
A Coordination Mechanism for Swarm Navigation:
Experiments and Analysis

(Short Paper)

Leandro Soriano Marcolino
VeRLab – Vision and Robotics Laboratory

Computer Science Department - UFMG - Brazil
soriano@dcc.ufmg.br

Luiz Chaimowicz
VeRLab – Vision and Robotics Laboratory

Computer Science Department - UFMG - Brazil
chaimo@dcc.ufmg.br

ABSTRACT
We present an algorithm that allows swarms of robots to
navigate in environments containing unknown obstacles, mov-
ing towards and spreading along 2D shapes given by implicit
functions. Basically, a gradient descent approach augmented
with local obstacle avoidance is used to control the swarm.
To deal with local minima regions, we use a coordination
mechanism that reallocates some robots as “rescuers” and
sends them to help other robots that may be trapped. The
main objective of this paper is to analyze the performance of
this algorithm in terms of its completion rate and communi-
cation requirements as the number of robots increases. For
this, a series of simulations are presented and discussed.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles

General Terms
Algorithms, Experimentation

Keywords
Swarms, Multi-Robot Coordination

1. INTRODUCTION
The use of large groups of robots, generally called swarms,

in the execution of complex tasks has received much at-
tention in recent years. Inspired by their biological coun-
terparts, these systems employ a large number of simpler
agents to perform different types of tasks. Swarms of robots
may bring performance gains, by dividing the work among
the team, and also increased robustness, by having robots
with redundant capabilities and dynamically reconfiguring
the team in case of failures. But, on the other hand, swarms
must execute in a completely decentralized fashion and us-
ing limited communication. Hence, new algorithms to con-
trol and coordinate these very large groups of robots must
be developed.

We recently proposed a coordination mechanism that al-
lows swarms of robots to overcome local minima regions
Cite as: A Coordination Mechanism for Swarm Navigation: Experi-
ments and Analysis (Short Paper), Leandro Marcolino, Luiz Chaimowicz,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons
(eds.),May,12-16.,2008,Estoril,Portugal,pp.1203-1206.
Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

while navigating to a specific goal [5]. Basically, robots that
reach the goal can be reallocated as rescuers and retrace
their paths to help teammates that may be stuck in local
minima. In this paper, we revisit this mechanism, care-
fully analyzing its performance in terms of its completion
rate and communication requirements as the number of ro-
bots increases. Based on this analysis, we discuss some key
aspects and propose improvements to the mechanism that
would make it more efficient and robust.

Motion planning and control for large groups of robots has
received a great deal of attention in recent years. A general
approach in the literature is to control robots in a decentral-
ized way, trying to mix gradient descent with local repulsion
forces [1]. Unfortunately, as in regular potential field ap-
proaches, the presence of obstacles and local repulsion forces
among the robots may cause convergence problems, mainly
when robots are required to synthesize shapes. Hsieh and
Kumar [3] are able to prove convergence properties and the
absence of local minima for specific types of shapes and en-
vironments. Also, special types of navigation functions can
be used to navigate swarms in cluttered environments [6].
But these approaches may be hard to compute in real time
and may not be applicable to all types of environments.

Besides motion planning, certain types of tasks may re-
quire a greater level of coordination to be executed. When
dealing with swarms, coordination mechanisms have to scale
to tens or hundreds of robots. Scalable approaches for the
coordination of large groups of agents (not necessarily ro-
bots) have been proposed in [2, 4, 7] among others. Scerri
et al. [7] for example, present an algorithm called LA-DCOP
that uses tokens to encapsulate task information. These to-
kens circulates through subsets of agents in order to find a
suitable agent for task execution.

In our approach, instead of restricting the environment
or developing complex controllers and coordination mech-
anisms, we rely on the composition of a gradient descent
controller and a simple coordination mechanism to navigate
swarms in environments containing unknown obstacles. As
will be shown in Section 3, this approach provides a good
completion rate and is scalable to large numbers of robots.

2. CONTROL AND COORDINATION
The overall mission to be executed by the swarm can be

stated as follows: robots must move towards and spread
along a goal region in an environment containing unknown
obstacles. For doing this, they are controlled by a gradient
descent augmented with local repulsion forces, as detailed
in [5].

1203



The composition of these forces can lead to local minima
regions. Since robots are attracted by the goal and repelled
by obstacles and other robots, they can be trapped in regions
where the resultant force is zero or where the force profile
leads to repetitive movements. In general, the local minima
regions depend on the shape of the obstacles and on the
number of robots. So, it is difficult to model these regions
precisely and there are no formal guarantees that the robots
will converge to the desired pattern. To overcome this, we
use coordination strategies that allow robots to escape from
local minima with the help of their teammates.

Our coordination is based on a mode switching mecha-
nism, generally known in robotics as dynamic role assign-
ment [8]. A robot can switch between different modes (or
roles) during the execution of the task. Each mode deter-
mines a different behavior for the robot and will be executed
while certain internal and external conditions are satisfied.

These modes can be better modelled by a finite state ma-
chine (FSM), in which the states and edges represent respec-
tively the modes and the possible transitions between them.
In the mechanism presented in this paper, the FSM for each
robot is shown in Figure 1. It is composed of five different
modes: normal, trapped, rescuer, attached and completed.

Figure 1: Finite state machine showing the possible
modes and transitions for each robot.

All robots start in the normal mode. A normal robot
performs a gradient descent trying to reach the goal while
avoiding obstacles. A normal robot switches its mode to
trapped, if it considers itself trapped in a local minima region.
This transition is determined by the variation in the robot’s
position over time. If its position does not change signifi-
cantly during a certain amount of time, it becomes trapped.
A trapped robot may switch back to normal if its position
changes considerably again. Sometimes, due to the resultant
forces in the controller, robots may switch to trapped even if
they are not in a local minima region. These “false-positives”
do not compromise the performance of the algorithm since
trapped robots also perform gradient descent.

A trapped robot acts similarly to a normal one, except
for the following facts: (i) a trapped robot strongly repels
another trapped robot and this repulsion is stronger than the
one between two normal robots. As a local minima region
tends to attract many robots, the local interactions through
these stronger repulsion forces will help some of the robots to
escape this region; (ii) trapped robots accept messages from
rescuers or attached robots that will help them to escape
from local minima and move towards the target.

When a robot arrives at the target it may become a res-
cuer. Basically, when moving towards the goal, a robot saves
a sequence of waypoints that is used to mark its path. If it
becomes a rescuer it will retrace its path backwards looking
for trapped robots. After retracing its path backwards, the
robot moves again to the goal following the path in the cor-
rect direction. The number and frequency of rescuer robots
are set empirically and may vary depending on the total
number of robots and characteristics of the environment.

The algorithm used to determine which robots become res-
cuers is explained in [5]. In order to minimize memory re-
quirements, the robot discards redundant information in the
path stored. Therefore, if there is a straight line in the path,
ideally only two waypoints will be used.

A trapped robot keeps sending messages announcing its
state. When a rescuer listens to one of these messages, it
broadcasts its current position and its path. Any trapped
robot will receive the message if it is within a certain dis-
tance from the rescuer and there is a direct line of sight
between them. After receiving it, the trapped robot changes
its mode to attached. An attached robot will move to the
received position and then follow the received path to the
goal. An attached robot can also communicate with other
trapped robots, spreading the information about the feasible
path to the goal, creating a powerful communication chain.
Finally, a robot will change its mode to completed when it
reaches the target. As mentioned, completed robots may
become rescuers according to the coordination tokens.

3. SIMULATIONS
A series of simulations were performed to better observe

the performance of the proposed mechanism. Basically, we
would like to analyze two main aspects: (i) the effectiveness
of the algorithm in terms of its completion rate, i.e., the
percentage of robots that are able to reach the target, and
(ii) the scalability of the mechanism, mainly in terms of its
communication requirements. Two scenarios were used in
this analysis (Figure 2). The first one is composed by a
square target surrounded by four u-shaped obstacles. The
second scenario has a large u-shaped obstacle between the
initial position of the robots and the target. Each simulation
was executed 10 times and the arithmetic mean of the results
was calculated.

Figure 2: Two scenarios used in the simulations.

1204



3.1 Effectiveness
To analyze the effectiveness of the algorithm in overcom-

ing local minima, we performed a series of simulations where
we measured the number of “failure robots”, i.e., robots that
were not able to reach the target, as we increased the to-
tal number of robots. We compared the performance of the
proposed algorithm (from now on called RESCUER Algo-
rithm) with two others: a PLAIN Algorithm, in which ro-
bots do not have any strategy to escape local minima and a
RANDOM Algorithm, in which random forces are applied
to trapped robots. Basically, in the RANDOM Algorithm,
when a robot is in the trapped state, it is subjected to a force
in a randomly chosen direction, for a randomly chosen time
to try to escape the local minima region.

The graph on the top of Figure 3 shows the number of
“failure robots” for the first scenario. For the RESCUER Al-
gorithm, the number of failures increases for a small number
of robots, than it tends to decrease as the total number of
robots increases. The initial increase is related to the fact
that, with fewer robots, the local repulsions in some of the
u-shaped obstacles are not strong enough to free some ro-
bots to become rescuers and help the others. Despite this
fact, the percentage of failure tends to decrease as the num-
ber of robots gets higher, indicating the rise of the quality of
convergence as we increase the number of robots. The per-
formance of RANDOM was better when less than approxi-
mately 250 robots were used. For more than 250 robots, the
algorithm could not improve the completion rate anymore,
while the results of the RESCUER Algorithm continued to
get better. Compared to the others, the PLAIN algorithm
had a very low quality of convergence, as it cannot do any-
thing to overcome local minima situations.

In the second scenario, the benefits of the proposed algo-
rithm are more clear. In the second graph of Figure 3, we
can see the total number of robots that were unable to reach
the target for this scenario. It is interesting to note that the
three algorithms performed poorly with a small number of
robots, but as the number of robots increases (more than
100 robots), the RESCUER Algorithm has an excellent per-
formance, obtaining almost 100% of completion rate.

The differences found in those results can be explained by
the different characteristics of the two scenarios. In the first
scenario, there are a larger number of local minima regions
distributed in the environment, but the size of those regions
are small. Thus, the number of robots that get trapped in
those regions is smaller and, even those that get trapped, can
escape with the application of random forces, mainly consid-
ering that trapped robots apply stronger repulsion forces be-
tween them. Also, since the local minima regions are spread
in the environment, a larger number of rescuer robots is
necessary to find and help the ones stuck in local minima.
That explains why in this scenario it is necessary a higher
number of robots for the RESCUER Algorithm to perform
better. On the other hand, the second scenario has just one
very large local minima region. So robots cannot escape
easily applying only random forces since these forces only
work adequately for robots that are close to the border of
the u-shaped obstacle. Moreover, since trapped robots are
in the same region, a single rescuer robot could save all the
robots. In this case, the chain of communication created by
the attached robots is very effective. When a trapped robot
receives a message, this message is quickly spread among the
swarm. This explains the sudden improvement in the pro-
posed algorithm when a certain number of robots is used.

50 100 150 200 250 30025
0

5

10

15

20

25

30

35

Number of Robots

N
um

be
r 

of
 F

ai
lu

re
 R

ob
ot

s

 

 
RESCUER
RANDOM
PLAIN

40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Number of Robots

N
um

be
r 

of
 F

ai
lu

re
 R

ob
ot

s

 

 
RESCUER
RANDOM
PLAIN

Figure 3: Number of failure robots for the first (top)
and second (bottom) scenarios.

3.2 Communication
The coordination mechanism used in this paper relies on

explicit communication between robots. When dealing with
swarms of robots, it is specially important to see if the com-
munication requirements do not compromise the scalability,
i.e., if the communication needs of the algorithm do not in-
crease unboundedly as the size of the swarm grows.

To study this important aspect of the algorithm, we per-
formed simulations measuring the total number of exchanged
messages as the number of robots increases. We ran simu-
lations in the first scenario setting communication range to
20 times the radius of the robots. The results can be seen
in the graph of Figure 4. Basically, there are two types of
messages in the algorithm: “status messages”, that are sent
by trapped robots asking for help, and “path messages” that
are sent by the rescuers upon receiving a status message.
We use two y axis (status on the left, path on the right)
since they are one order of magnitude different.

As mentioned, status messages are sent by trapped ro-
bots asking for help, thus, its variation is proportional to
the number of robots that get stuck in local minima regions
(shown in Figure 3). The exchange of path information de-
pends on the number of rescuer and trapped robots. It can
be observed in Figure 4 that it increases linearly with the
number of robots. Besides that, it can also be observed
that the number of status messages is a lot higher than the
number of messages with path info. Status messages are
generally very small, with few bytes representing the robot
status. On the other hand, the size of the path messages
depends on the number of waypoints stored by the robots.
We performed some experiments using the same scenario
that showed that this number is not very high (average of
230 waypoints) and decreases as the number of robots in-

1205



50 100 150 200 250 30025
Number of Robots

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

N
um

be
r 

of
 S

ta
tu

s 
M

es
sa

ge
s

 

 

N
um

be
r 

of
 P

at
h 

M
es

sa
ge

s

0

50

100

150

200

250
STATUS
PATH

Figure 4: Number of messages sent (first scenario).

creases. Moreover, after eliminating redundant waypoints,
the total number is less than 20, which does not compromise
bandwidth.

We also performed some experiments in which we fixed
the number of robots in 250 and varied the communication
range to observe how it affects the amount of messages sent.
The results are shown in Figure 5. It is interesting to note
that the number of messages with path information increases
with a small communication range, but tends to stabilize
after the range reaches 20 times the radius of the robot. It
is also interesting to see that the number of messages with
status decreases as the range of communication gets higher.
As trapped robots are rescued more effectively with a higher
communication range, the amount of time that they waste
sending status messages decreases, therefore decreasing the
total number of status messages sent by the robots.

5 10 15 20 25 30 35 40 45 50
Communication Range

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r 

of
 S

ta
tu

s 
M

es
sa

ge
s

 

 

N
um

be
r 

of
 P

at
h 

M
es

sa
ge

s

110

120

130

140

150

160

170

180

190

STATUS
PATH

Figure 5: Total number of messages sent for a vary-
ing communication range.

4. CONCLUSION
From the results of the previous section, we can draw a

very important conclusion: the proposed algorithm performs
better for larger teams. As the number of robots increases,
two important aspects that improve the performance can be
observed: firstly, the local force interactions between robots
get more intense, causing robots to spread inside the local
minima and even forcing some of them out of this region.
Secondly, a larger number of robots can be reallocated as
rescuers and help teammates to complete the mission. An-
other important result is that the communication require-
ments of the algorithm do not compromise scalability. It
was shown that the amount of path messages increases lin-

early with the number of robots while the number of status
messages decreases as fewer robots get stuck. Besides that,
communication is performed locally (only among neighbors)
and the overall size of each message is very small. These two
results, along with the fact that the algorithm is completely
decentralized and do not need detailed information about
the environment, makes it very suitable for this type of nav-
igation, in which the swarm must converge and spread along
a specific target in an environment containing unknown ob-
stacles.

The experiments and analysis performed in this paper also
helped us to identify some important issues in the proposed
approach that may be better addressed. Firstly, we noticed
that sometimes robots get caught in a “traffic jam”, when
several of them converge simultaneously to the same loca-
tions. So the development of a mechanism for congestion
control would be important. Another point is that robots
must know their global position in order to compute the gra-
dient forces and store waypoints. This is a strong assump-
tion, but it is generally accepted when simulating swarms of
robots. To address this issue in real experiments, we devel-
oped a framework for swarm localization in indoor environ-
ments. Robots are tagged with geometrical markers and a
group of overhead cameras is used in a distributed way to
localize and uniquely identify the robots. This framework
was successfully used in some proof-of-concept experiments
presented in [5]. The development of algorithms for swarm
navigation that do not require global localization is partic-
ularly difficult and has become an important topic of re-
search. Finally, to better validate the proposed algorithm,
it is necessary to perform experiments using a large group
of real robots. We are currently performing some experi-
ments using a group of seven robots and the results seem
very promising.

5. REFERENCES
[1] R. Bachmayer and N. E. Leonard. Vehicle networks

for gradient descent in a sampled environment. In
Proc. of the 41st IEEE CDC, pp. 112–117, 2002.

[2] N. Correll, S. Rutishauser, and A. Martinoli.
Comparing coordination schemes for miniature robotic
swarms: A case study in boundary coverage of regular
structures. In Proc. of 10th ISER, 2006.

[3] M. A. Hsieh and V. Kumar. Pattern generation with
multiple robots. In Proc. of the IEEE ICRA, 2006.

[4] M.-W. Jang and G. Agha. Dynamic agent allocation
for large-scale multi-agent applications. In Proc. of the
Workshop on Massively Multi-Agent Systems
(MMAS), pp. 19–33, 2004.

[5] L. S. Marcolino and L. Chaimowicz. No robot left
behind: Coordination to overcome local minima in
swarm navigation. In Proc. of the IEEE ICRA, 2008.

[6] L. C. A. Pimenta, A. R. Fonseca, G. A. S. Pereira,
R. C. Mesquita, E. J. Silva, W. M. Caminhas, , and M.
Campos. On computing complex navigation functions.
In Proc. of the IEEE ICRA, pp. 3463–3468, 2005.

[7] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe.
Allocating tasks in extreme teams. In Proc. of
AAMAS, pp. 727–734, 2005.

[8] P. Stone and M. Veloso. Task decomposition, dynamic
role assignment, and low-bandwidth communication
for real-time strategic teamwork. Artificial
Intelligence, 110(2):241-273, 1999.

1206




