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ABSTRACT
There is growing interest in multi-robot frequency-based patrolling,
in which a team of robots optimizes its frequency of point visits,
for every point in a target work area. In particular, recent work
on patrolling of open polygons (e.g., open-ended fences) has pro-
posed a general cooperative patrolling algorithm, in which robots
move back and forth along the polygon, in an synchronized man-
ner, such that their assigned areas of movement overlap. If the
overlap factor is carefully chosen—based on the motion models of
the robots—specific performance criteria are optimized. Unfortu-
nately, previous work has presented analysis of motion models in
which there are no errors in the movement of the robots, and no
velocity changes. We go a step beyond existing work, and develop
a realistic model of robot motion, that considers velocity uncer-
tainties. We mathematically analyze the model and show how to
use it to find optimal patrolling parameters, given known bounds
of uncertainty on the motion. We then use the model to analyze
the independently-programmed patrolling movements of physical
robots, in extensive experiments. We show that the model predicts
the behavior of the robots much more accurately than previously-
described models.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles

; I.2.11 [Distributed Artificial Intelligence ]: Multiagent Sys-
tems

General Terms
Algorithms, Experimentation, Security

Keywords
Multi-Robotics, Multi-robot path planning, Motion planning, Team
planning

1. INTRODUCTION
There is growing interest in frequency-based multi-robot pa-

trolling (also known as repeated coverage) in which a team of
robots optimizes its frequency of point visits, for every point in
a target work area [2, 3, 7], or a target polyline circumscribing the
work area [17]. Several optimization criteria are possible, such as
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uniformity of point-visit frequency, increased average frequency,
etc. [7]. Frequency-based patrolling is a task useful for applica-
tions such as waste cleaning and monitoring [4, 14], and surveil-
lance [17].

Recent work has begun to address patrolling of polylines that
describe an open polygon, where the two extremities of the poly-
lines are not connected (e.g., as in open-ended fences). A gen-
eral algorithm for cooperative multi-robot patrolling in such cases
is described in [8]. Here, robots move back and forth along the
polygon, in an synchronized manner, such that their assigned areas
of movement overlap. Patrolling of open polygons pose signifi-
cant challenges to frequency-based performance criteria, because
in open polygons, robots reaching the endpoints necessarily have
to backtrack over points that they just visited, thus visiting them
again immediately after the previous visit. By carefully choosing
the overlapping factor, the negative effects of the endpoints can be
mitigated.

Unfortunately, previous work has presented analysis of motion
models in which there are no errors in the movement of the robots,
no velocity changes, and no uncertainty in the planned trajecto-
ries. In particular, the analysis assumes that robot movement along
longer segments of the polylines are are handled at exactly the same
velocity as shorter distances, i.e., that the velocity is independent of
the number of polyline segments assigned to the robot. This does
not allow analysis of patrolling performance in realistic settings,
where traveling longer distances often involve accumulating mo-
tion errors, which result in increasing delays and velocity shifts.

We thus go beyond existing work, and develop a realistic model
of robot motion, that considers real-world velocity uncertainties
and accumulating motion errors. We mathematically analyze the
model and show how to use it to find optimal patrolling parameters,
given the velocity profile of the robot for different travel distances.
The model we develop can therefore account for accumulating er-
rors in motion, and handle bounds on the expected performance of
the robots.

To evaluate the efficacy of the realistic model, we have con-
ducted extensive experiments, using independently-programmed
physical robots, patrolling a mock fence in our lab. The robots
were programmed to follow the general overlapping patrol algo-
rithm [8], without imposing any a-priori restrictions on their mo-
tion. Post-hoc analysis revealed that the model presented in this
paper accurately predicts the actual behavior of the robots, and is
significantly more accurate than the theoretical model described in
previous work.

2. RELATED WORK
Many previous investigations have focused on multi-robot pa-

trol inside an area. Elmaliach et. al [7] pose patrolling as a
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visit-frequency optimization problem, and describe three optimiza-
tion criteria: Maximizing the minimal visit frequency (bounding
the worst frequency from below), maximizing the average fre-
quency, and maintaining maximally-uniform frequency (e.g., with
the smallest frequency standard deviation). They present an algo-
rithm for multi-robot patrol inside a closed area where movement
direction and velocity constraints may change between different
portions. Their algorithm generates a minimal-cost cyclic path vis-
iting all points in the area, satisfying all frequency optimization cri-
teria they describe. In contrast to this work, this paper focuses on
patrolling along an open polygon, rather than inside an area. Here,
no circular path is possible, and thus the algorithms previously pre-
sented cannot apply.

Another approach to patrolling an area is to divide the area be-
tween the robots to sub areas, where each robot is responsible for
the sub area it is positioned in. Ahmadi and Stone [2] describe
a negotiation-based approach for dividing the area between the
robots. Guo et. al ( [12,13]) also divide the area between the robots
while focusing on their localization and sensing capabilities. In this
paper, the division of the polygon into segments is done based fre-
quency optimization criteria, rather than negotiations. The robots
are assumed to be cooperative, and acting as a team.

Ryale et al. [16] and Girard et al. [11] describe architectures for
multiple robot patrolling a border (a polyline), using unmanned
aerial vehicles. These systems focus on allowing a single opera-
tor to operate and command multiple robots. They do not address
point visit optimization criteria. In contrast to these investigations,
our work focuses on autonomous patrolling, taking into account ve-
locity constraints along the path, and optimizing frequency-related
criteria.

Correll and Martinoli [5, 6] describe a distributed coverage for
swarm robots, which combines elements of both area and bound-
ary coverage. They implement their idea on swarm robots to cover
turbine elements aligned on a surface area. Thus the robots have
to cover the work area completely, yet each detected element is
to be circumscribed by the robots. The main idea is to combine
probabilistic and deterministic models in order to achieve better
real-world performance. However, this work does not address fre-
quency of repeated coverage.

We emphasize that patrolling, as studied in this paper, is inves-
tigated from the point of view of optimizing point visit frequency.
ÂăThere are alternative optimization criteria for patrolling. For in-
stance, Paruchuri et. al. [15] and Agmon et al. [1] study patrolling
in adversarial environments, in which the robots’ goal is to maxi-
mize their rewards. These rewards are received if the robots man-
age to observe the adversary, which tries to evade the patrolling
robots.

3. POINT VISIT FREQUENCY
We first briefly remind the reader of frequency-based patrolling,

and the general frequency-based overlapping patrol algorithm (Sec-
tion 3.1). We then discuss a robot motion model that takes motion
errors into account (Section 3.2), and use it to analyze the perfor-
mance of the algorithm in realistic settings (Section 3.3).

3.1 Frequency-Based Overlapping Patrol
In frequency-based patrolling, a key challenge is to assign tra-

jectories to robots, such that the robots repeatedly visit points in a
target area or line, while optimizing some point visit-frequency cri-
teria. Earlier work on patrolling introduced three frequency-based
performance criteria for frequency-based patrolling [7]:

• Uniformity. The goal is to decrease the variance between

the frequencies in which each target is visited, i.e., all targets
should ideally be visited with uniform frequencyf .

• Maximal average. The goal is to increase the average fre-
quencyf in which targets are visited.

• Maximal minimum frequency (under-bounded fre-
quency). The goal is to increase the minimal frequencyf
with which any target point is visited, such that every target
is visited with frequency of at leastf . In other words, all
targets should be monitored at least once every1/f cycles.

Unfortunately, for a single robot, perfect uniformity of point visit
frequency is impossible to achieve in open polygon patrolling. The
fact that the fence is not circular prevents the robot’s path from be-
ing continuous and thus at some point the robot needs to change
direction. The direction change forces the robot to back-track over
points in the path that it has visited only moments before, and there-
fore the visit frequency is non-uniform along the path.

From a more formal perspective, the argument is as follows.
The basic motion for a single robot along a fence is monotonic
movement from left to right and vice versa. Suppose a robot is
patrolling a fence of lengthL. Let us focus on an arbitrary point
of interest along the fence, at a distanceX from one of the end-
points of the fence. Assuming a naive motion model, where turn-
ing does not take any time and there is no uncertainty in motion,
the times at which the point will be visited form the following se-
ries2X, 2(L−X), 2X, 2(L−X) (assuming unit velocity for sim-
plicity). The frequency of visits is therefore uniform only in the
midpoint of the fence (whenX = L/2), while the variance in visit
times grows towards the endpoints of the fence.

Previous work [8] has shown that usingr multiple robots, we can
improve the uniformity of the point visit-frequency (hereinafter,
frequency for brevity). All robots execute the frequency-based
overlapping patrol (FOP) algorithm (Algorithm 1). The key idea
in FOP is that each robot patrols more than a single segment. Each
robot begins by moving along its own segment, but then, depending
on theoverlap factor, may move into adjacent segment (while the
robot in this segment is moving into the next segment, etc.). Thus
the robots trajectories overlap in space, but not in time.

The FOP algorithm (Algorithm 1) calculates the patrol move-
ment for a robot in a fence where the overlap factor iso, robot i
is initially located in segmenti, and the number of segments isr
(equal to the number of robots). Each roboti (of ther robots that
participate in the patrol) runs this algorithm in a distributed fashion.
The algorithm assumes that the open polygon has already been di-
vided into r equal-time segments, and that all robots start at the
beginning of their assigned segments, facing towards the direction
of movement. Also, the algorithm assumes perfect communica-
tions (to allow the robots to synchronize their turns) and localiza-
tion along the fence.

The first step of the algorithm moves the roboto segments (by
the overlap factor). In case where the robot arrive to the right last
segment, ther − i + 1 value ensure that the robot will not move
beyond the fence boundary. The second step ensures that the robots
will synchronized and wait until the entire robots arrive to their
destination. The third step occurs only for the robots that collect at
the fence endpoint. They must wait until the other robots have left
the segment. In the fourth step each robot returns to the segment
that it started from. Finally, all robots turn in place, synchronized
again, and repeat the process.

The behavior of the robots in FOP is thus dictated by a single
parameter, the overlapping factoro. Figure 1 shows the trajectories
assigned to a fixed set of robots, for a given open polygon, using
different overlap factors.
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Algorithm 1 FOP(overlap factoro, robot idi, number of robotsr)

1. Move min(o,r − i + 1) segments, using the velocity con-
straints of each segment.

2. Turn in place and synchronize with others

3. If you are in the right edge segment wait until your left robot
neighbor is one segment far

4. Move to your base segment

5. Turn in place and synchronize with others

6. Return to step 1.

Figure 1: An illustration of the effect of overlap factor on FOP
behavior.

By carefully choosing the value of the overlap factoro, different
trajectories are generated, and as a result, different results along
the three optimization criteria. For instance, if we assume point
robots with precise positioning, and instantaneous turns, increasing
o leads to improved uniformity and maximal minimum frequency
in all segments which are visited byo robots (calledmiddle seg-
ments, while sacrificing the results in the segments adjacent to the
endpoints (edge segments) [8]. Since many applications have many
more middle segments than edge segments, this trade-off may be
beneficial.

The selection of an optimal overlap factor thus critically depends
on the model for the robot motion characteristics. Of course, in re-
ality, robots take non-zero space, do not necessarily have precise
positioning, and take time to turn. In the next section we will ex-
plore a realistic model that considers uncertainty in robot motion
and turning times.

3.2 Analysis of Point Visit Frequency
In analyzing the behavior of the FOP algorithm, we utilize the

following notations and definitions. In representing the polygon,
we usel for the polygon length, andr for the number of robots (and
the number of segments). We denote a point on a given segment by
p, defined by a fraction of the length of the segment,p ∈ [0, 1),
where for the leftmost point,p = 0 (left is arbitrary chosen for the
polygon).

DEFINITION 1 (OVERLAP FACTOR). The overlap factor is
the number of segments visited by each robot. We denote this factor
by o. Note that in the case of no overlap, o = 1.

Wheno > 1, not all segments are covered by an equal number
of robots. We usesi to denote the number of robots that visit a
specific segmenti. This creates a distinction betweenedge and
middle segments:

DEFINITION 2 (EDGE AND M IDDLE SEGMENTS). A seg-
ment i is called an edge segmentif o 6= si, or middle segment,

otherwise.

In Figure 1, foro = 1, all segments are middle segments. For
o = 2 (second set of trajectories), segmentA is covered by a single
robot and is an edge segment, while the others are middle segments.
Foro = 3, segmentsA, B are edge segments.

To represent the motion characteristics of the robots, we uset for
the time it takes robots to turn, andv to denote the robots’ velocity.
We assume homogeneous robots, and thus all robots turn and move
at the same velocity.

We depart from earlier work in using a functiond(x) to account
for the accumulation of errors in robot motion. LetT (x) denote
the time it would take a robot to pass a distancex. Under assump-
tion of no errors,T = x

v
wherev is the robot’s constant velocity.

However, in realistic settings, due to acceleration changes and ac-
cumulating errors in motion, the actual travel time is going to be
different: T = x

v
+ d(x). By choosing to represent the error in

travel time directly in terms of time, we bypass modeling the differ-
ent factors accounting for delays, and focus on the symptoms. Note
that we assume thed(x) is non decreasing function. Although in
principle it is possible that a robot will travel too fast due to errors,
in reality, this is rarely the case. For instance, a common source
of velocity errors in research-grade robots is battery decay. This
causes slowed motion, rather than acceleration.

We now analyze the visit frequency of a given pointp using
FOP, given the robots’ motion characteristicst andd. The func-
tion timep(l, r, p, v, o, s, n, t, d) calculates the time that passes be-
tween two subsequent visits (n − 1, n) to the pointp in a given
segmenti. By minimizing this function we improve the frequency
of visits to the pointp. The functiontimep(l, r, p, v, o, si, n, t, d)
is defined as follows.
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−d( l
r
([(n − 2) mod si] + p)) otherwise

(1)
The first condition in the formula (Eq. 1) is satisfied when the

robots change direction at the left edge of a segment (l
r

is a length
of a segment). The second condition is satisfied when the robots
change direction at the right edge of the segment, and the third
condition is satisfied in the overlapping regions.

Using Eq. 1, we can now construct the cyclic series which de-
scribes the times at which a pointp is visited. The series is given in
Eq. 2 below.

The first element is:

2
l

r

p

v
+ t + d(o

l

r
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r
) + d(p

l

r
)

Then the nextsi − 1 elements are of the form:
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r
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Then, one element:

2(1 − p) l
rv

+ 2(o − si)
l

rv
+ t + d(o l

r
)

−d((si + p − 1) l
r
) + d((1 − p + o − si)

l
r
)

And finally, si − 1 elements of the form:

si − 1
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rv

+ d((1 + p) l
r
) − d(p l

r
)

l
rv

+ d((2 + p) l
r
) − d((1 + p) l

r
)

...
l

rv
+ d((si − 1 + p) l

r
) − d((si − 2 + p) l

r

(2)

The first element of the series is the result of the first condition
in Eq. 1. It matches the situation where a robot returns to its base
segment and turns back until it meets the pointp again: 2 l

r

p

v
+

t + d(o l

r
) − d((o − p) l

r
) + d(p l

r
). It is constructed from three

components: (i) The time to arrive atp, based on the distance and
robot velocity, the time it takes the robot to turn and the time error
function, d; (ii) the time t it take the robot to turn around; and
(iii) the error (in travel time) due to the robot motion. The first
component is given by2 l

r

p

v
where l

r

p

v
is the time it takes the robot

to arrive from pointp to the left edge of the segment. We multiply
it by 2 since the robot needs to return from this edge to pointp. The
third component is given byd(o l

r
)− d((o− p) l

r
) + d(p l

r
), which

is a reduction ofd(o l
r
) − d((o − 1) l

r
+ (1 − p) l

r
) + d(p l

r
). This

value has two parts: uncertainty from pointp to the left edge and the
uncertainty from the left edge back to pointp. The uncertainty from
pointp to the left edge is equal tod(o l

r
)−d((o−1) l

r
+(1−p) l

r
)

which is the uncertainty of moving along all the (overlap) segments
(d(o l

r
)) minus the uncertainty of moving along all the (overlap)

segments until pointp. The uncertainty of moving from the left
edge to pointp is equal tod(p l

r
). Note that this model assumes

that motion time errors are set to zero once a robot halts and turns.
The second element in the cyclic series (Eq. 2), corresponds

to a neighboring robot that visits the pointp, due to any overlap.
The value is l

rv
+ d((1 + p) l

r
) − d(p l

r
). It is composed of two

factors: The time to arrive at the point (based on the distance and
velocity), and the travel-time error functiond. Since the robots are
in l

r
distances from one another, the pure time it takes an adjacent

robot to arrive the pointp (after it has just been visited by another
robot) is l

rv
. The componentd((1+ p) l

r
) comes from the adjacent

robot’s movement until it reaches pointp. We then subtract from it
d(p l

r
), the error in time originating with the first robot movements

as it leaves the pointp behind it.
Overall, the segmenti in question is visited bysi robots, each

twice (when moving left to right, and when moving right to left).
The previous two paragraphs described the visit times due to the
first two of these visits: The visit by original (first) robot, and a visit
by an adjacent robot. Any othersi − 2 robots follow the behavior
of the adjacent robot, thus overall there aresi − 1 elements due to
adjacent robots in the first part of the series, as robots move left to
right.

The othersi elements in the cycle of series are due to the the
robots turning and repeating the movement, but from right to left.
The next value (numbersi + 1) is 2(1− p) l

rv
+ 2(o− s) l

rv
+ t +

d(o l

r
)−d((s+p−1) l

r
)+d((1−p+o−s) l

r
). This is a reduction

of 2(1− p) l

rv
+ 2(o− s) l

rv
+ t + d(o l

r
)− d((s− 1) l

r
+ p) l

r
) +

d((1 − p) l
r

+ (o − s) l
r
). This value is similar in form to the first

value of the series.

3.3 Analysis of Patrolling Performance
In this section we analyze the performance of the FOP algorithm,

under the point-visit model proposed in Section 3.2. We remind
the reader of the three key performance criteria:Maximal average
frequency, maximal under-bounding frequency, andmaximal uni-
formity. We show how an optimalo may be computed for each of
these performance criteria.

3.3.1 Optimizing average frequency
The average time to visit a pointp in the i’th segment is given

the functionavgp, shown in Eq. 3. The functionavgp averages
the previously shown series in Eq. 2, by relying on the the function
sump (Eq. 4) to sum the times between visits to pointp in segment
i.

avgp(l, r, p, v, o, si, t, d) = 1
2si

sump(l, r, p, v, o, si, t, d) (3)

sump(l, r, p, v, o, si, t, d) =
2ol
rv

+ 2t + 2d(o l
r
) − d(p l

r
) − d((o − p) l

r
)

+d((si − 1 + p) l
r
) + d((1 − p + o − si)

l
r
)

(4)

In order to find the optimal overlap factoro that minimizes the
global average along all fence, we need to summarize all visit se-
quence of each point in all fence segment and minimizing this value
respectively too. We do this in two stages. First, we use an integral
from 0 to 1 on functionsump, with respect top, to sum all of the
visit intervals of all points in a specific segment. We then sum all
such integrals in all segments, and divide by the length of the entire
polygon.

Equations Eq. 5–6 show this process. The functionsum in equa-
tion Eq. 5 sums all the visit intervals of all points in all segments.
Here,S is the set of allsi. Then, the functionavg (Eq. 6) divides
the sum byl to get the average time between visits, over the entire
length of the open polygon.

sum(l, r, p, v, o, S, t, d) =
r

P

i=1

1
R

0

sump(l, r, p, v, o, si, t, d)dp

(5)

avg(l, r, p, v, o, S, t, d) = 1
l
sum(l, r, p, v, o, s, t, d) (6)

To find the optimalo value that minimizes theavg function 6
by looking for a minimal value, e.g., by using the first and second
derivative with respect too to determine minimum points. Since in
this article we did not place any restrictions on the structure ofd,
we refrain from doing so here. In practice, it should be done only
onced is known.

3.3.2 Maximal minimum frequency
For the under-bounded frequency criteria it is easy to determine

that the segmenti for which o − si is greatest, has the lowest fre-
quency of visits to segment points. The edge where this occurs is
known in advance—it is the leftmost edge segment (i = 1), which
is left alone for long periods of time when the robot responsible
for it is busy in the overlapping portions of its trajectory, and no
other robots visit it. As we move right, and more robots patrol the
segments, the better this measure becomes.

The worst time of visiting a point in the leftmost segment is (as
appears in equation Eq. 2):

2(1 − p) l
rv

+ 2(o − s1)
l

rv
+ t + d(o l

r
)

−d((s1 + p − 1) l
r
) + d((1 − p + o − s1)

l
r
)
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Thus if the maximal minimum criteria is important at the poly-
gon level (i.e, across all segments), then no overlap should be used.
settingo = 1 maximizes the minimal frequency in this case.

However, suppose we are instead seeking to examine the maxi-
mal minimum frequency per segment. In middle segments (where
o = si) the lowest frequency (the greatest time between visits) of
visiting a point will be the maximal value from the following op-
tions:

1. 2 l
r

p

v
+ t + d(o l

r
) − d((o − p) l

r
) + d(p l

r
)

2. maxo−1
i=1 ( l

rv
+ d((i + p) l

r
) − d((i − 1 + p) l

r
))

3. 2(1− p) l
rv

+ t + d(o l
r
)− d((o− 1 + p) l

r
) + d((1− p) l

r
)

The maximal value depends on the form ofd function and the point
p. We therefore leave further derivation out of this paper.

3.3.3 Maximal frequency uniformity
Following [7], we measure the uniformity of visit frequency by

the standard deviation of frequency values. Lower values indicate
improved uniformity, as it means that the frequency values for dif-
ferent pointsp are clustered more closely around the average fre-
quency.

The standard deviation of visiting a point along the polygon is
shown in equation 7. In order to find theo value that optimizes the
uniform frequency criteria (which decreases the standard deviation)
we need to differentiate equation 7 with respect to byo, and find
the value the minimizes this function.

v

u

u

u

t

r
P

i=1

(
1
R

0

(
2si
P

j=1

(timep(l,r,p,v,o,si,j,t,d)−avg(l,r,p,o,si,t,d))2)dp)

l
r

P

i=1

2si

(7)

Summary. The analysis in this section has shown how in princi-
ple it is possible to optimize the selection of the overlapping factor
o to maximize performance across three frequency-based criteria.
Thus given environment parameters (e.g., length of fence, number
of available robots) and robot motion characteristics (turning dura-
tion t, the error functiond), it is possible to determine the optimal
o. Naturally, by manipulating the analysis, it might be possible to
instead determine the optimal number of robots for a given over-
lapping factor, or the optimal turn duration for a given number of
robots and overlapping factor, etc. We leave this for future work.

4. EXPERIMENTS
To evaluate the usage of the new model we conducted a series

of experiments on physical robots, during which the robots are per-
forming patrols ofo = 1 ando = 2. The model discussed in this
paper predicted that an overlap of one (o = 1) would be better
for the given length of the fence. The robots were programmed by
students, without knowledge of the motion model developed here.
The experiment settings are discussed in Section 4.1. We recorded
the point visit frequencies in extensive trials, and conduct post-hoc
analysis, in which we compare the predictions of the model to the
actual behavior of the robots (Section 4.2).

4.1 Experiment Settings
Our experiments utilized a team three robots, patrolling a mock

fence, using Friendly robotics’ RV-400 [9] vacuum cleaning robots
(Figure 2). Each commercial robot was modified to be controlled

by a small Linux-running computer, sitting on top of it. A generic
interface driver for the RV-400 robot was built in the Player robotics
API [10], and a client program was built to control it. The robots
have 8 short-range sonar sensors, pointing forward and sideways,
which we utilize for maintaining distance to the mock fence. The
robot interface also provides rudimentary odometry readings (co-
ordinates and pose), which are unfortunately fairly inaccurate.

Figure 2: The RV-400 vacuum cleaner robot, with our lab’s
computer overriding its commercial control software.

The experiment settings consisted of a carton-box mock fence,
5.40 meters in length. The fence was divided into three equal-
length segments (180cm each). Figure 3 shows a birds-eye view
of the mock fence. Because the picture was taken at an angle, it is
difficult to see that the three robots are equidistant from each other.

We ran two sets of experiments. In the first, the overlapping fac-
tor was set to one (o = 1), and in the second set, the overlapping
factor was doubled (o = 2). The FOP algorithm—in its abstract
form—was described to students carrying out course projects in
the lab. Thus their implementation of the FOP algorithm is un-
tainted by our expectations, given our own knowledge of the mo-
tion characteristics model. This is a critical point in the design of
the experiment.

Independent variables. In the first set of nine patrol runs, the
robots had to complete one back and forth round with an overlap-
ping factor of 1, i.e., no overlap at all. In the second set of seven
experiments (originally, nine, but two were dismissed because a
weak battery caused noticeable slowdown in their movements), the

Figure 3: A snapshot from experiments.
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Figure 4: The deviation functiond(x) which measures the extra
time that the robot delays when moving a distancex, as a result
of uncertainty in movement and accumulating errors.

robots also had to complete one round trip, but this time with an
overlapping of 2, in which the leftmost and middle robot are also
responsible for the segment to their right.

Dependent variables.To measure frequency, we recorded movies
of the robots patrolling the fence, and later analyzed the video
recordings to determine the duration between subsequent visits to
points within each segment. Four sampling pointsp were selected
at a distance of 45cm, 225cm, 255cm, and 285cm from the left edge
of the fence. The 45cm point is on the leftmost edge segment, at
p = 45

180
= 1

4
. The other three points are respectively in the mid-

dle segment. Each patrolling run consisted of a number of visits to
each point, the results (below) are averaged over approximately 30
data-points (wheno = 2), or 20 data-points (o = 1).

To compare the measured results, we estimated thet andd pa-
rameters for the robots, from the recorded videos. We determined
that the turning duration for the robots was approximately 6 sec-
onds. The travel time error functiond(x) is shown in Figure 4.
It was estimated based on measurements of 10 different distances.
Here, the x-axis shows the distancex, and the y-axis measures the
error in travel time, compared to the predictions based on the robot
velocity alone. Note the monotonically increasing error function:
We remind the reader that this error function was not intentionally
built in, but was discovered ad-hoc, providing empirical support for
the assumptions we made earlier on regarding the monotonically-
increasing nature ofd.

4.2 Experiment Results
We calculated the predicted intervals of visitation according to

both the new model in this paper, and the older motion model in
earlier work [8]. This older model assumes robots maintain their
velocity precisely, and does not allow for the deviation functiond.
We contrasted the predictions of both models with the empirical
results observed in practice. In this comparison, adjustments were
made to the predictions of both new and old models, to account
for the size of the robot compared to the length of its segment (es-
sentially, the robot size was deducted from the distance traveled).
Both models assume that the robot size is insignificant relative to
the fence size, which is not true in laboratory conditions.

Point-level predictions.
We begin by a direct comparison of the two models, by specif-

ically focusing on the errors in their predictions for the sampling

(a) o = 2

(b) o = 1

Figure 5: Errors in predictions, and the sample standard devi-
ation. Lower values are better. The new model is always better
than that previously published.

points we chose earlier. In Figure 5 we present the average errors
of each model with respect to the observed results, and the standard
deviation for the observed results. In both sub-figures, the x-axis
shows the 4 sampled points along the fence, denoted by their dis-
tance in centimeters from the left edge of the fence. In the y-axis,
we present the error in seconds. The left bar shows the average er-
ror in the prediction of the previous model. The middle bar shows
the error in prediction for the new model, described in Section 3.2.
The right bar shows the sample standard deviation for the observed
results, for comparison.

Several conclusions can be reached based on Figure 5. First, for
both overlapping factor settings, the new model is clearly more ac-
curate than the older model; both Figure 5(a) and Figure5(b) clearly
shows a substantial reduction in error in the new model (middle
bar), compared to the old model (left bar).

Second, in most cases, the average errors of the new model are
approximately equal to the standard deviation of the observed re-
sults. This suggests that the new model is not justrelatively ac-
curate (being superior to the previous model), but alsoabsolutely
accurate, in that the error is indistinguishable from the normal ob-
served varying measurements.

Segment-level predictions.
We now abstract away from specific points along the fence, and

turn to examine the predictions of the model at the segment level.
Figure 6 contrasts the segment level average frequency, unifor-
mity (as measured by the frequency standard deviation) and maxi-
mal minimum frequency for two segments: The leftmost segment
(which, wheno = 2 is an edge segment), and the middle seg-
ment. Each sub-figure shows two groups of bars. The left group of
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bars shows the results for the leftmost (edge) segment. The right
group of bars shows the results for the middle segment. Within each
group, the leftmost bar shows the predictions of the old model [8],
the middle bar shows the predictions of the new model, and the fi-
nal bar shows the actual results (averaged over the different runs).
Sub-figures should be contrasted vertically: The top row of figures
show the frequency criteria measurements foro = 1, and the bot-
tom row shows the measurements, for the same criteria, foro = 2.

Again, multiple issues are raised by the comparison. First, by
contrasting predictions of the old and new models with the actual
results (i.e., within each group of bars), we again see that the new
model, developed in this paper, accurately predicts the observed
behavior of the robots in practice. To see this, we look at the sta-
tistical significance of the differences between the predictions of
the old model and the experiment results, versus the significance
of the difference between the predictions of the new model and the
results.

We find that generally, in terms of average frequency and uni-
formity of frequency, the predictions for theold model are statisti-
cally significantly different than the experiment results (two-tailed
Z-test,p < 0.05). This implies that the old model does not accu-
rately predict the experiment results. However, there is no statis-
tically significance difference between the predictions of the new
model and and the results. While this does not prove they are the
same (i.e., that the new model is accurate), it does lend support to
this hypothesis. For the maximal minimal-frequency criteria, both
the old and new model are not, in general, significantly different
than the results.

Second, by examining the left and right groups of bars within
each sub-figure, and contrasting them vertically. We see a clear
qualitative difference between the middle and edge segments (when
o = 2), which is not present in the caseo = 1. This distinction
between the results of the FOP algorithm in middle and edge seg-
ments, foro > 1 is theoretically predicted by the analytical models
developed previously and in this paper. In this respect, selecting
o = 1 may be a better choice, if one does cannot allow variability
in patrolling frequency at the segment level.

Third, by contrasting individual groups of bars vertically, we can
begin to see where there may be an advantage to the overlapping
group (o = 2). For the middle segments, the results of the average
and maximum minimum frequency are essentially the same foro =
2 as foro = 1. However, we can also see that the uniformity of the
middle segments in the case ofo = 2 is much improved compared
to the case ofo = 1 (Figures 6(c) and 6(f)).

Polyline-level predictions.
Finally, we discuss the results of the experiments in terms of

the entire length of the polyline, encompassing all three segments.
Based on Equation 7 above, the model predicts that for the given
length (5.40cm), number of robots (3), and their motion param-
eters, an overlap of 1 (o = 1) is preferable. The results of the
experiments with real robots show that the standard deviation of
visits in the case ofo = 1 is 10.945, while in the case ofo = 2, the
standard deviation is 19.745. Thus as predicted, an overlap factor
one is preferable in terms of uniformity of point-visit frequency.

Note that these results are for the specified parameters. For in-
stance, if there were 5 robots, an overlap of two (o = 2) would
have been better. And had there been a longer polyline, the overlap
could have changed as well: The longer the polyline—the greater
the number of middle segments—the more advantageous it would
likely be to useo > 1: The effects we are seeing here for the mid-
dle segment would be the same for all middle segments, however
many; while there will only be a few edge segments regardless of

the length of the polyline.

5. CONCLUSIONS
Frequency-based multi-robot patrolling, in areas or on their

boundaries, is an area of significant interest for defense and civilian
applications. Recent previous work has begun to examine bound-
ary patrolling of open polygons (i.e., visiting points on a polyline).
Such patrolling is very challenging, because the robots must inher-
ently backtrack over their position when they reach an endpoint,
and thus uniformity of point-visit timing cannot be perfectly main-
tained. A skeleton algorithm for patrolling, which allows robot
trajectories to overlap in space (but not in time) has been proposed,
but has not been evaluated in physical robots. Instead, an analytical
model of its behavior was presented in [8].

We develop a more realistic analytical treatment of the perfor-
mance of the algorithm with multiple patrolling robots. We de-
velop a realistic model of robot motion, that considers real-world
uncertainties and accumulating motion errors. We mathematically
analyzed the model, and then used it to predict the empirically ob-
served behavior of robots patrolling with different overlapping fac-
tors; robots that have not been developed with the model in mind.
The results of extensive experiments show that the new model is not
only more accurate relative to previous models, but is also accurate
on an absolute scale.

Much remains for future work. Given the inherent difficulty of
maintaining uniform patrolling frequency, we are considering ways
of using it to the robot’s advantage. We are also interested in ex-
tending the algorithm to handle more detailed models of errors, and
their causes.
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