to model as goal con-
straints than as actions [2]. Accepted requests are adopted
as temporary subgoals (TSGs). This means that they must
only be achieved temporarily and do not have to hold any
more when the agent’s main goal is achieved.

The adoption of requests as TSGs is a crucial element of
CCP that, to the best of our knowledge, has not been de-
scribed in other (Distributed) Continual Planning approaches:
In addition to repeatedly revising their beliefs about the

(1) Anne: request R2D2 ’give R2D2 coffee Anne’.
(2) R2D2: accept request ’give R2D2 coffee Anne’.
(3) R2D2: request Anne ’tell val Anne R2D2 pos(coffee)’.
(4) Anne: execute ’tell val Anne R2D2 pos(coffee)’.
(5) R2D2: ack achieved ’tell val Anne R2D2 pos(coffee)’.
(6) ...

Figure 2: The MAPSIM run of Fig. 1 without NL
verbalization.

world, CCP agents also perform continual goal revision. In
the simplest case, this leads to short information-seeking
subdialogues, as in lines 3–5 of Fig. 1. But newly adopted
TSGs also explain why agents engage in jointly solving more
complex subproblems that mix physical and communicative
actions (as in lines 6–9 of the same example).

4. MAPSIM
Continual Planning approaches can only be tested in en-

vironments where agents can actually execute, monitor and
revise their plans. Distributed Continual Planning agents
additionally must be able to interact. To this end we have
developed MAPSIM, a software environment that automati-
cally generates multiagent simulations from MAPL domains.
In other words, MAPSIM interprets the planning domain as
an executable model of the environment. Thus, MAPSIM
allows designers of DCP algorithms to evaluate their ap-
proaches on various domains with minimal effort.

MAPSIM parsed and analyzes a MAPL domain descrip-
tion and turns it into perception, action, and communication
models for CCP agents. During the simulation, MAPSIM
maintains and updates the global world state and it uses the
sensor models to compute individual and joint perceptions of
agents. The agents interact with the simulation by sending
commands in the form of plain MAPL actions. The simula-
tor then executes the action, i. e. it checks the preconditions
and applies effects as specified in the MAPL domain. If the
controlling agent of a command is not identical to the agent
who sent it to the simulator this is interpreted as a request
which, of course, is not directly executed but passed on to
the corresponding agent. MAPSIM also accepts some spe-
cific commands for acknowledging subgoal acceptance and
subgoal achievement.

Agents do not need to know anything about how their
actions are executed. Thus, they can implement arbitrary
deliberative or reactive methods to determine their behavior
and their reactions to requests. We believe that this can
make MAPSIM a valuable evaluation tool even when the
DCP algorithms investigated differ significantly from CCP.

MAPSIM, as well as the CCP agents described in this pa-
per, are implemented in Python. The generic planner cur-
rently used for CCP is a slightly modified version of Axioms-
FF [13]. To enable the use of a classical PDDL planner like
FF, the MAPL domain is compiled to PDDL (details of the
compilation process will be given in a future publication).
Due to using a state-of-the-art planning system as a sub-
solver, MAPSIM can generate multiagent plans very quickly.
For example, during the MAPSIM run of Fig. 1 CCP called
the Planner function 13 times with a total planning time
of less than half a second on a 1.6 GHz AMD Athlon.

CCP was designed to be applicable in environments where



artificial agents must collaborate with humans. In order
to investigate the necessary natural-language interactions
MAPSIM includes a verbalization module called the reporter
agent. The reporter observes all events in the simulation and
verbalizes them using a simple template engine that extracts
most nouns, verbs and adjectives from the MAPL domain
automatically (but can easily be extended with domain-specific
verbalization patterns). Fig. 1 is a direct, unaltered output
of the reporter. Fig. 2 shows the beginning of the same run
with reporting turned off.

5. RELATED WORK
This work integrates ideas from several subfields of AI, in

particular Classical and Distributed Planning, Multiagent
Systems, Epistemic Logic, and Dialogue Systems. We can
only discuss some prototypical related work here.

Continual Planning is often implemented by simply switch-
ing repeatedly between planning and execution. Previous
work that more tightly integrates planning, monitoring, ex-
ecution and information gathering includes [6, 11, 8]. Our
work introduces the concept of assertions and extends CP
to the multiagent case, as proposed by desJardins and col-
leagues [5]. Most work within this field relies on the use
of hierarchical action and plan representations. In contrast,
CCP could be said to decompose planning problems over
time by postponing and “outsourcing” subproblems to other
agents. The two approaches are not mutually exclusive and
CCP could be adapted easily to hierarchical planning.

The explicit inclusion of beliefs and mutual beliefs in our
planning approach follows BDI models of multiagent plan-
ning, e. g. the SharedPlans model of Grosz and Kraus [9]
that describes the role of (mutual) beliefs as necessary con-
ditions for planful MA behaviour. By explictly modeling
perception and copresence, our approach complements such
approaches to MA plans, since it can explain how knowl-
edge conditions for joint behaviour can be achieved during
the CCP process.

Our CCP approach is also close in spirit to frameworks for
collaborative dialogue [12, 1]. Due to our use of a general-
purpose planning method, these approaches can deal with
more elaborate linguistic phenomena. However, CCP pro-
vides a natural explanation for the causal reasoning occuring
during situated dialogue planning, because the generated di-
alogues directly depend on the agent’s knowledge about the
current situation and its physical actions in the world.

6. CONCLUSION AND FUTURE WORK
We have presented a novel algorithm for Distributed Con-

tinual Planning called Continual Collaborative Planning (CCP).
It extends the idea of planning for active information gath-
ering to planning for communication, and shows how col-
laborative behaviour emerges from negotiation about the
joint adoption of temporary subgoals. The approach has
been evaluated in MAPSIM, a new software tool that auto-
matically generates MA simulations from formal multiagent
planning domains.

An important practical benefit of CCP is its firm ground-
ing in classical AI planning research. Not only did this al-
low us to exploit the power of a state-of-the-art planner in
our implementation, it also facilitates comparison with and
adaption of classical planning techniques to multiagent plan-
ning. Our simulation tool MAPSIM allows for the simple

evaluation of MAP approaches on a wide number of plan-
ning domains. Indeed, MAPSIM substantially facilitates the
design of such domains, because they can be immediately
“run” and tested. We are currently adapting existing PDDL
domains for MAPSIM and will use them in an empirical
study of CCP on a wide range of such benchmarks.

In CCP communication is regarded as a special case of
standard action planning, i. e. communication arises when-
ever it is causally relevant for achieving the goals of an agent.
In linguistic terms, communication planning happens on the
pragmatic level, i. e. a communicative action describes how
to achieve communicative intentions. As a result, the Col-
laborative Continual Planning algorithm presented is able
to integrate action and communication planning seamlessly.
This opens up many possibilities for future research on dia-
logue as a form of Collaborative Continual Planning.

7. ACKNOWLEDGMENTS
This work has been supported by the EU in the Integrated

Project “CoSy” (FP6-004250).

8. REFERENCES
[1] N. Blaylock, J. Allen, and G. Ferguson. Managing

communicative intentions with collaborative problem
solving. In Current and New Directions in Dialogue.
Kluwer, 2003.

[2] M. Brenner. Situation-aware interpretation, planning
and execution of user commands by autonomous
robots. In Proceedings of IEEE RO-MAN 2007, 2007.

[3] M. Brenner. The multiagent planning language
MAPL. Technical report, Albert-Ludwigs-Universität,
Institut für Informatik, Freiburg, Germany, 2008.

[4] M. Brenner and B. Nebel. Continual planning and
acting in dynamic multiagent environments. In Proc.
PCAR-06, 2006.

[5] M. DesJardins, E. Durfee, J. C. Ortiz, and
M. Wolverton. A survey of research in distributed,
continual planning. The AI Magazine, 1999.

[6] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh,
and M. Williamson. An approach to planning with
incomplete information. In Proc. KR-92, 1992.

[7] M. Fox and D. Long. PDDL 2.1: an extension to
PDDL for expressing temporal planning domains.
JAIR, 2003.

[8] K. Golden. Leap before you look: Information
gathering in the PUCCINI planner. In Proc. AIPS-98,
1998.

[9] B. J. Grosz and S. Kraus. Collaborative plans for
complex group action. Artificial Intelligence, 86, 1996.

[10] M. Helmert. The Fast Downward planning system.
JAIR, 26:191–246, 2006.

[11] C. A. Knoblock. Planning, executing, sensing, and
replanning for information gathering. In Proc.
IJCAI-95, 1995.

[12] K. E. Lochbaum. A collaborative planning model of
intentional structure. Computational Linguistics, 1998.

[13] S. Thiebaux, J. Hoffmann, and B. Nebel. In defense of
axioms in PDDL. In Proc. IJCAI, 2003.

[14] M. Yokoo and K. Hirayama. Algorithms for
distributed constraint satisfaction: a review.
Autonomous Agents and Multi-Agent Systems, 3(2),
2000.




