
Sensing-based Shape Formation on Modular Multi-Robot
Systems: A Theoretical Study

Chih-Han Yu
School of Engineering & Applied Sciences

Harvard University
Cambridge MA 02138 USA
chyu@fas.harvard.edu

Radhika Nagpal
School of Engineering & Applied Sciences

Harvard University
Cambridge MA 02138 USA
rad@eecs.harvard.edu

ABSTRACT
This paper presents a theoretical study of decentralized con-
trol for sensing-based shape formation on modular multi-
robot systems, where the desired shape is specified in terms
of local sensor constraints between neighboring robot agents.
We show that this problem can be formulated more generally
as distributed constraint-maintenance on a networked multi-
agent system. It is strongly related to a class of multi-agent
algorithms called distributed consensus, which includes sev-
eral bio-inspired algorithms such as flocking and firefly syn-
chronization. By exploiting this connection, we can theo-
retically analyze several important aspects of the decentral-
ized shape formation algorithm and generalize it to more
complex multi-agent scenarios. We show that the conver-
gence time depends on (a) the number of robot agents and
agent connection topology, (b) the complexity of the user-
specified goal, and (c) the initial state of the robots. Using
these results, we can provide precise statements on how the
approach scales, and how quickly the system can adapt to
perturbations. These results provide a deeper understand-
ing of the contrast between centralized and decentralized
multi-agent algorithms.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithm, Theory

Keywords
Decentralized Control, Modular Robot, Collective Dynam-
ics, Shape Formation, Convergence, Graph Laplacian

1. INTRODUCTION
Modular robots are a class of robotic systems composed of

many identical, physically connected, programmable mod-
ules that can coordinate to change the shape of the over-
all robot. By transforming its shape, a modular robot can
adapt to many tasks, from different modes of locomotion like

Cite as: Sensing-based Shape Formation on Modular Multi-Robot Sys-
tems: A Theoretical Study, Chih-Han Yu and Radhika Nagpal, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),
May, 12-16., 2008, Estoril, Portugal, pp. 71-78.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

crawling and climbing [12], to forming temporary robotic
structures such as stairs or bridges [2, 7, 13]. A decentral-
ized modular robot framework can be viewed as a multi-
robot or multi-agent system, since the overall function and
shape change is achieved by coordinating the independent
actions of the individual modules. A key challenge is de-
veloping decentralized multi-agent algorithms that can form
complex shapes in a scalable, robust and analyzable manner.

In our recent work [13], we have proposed a new type of
shape formation task for modular robots: instead of speci-
fying the absolute configuration of the whole desired shape,
the shape is expressed as a set of relative orientation con-
straints between neighboring modules. This allows the de-
sired shape to be formed irrespective of environmental con-
ditions, and adapt as environmental conditions change. We
provided a decentralized solution to the problem in [13],
where each agent adapts its shape based on neighborhood
sensing, and we showed a partial convergence proof for that
specific set of robot configurations. However, many impor-
tant questions remain open: Does the approach work for
agents connected in complex and irregular topologies? How
does the algorithm scale as the number of agents increases?
How quickly does the system adapt, given different goals?

In this paper, we present a theoretical analysis for this
class of multi-agent tasks and algorithms. We show that
this problem can be formulated more generally as a problem
of distributed constraint-maintenance on a networked multi-
agent system. This class of problems relates strongly to
a class of problems in decentralized control theory called
distributed consensus, which includes several canonical bio-
inspired algorithms such as flocking and firefly synchroniza-
tion. By exploiting this connection, we can theoretically an-
alyze several important aspects of the decentralized shape
formation algorithm, and we can extend the algorithmic ap-
proach to new types of sensor-actuator agents and arbitrary
multi-agent network topologies.

Our contributions are as follows: we show that this class of
algorithms can be formulated as collective linear dynamical
systems. We prove that the algorithms converge to the cor-
rect user-described goal, for any undirected connected graph
of agents. We derive the convergence rate and show how
different factors of the agent network topology, e.g. number
of agents and network diameter, determine the convergence
time. This allows us to analytically reason about the scal-
ability of the decentralized approach. We also quantify the
impact of initial state and goal state, and show that the
convergence time depends logarithmically on the distance
between the two. This allows us to bound the worst case

71

number of iterations and compute how quickly the system
reacts to small perturbations. Thus we can understand how
this approach scales to the number of agents, generalizes
to different shapes and adapts to perturbations. We show
that this approach is generalizable to a large class of feed-
back functions. Finally, we use these results to show that
decentralized algorithms have an advantage over tree-based
centralized algorithms when it is important to adapt quickly
to constant environment changes.

The rest of the paper is as follows: Section 2 describes
related work. Section 3 describes the networked multi-agent
model and Sections 4, 5, and 6 present the decentralized
algorithm and theoretical properties of the algorithm. We
show a more general class of the control algorithm in Section
7 and contrast decentralized and centralized approaches in
Section 8.

2. RELATED WORK
Several groups have designed centralized and decentral-

ized shape formation algorithms for modular robots [2, 10].
Centralized algorithms suffer from scalability problems, but
decentralized solutions have been shown to be more scalable
as system size increases. Decentralized algorithms often uti-
lize nearest neighbor rules where the control parameters of a
module depend on relationships between neighboring mod-
ules. For example, in [10] a module uses its connection con-
figuration with neighboring modules to compute an action
for the next time step. In [13], the modules’ control param-
eters are computed based on relative orientation feedbacks
from neighboring modules. While various decentralized ap-
proaches have been proposed, it is often difficult to prove
basic properties of these algorithms, including correctness.
Several important properties of the algorithms are rarely
studied, such as how the speed of shape formation process
is related to the complexity of the shape or the connection
topology of the modules.

On the other hand, nearest neighbor rules have been widely
studied in the control theory community, including in con-
sensus problems [9], flocking [8], and multi-vehicle formation
[4]. In addition, there are many results developed in graph
Laplacian and matrix theory that can be utilized to study
such algorithms [6, 11]. In this paper, we bridge the results
from these areas. We use our previous framework [13] as an
example to show how control problems in decentralized mod-
ular robot systems can be formulated as networked multi-
agent systems. By exploiting connections with the above
theories, many important properties can be characterized.

3. NETWORKED MULTI-AGENT MODEL

Sensing-based Shape Formation
Here we briefly review an abstract version of the modular
robot from our previous work [13]. As shown in the Figure
1 (top), modules are connected to form a flexible surface
on the top with supporting legs attached to the surface.
In each local structure, a pivot module (A) connects to a
supporting group (B) and one or more surface groups (C).
Pivot modules play the coordination role in the decentral-
ized algorithm. Supporting groups are thought of as legs
that can compress and extend their heights. Each support-
ing group is composed of multiple modules that are linearly
connected, and can vary its length via modules’ actuation.

Figure 1: Top: A skeleton view of the modular
robot. A: Pivot module; B: Supporting group. A
and B are jointly viewed as an agent. Surface group
C is viewed as an inter-agent link. Bottom: The de-
sired shape (level surface) is specified with a set of
local desired tilt angles (constraints).

Figure 2: Left: The modular robot can be viewed
as a graph with nodes represent agents and edges
represent inter-agent links. There is a sensor on
each edge that provides inter-agent tilt angle. Right:
Each agent’s control algorithm takes all neighboring
sensor readings as inputs to compute the agent’s new
state.

Surface groups, which are also composed of multiple mod-
ules, provide sensor information and and act as communica-
tion channels between pivot modules.

As shown in the bottom diagram of Figure 1, the desired
goal shape is specified with a set of desired tilt sensor angles
(constraints) on surface groups that connect two neighboring
pivot modules. Each pivot can only observe its neighboring
surface groups’ sensory output and each of them has mul-
tiple constraints to satisfy. When the robot is placed in an
unknown environment (e.g. on a rough terrain), pivots co-
ordinate supporting groups to change their heights in such
a way that all desired constraints are satisfied.

Formal Model
In this section, we model this system as a network of agents
consisting of the following components:

1. Agent: An agent is defined as a unit that has inde-
pendent computation, communication, and actuation capa-
bilities. In the modular robot of Figure 1, we consider each
pivot module (A) plus its underlying supporting group (B)

72

(a)

(b)

Figure 3: (a) A mapping function between sensor
space and agent state space can be constructed by
exploiting the local structure of the robot. (b) An
example of exploiting the robot structure.

as a single agent ai. The robot R is composed of n such
agents: R = {a1, a2, · · · , an}.

2. Cooperation Graph: In our networked agent model,
agents have only a one-hop local view. They achieve global
tasks by cooperating and communicating with their imme-
diate neighbors. We represent cooperation relationships as
a graph G in which vertices represent agents and edges rep-
resent cooperation between an agent and its neighbors. For
example, in Figure 2 (left) edges correspond to the surface
groups in Figure 1. We use Ni to denote the set of one hop
neighbors of agent ai. The neighbor relationship between
agents is symmetric, so the edges in G are undirected.

3. Sensor: There is a sensor available to measure the
relationship between each pair of the neighboring agents.
We denote the sensor reading between neighboring agent ai

and aj at t time step by θij(t). In the example of Figure 1,
θij(t) measures the tilt angle of the surface group connected
to two neighboring agents ai and aj .

4. Desired Shape: We assume that the desired global
shape of the robot can be decomposed into the desired sensor
reading for each pair of neighboring agents. We denote by
θ∗

ij the desired sensor reading between neighboring agent
ai and aj . For example, in Figure 1 the sensors measure
tilt relative to the ground, and one example of a task is to
maintain a level surface which means that θ∗

ij = 0 for all i, j.
More generally, this type of task specification can be viewed

as a constraint-based specification. The constraint between
neighboring agents ai and aj is satisfied when the current
relationship θij(t) equals the goal relationship θ∗

ij .
5. Control Algorithm: Each agent is running an iden-

tical control algorithm π that controls the agent’s state. We
denote agent ai’s state at time t by xi(t). In the modular
robot of Figure 1, xi(t) represents the height of the agent.
At each time step, each agent updates its state based on the
current state of the agent, current sensor readings, and the
desired sensor readings (as shown in Figure 2 (right)). We
assume that the agents are synchronized and update their
state in rounds. Agent ai’s state update equation:

xi(t + 1) = π(xi(t), θi·(t), θ
∗
i·) (1)

where θi·(t) = {θij(t), ∀aj ∈ Ni} and θ∗
i· = {θ∗

ij , ∀aj ∈ Ni}.
This model both simplifies and generalizes the original

model from [13]. Here, we also allow the agents to be con-
nected in an arbitrary undirected graph as opposed to a mesh

as shown in Figure 2. We also do not require tilt-height but
allow any sensor-actuator relationship. This model captures
a class of modular and mobile robot applications. For exam-
ple, the environmentally-adaptive structures (table, bridge)
described in [13] and a team of mobile robots whose overall
shape can be specified as inter-robot relationships.

4. THE ALGORITHM
In this section, we describe a simple multi-agent control

algorithm for achieving a desired shape. This control law
exploits the structure of the robot and is briefly described
in [13]. A generalized feedback form of the control law will
be described later in Section 7.

Specifically, each ai senses θij(t) from each of its neigh-
bors aj and controls its own state xi(t). In our networked
multi-agent model, the states of an agent’s neighbors are not
directly observable; instead the sensor values acts as a proxy
for inter-agent relationships. There is a mapping function
f(·) that transforms the sensory input into an actual differ-
ence between neighbor agent states (Figure 3 (a)):

f(θij(t)) = xj(t) − xi(t)

Suppose this mapping is known. For example, consider
the modular robot model of Figure 3 (b). An agent’s state
represents its height, while the sensor provides the tilt angle
between an agent and its neighbor. We assume that the
distance between an agent and its neighbor aj , dij , is known
ahead of time. In this case,

f(θij(t)) = dij tan(θij(t)) = xj(t) − xi(t)

Definition: Control Law

xi(t + 1) = π(xi(t), θi·(t), θ
∗
i·)

= xi(t) +
∑

aj∈Ni

α(f(θij(t)) − f(θ∗
ij)) (2)

If we expand the right hand side of Eq. 2, we see that the
control law is operating in the agent state space. Let the
desired state difference be called Δ∗

ij = f(θ∗
ij) = x∗

j − x∗
i .

Each agent is summing feedbacks from all of its neighbors
and then acting linearly towards it to reduce error with step
size α, where 0 ≤ α ≤ 1/|Ni| :

xi(t + 1) = xi(t) +
∑

aj∈Ni

α(xj(t) − xi(t) − Δ∗
ij) (3)

One can expect that different kinds of sensors or different
agent’s prior knowledge about robot structure will lead to
different mappings f(·). As long as agents have sufficient
information to map sensor information θij(t) to agent state
difference xj(t) − xi(t),

1 then this control law can be used.

5. CORRECTNESS & CONVERGENCE RATE
In the control law we presented, an agent sums the feed-

back from its local neighbors and acts in some fashion to-
wards that feedback. Since the system is decentralized with

1The control law can be used even though the mapping is to
σ(xj(t)−xi(t)) and the constant σ is unknown. An example
of this case is when the agents only know that they are
equally apart from their neighbors, but the exact distances
are unknown.

73

many agents acting on local information in parallel, a key
question is whether these actions always will always produce
the correct desired global goal (convergence from all initial
states) and if so, how fast it will take to achieve the goal
(convergence rate). In this section we show these properties
of the algorithm can be characterized for arbitrary connected
topologies and desired goals.

We first demonstrate how to aggregate all agent update
equations to become collective dynamics. This allows us to
study the emerged global behavior of all agents via analyzing
a single dynamical system. We then show that the collec-
tive dynamics bears an important resemblance to a class of
networked multi-agent problems called distributed consen-
sus. By leveraging results from control theory and spectral
graph theory, we prove the convergence property for the
shape formation algorithm.

Collective Dynamics: Let X(t) represent the ensemble of
all agents’ states at time t:

X(t) = (x1(t), x2(t), · · ·xn(t))′

We can write the collective dynamics of all agents as:

X(t + 1) = A · X(t) + b̃ (4)

where A = [aij], an n × n matrix with element aij defined
by:

aij =

⎧⎨
⎩

α if aj ∈ Ni and i �= j
1 − α · |Ni| if i = j
0 otherwise

and where b̃i = α ·∑aj∈Ni
Δ∗

ij is a bias vector. We note

that A is a row stochastic matrix since each row sums to 1.
In addition,

∑
i b̃i = 0, since Δ∗

ij = −Δ∗
ji for all i, j.

Distributed Consensus: This is a process by which a
network of agents can come to an agreement. A canonical
example is the average consensus problem, in which agents
must compute the average of their initial states. The dy-
namics of this agreement process can be formulated as:

X(t + 1) − X(t) = −α · LX(t) ⇒ X(t + 1) = A · X(t)

where A = I − αL, and matrix L is a special matrix called
graph Laplacian. L = [lij], and

lij =

⎧⎨
⎩

−1 if aj ∈ Ni and i �= j
|Ni| if i = j
0 otherwise

The properties of this solution have been well-explored,
and convergence and convergence rates for this have been
shown over arbitrary and even time-varying graphs. Olfati-
Saber et al. [9] provide an overview of the different types
of consensus problems and distributed solutions, and show
that the alignment problem in flocking (agreeing on a single
heading) and the synchronization problem (agreeing on a
single phase) are consensus problems.

In the example of Figure 1, if the goal is to create a level
surface b̃ = 0, then the collective dynamics is exactly the
average-consensus problem. This also tells us that the height
of the level surface will be the average of the heights of the
agents’ initial heights. For a more complex desired shape

goal, the collective dynamics differs by a bias term b̃. We
will show that b̃ actually plays no role in the convergence
analysis of the system. It allows the system to achieve dis-
tributed constraint maintenance; i.e. agreement on a solu-
tion that maintains a set of local constraints.

Convergence Property: The key result of [9] relates the
eigenvalues of A and L to convergence of the local rules de-
fined by these matrices.2 The key point for us is that having
a nonzero bias vector b̃ does not affect the eigenvalue anal-
ysis (proof in Appendix); thus, the results of [9], apply here
as well. Specifically, let λi denote the ith smallest eigen-
value of the graph Laplacian L, and let μi be the ith largest
eigenvalue of A. Then

μi = 1 − αλi.

L has a simple eigenvalue λ1 = 0 with associated eigenvector
1 (an all ones vector), and A has as its largest eigenvalue
μ1 = 1. As shown in [6], when the graph G is connected
(with arbitrary topology), the second smallest eigenvalue of
L, λ2, is strictly larger than 0. Thus, the second largest
eigenvalue μ2 of A is strictly smaller than 1.

We can then prove that under the iteration of Eq. 4,

‖X(t) − X∗‖2 ≤ μ2t
2 ‖X(0) − X∗‖2.

Thus, since μ2 < 1, we have:

Theorem 1. Let X∗ be the desired shape state that x∗
j −

x∗
i = Δ∗

ij ∀ai and aj ∈ Ni, the collective dynamics in Eq.
4 converge to X∗ for all initial conditions with exponential
rate μ2.

Proof. see Appendix.

Because μ2 does not depend on the bias vector b̃ at all,
this convergence analysis is independent of desired system
shape. From the convergence proof, we can also see that

‖Y (t + 1)‖ ≤ μ2‖Y (t)‖ (5)

where Y (t) = ‖X(t) − X∗‖ represents the current distance
from the desired goal.

6. FACTORS AFFECTING PERFORMANCE
In the previous section, we prove convergence and derived

convergence rates. In this section we expand these results
to answer several important questions about the shape for-
mation process.

1. Scalability and impact of topology: How does
the convergence time increase as we increase the number of
agents and the diameter of the cooperation graph?

2. The effect of shapes: How do the initial shape and
the desired shape affect the convergence time?

3. Reactivity: How do the agents react to perturbations
from the desired state?

We provide precise answers to these questions. In doing
so, it is useful to first derive an inequality for the number of
iterations required to create a given shape within a certain
error tolerance. By error tolerance, we mean:

2We can show that A and L have the same eigenvectors.
Let vi be the ith eigenvector of L. Lvi = λivi ⇒ Avi =
(I − αL)vi = (1 − αλi)vi = μivi.

74

Definition: ε-approximation. The shape formed by the
agents at state X(t) is ε−approximation of the desired shape
if X(t) satisfies: Y (t) = ‖X(t) − X∗‖ ≤ ε

The error tolerance ε represents the fact that agents have
finite resolution in controlling their actuation, so some level
of inaccuracy must be tolerated. From Theorem 1 , we know
that the agents approach the desired state X∗ with exponen-
tial rate. We can further express the number of time steps
required to achieve the goal as a function of convergence rate
μ2, ε, the initial condition X(0), and the goal condition X∗:

‖Y (tmax)‖ ≤ μtmax
2 ‖Y (0)‖ ≤ ε

⇒ tmax ≤
⌈
logμ2

(
ε

‖Y (0)‖|
)⌉

(6)

We can see from Ineq. 6 that the number of iterations re-
quired, tmax, depends on two main factors: the connectivity
of the cooperation graph G (as reflected by its second eigen-
value μ2) and ‖X(0) − X∗‖, the distance from the initial
state X(0) to the desired goal X∗. The first factor is only
dependent on G, and is independent of the desired shape
X∗, and vice versa for the second factor. We discuss these
two factors in the following two subsections.

Scalability and Topology
Assuming that the initial distance from the desired goal is
fixed, the number of iterations depends on μ2. We show
in Section 5 that μ2 = 1 − αλ2 where λ2 is the the second
eigenvalue of the graph Laplacian. This second eigenvalue
has a special significance in graph theory and is called the
algebraic connectivity because it encodes how well the graph
is connected. While algebraic connectivity has been studied
extensively in graph theory, its use in understanding decen-
tralized algorithms is relatively new. Here we show that
there are several important bounds on λ2 that will provide
us with a concrete understanding of how the algorithm scales
as we scale up the size of the multi-agent system.

Theorem 2 (Mohar, 1991[5]). Let L be the graph Lapla-
cian of G. Then the second eigenvalue λ2 of L satisfies

λ2 ≥ 4

n · diam(G)

where n and D = diam(G) are the number of agents and
diameter of cooperation graph G respectively. Note that this
theorem implicitly provides an upper bound on μ2, which
gives us the worst case convergence rate.

μ2 ≤ μ+
2 = 1 − 4α

n · D (7)

For example, assume that the multi-agent system consists
of n agents connected in a line, e.g. Figure 3 (b). The
worst-case λ2 is bounded by O(1/n2). However, in reality,
the convergence rate can be much superior than this upper
bound. Figure 4 (a) shows the case when the multi-agent
topology is an n by n grid where n is varied from 2 to 15.
We fix Y (0) = 50ε to only examine the effect of topology.
The upper curve shows tbnd, the estimated tmax of Ineq. 6
with μ+

2 , the middle curve shows test, the estimated tmax

with real μ2, and tsim is the average number of iterations
in simulation computed from 1000 different initializations of

X(0) for each topology. We can see that although the worst
case tmax is quite high, the convergence time in reality can
be much faster.

Note that there are many forms of upper and lower bounds
on λ2 that can provide estimates of both worst and best
case convergence time (see supplementary information in
[1]). Also one can directly compute μ2 for a given topology,
providing a more precise prediction on convergence time.

Effect of Shape
As we can see from Ineq. 6, a bound on the effect of shape
on convergence is given by the euclidean distance of the
final state from the initial state. We can see that tmax

increases logarithmically with ‖Y (0)‖, which implies time
changes slowly as deviation ‖Y (0)‖ increases. The follow-
ing result also allows us to bound the worst-case number of
iterations for any shape:

Theorem 3. Let the system’s convergence rate be μ2. As-
sume xi(t) ∈ R+ ∀i, t. Let C =

∑
i xi(0). Then the number

of iterations required to achieve ε-approximation:

tmax =

⌈
logμ2

(
ε√

2 · C

)⌉
Proof. Expanding out the definition of 2-norm, we have:

||Y (0)||2 =

(∑
i

x2
i (0)

)
+

(∑
i

(x∗
i)

2

)
− 2

∑
i

xi(0)x
∗
i .

Since xi(t) > 0 for all t,3 both xi(0) and x∗
i must be non-

negative. Thus
∑

i xi(0)x
∗
i is non-negative. Similarly,

∑
i x2

i (t) ≤(∑
i xi(t)

)2
for all t. Hence:

||Y (0)||2 ≤
(∑

i

xi(0)

)2

+

(∑
i

x∗
i

)2

.

Since A is stochastic and
∑

i b̃i = 0, the sum of all agents’
states is conserved. Therefore,

∑
i x∗

i =
∑

i xi(0) = C, and
we have ||Y (0)||2 ≤ 2 ·C2. Taking square-roots of both sides
yields the result.

This indicates that if the agents’ connection topology and
initial states are known, we can calculate the number of iter-
ations guaranteed to achieve ε-approximation of any desired
shape.

Reactivity
Another important criteria is how the networked multi-agent
system reacts to perturbations. From Ineq. 6, we can see
that if ‖Y (0)‖ is small, then only a few iterations will be
sufficient to achieve ε-approximation. Furthermore, even as
the number of agents increases, the number of iterations
remains low.

Figure 4 (b) and (c) show the system’s reactivity for two
types of topologies: (b) square grid topologies and (c) ran-
dom connected topologies that have the same number of
edges and nodes as the corresponding grid graphs, but the
connections between vertices are randomly generated.4 Red
lines indicate larger perturbations (Y (0) = 250ε, 500ε, 1000ε)

3If the agents’ operation range is xi(t) ≥ xmin, xmin finite,
we can shift the coordinates to x̃i(t) ≥ 0 and C =

∑
i x̃i(0).

4We remove the graph with ≥ 2 connected components and
restart the process until the generated graph is connected.

75

0 20 40 60 80 100
0

200

400

600

800

1000

Number of Agents (n)

N
u

m
b

er
 o

f
It

er
at

io
n

s
Simulated v.s. Estimated Number of Iterations (Grid Graphs)

t
sim

: Avg. # of iterations from simulations

t
est

: Estimated t
max

 with μ
2

t
bnd

: Estimated t
max

 with μ
2
+

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

Number of Agents (n)

A
vg

. N
u

m
b

er
 o

f
It

er
at

io
n

s
(t si

m
)

Small v.s. Larger Purturbations (Grid Graphs)

Small Purturbations (2ε~10ε)
Larger Purturbations (250ε~1000ε)

0 50 100 150 200 250
0

50

100

150

Number of Agents (n)

A
vg

. N
u

m
b

er
 o

f
It

er
at

io
n

s
(t si

m
)

Small v.s. Larger Purtubations (Random Graphs)

Small Purturbations (2ε~5ε)
Larger Purturbations (250ε~1000ε)

(a) (b) (c)

Figure 4: (a) Number of modules vs average number of iterations in simulations (tsim) and estimated Bounds
on number of iterations (test and tbnd). (b) Comparison of tsim between small and large perturbations in grid
graphs. (c) Comparison of tsim in randomly generated connected graphs.

and blue lines indicate smaller perturbations (Y (0) = 2ε, 5ε,
7ε, and 10ε). Each point on Figure 4 (b) represents mean
number of simulation rounds required of 1000 random initial
X(0) that satisfies the given Y (0). For Figure 4 (c), each
point represents the mean from 20 random topologies and
500 different initializations.

We can see from the figures that the networked multi-
agent system’s reactivities toward small perturbations (blue
lines) scale well with the number of agents in both regu-
lar and irregular topologies. If the environment changes
smoothly, then even large changes will appear like small
perturbations over time. This shows why the algorithm
performs particulary well in adaptation tasks like the self-
adaptive structures shown in [13].

7. GENERALIZED FEEDBACK ALGORITHM
In many cases, the mapping f between sensor space and

agent states is not precisely known. For example, when the
distances between agents are unknown or have changed over
time, the mapping described in the previous subsection can-
not be computed.

Even in this situation, it may be possible to create an
agent control law that uses the sensor feedback to directly
control the agent state. To see why, we present a slightly
generalized form of the feedback. Let θ be sensor measure-
ment and θ∗ be desired sensor reading, and g(θ, θ∗) be any
function such that the following conditions hold:

1. g(θ, θ∗) = 0 ⇔ θ = θ∗.

2. sign(g(θ, θ∗)) = sign(f(θ) − f(θ∗)).

3. g(−θ,−θ∗) = −g(θ, θ∗).

Intuitively, condition 1 means that g only “thinks” the
system is solved when it actually is; condition 2 means that
when not solved, each sensor measurement at least points
the agent at the correct direction to satisfy the local con-
straint; and condition 3 means that g is anti-symmetric

Definition: Generalized Feedback Control Law

xi(t + 1) = xi(t) +
∑

aj∈Ni

α · g(θij(t), θ
∗
ij). (8)

The second control law presented in [13], in which g(θ, θ∗) =
θ − θ∗, belongs to this class of control law. In this case, Eq.

8 becomes:

xi(t + 1) = xi(t) +
∑

aj∈Ni

α · (θij(t) − θ∗
ij).

This means that we are performing biased local averag-
ing directly on the tilt angles between the modules. (This
may be a very natural situation, since it is often easy to
supply robots with tilt or directional sensors even when it
is difficult to measure and control inter-robot distances) As
shown in Figure 3 (b), the actual mapping is f(θij(t)) =
dij tan(θij(t)). This choice of g satisfies the three proper-
ties required above, since: (1) tilt angle: θij(t) = θ∗

ij ⇔
θij(t) = θ∗

ij . (2) sign(θij(t) − θ∗
ij) = sign(dij tan(θij(t)) −

dij tan(θ∗
ij))), 0 ≤ θij(t), θ

∗
ij ≤ π/2. (3) −θij(t) + θ∗

ij =
−(θij(t) − θ∗

ij).
To further compare the difference between the control law

with generalized feedback and the control law in Eq. 3, let

φij(t) = α
g(θij(t), θ

∗
ij)

xj(t) − xi(t) − Δ∗
ij

.

Then we can express Eq. 8 as

xi(t + 1) = xi(t) +
∑

aj∈Ni

φij(t)(xj(t) − xi(t) − Δ∗
ij). (9)

Comparing Eq. 8 with Eq. 3, the agent ai’s step size to-
wards the feedback from aj is now a state dependent variable
φij(t) instead of a constant factor α.5 In other words this
variable varies with the changing state of the agents. The
relationship between the step size and the actual agent state
differences may be non-linear. For example, in the case of
the choice of feedback function g(θ, θ∗) = θ− θ∗ and θ∗ = 0,

φij(t) = α tan−1

(
xj(t) − xi(t)

dij

)
/ (xj(t) − xi(t))

which is clearly non-linear (as shown in Figure 5).

−10 −5 0 5 10
−1

0

1

−10 −5 0 5 10
0

0.3

0.6

Figure 5: Left: xj(t)− xi(t) (x axis) vs θij(t) (y axis).
Right: φij(t) (y axis) varies with different xj(t)−xi(t).

5unless g(θij(t), θ
∗
ij) is linear in xj(t) − xi(t) − Δ∗

ij

76

Collective Dynamics: We can rewrite the system dynam-
ics as

X(t + 1) = A(t) · X(t) − b̃(t) (10)

where A(t) = [aij(t)] is an n×n matrix with element aij(t)
defined by:

aij(t) =

⎧⎨
⎩

φij(t) if aj ∈ Ni and i �= j
1 −∑aj∈Ni

φij(t) if i = j

0 otherwise

(11)

and b̃i(t) =
∑

aj∈Ni
φij(t)Δ

∗
ij . We note that since φij(t) is

a state-dependent (and thus time-varying) variable, so A(t)
is also state-dependent.

Convergence Property: This control law has the same
equilibria as the rule defined earlier (Eq. 3). The style of
convergence proof we used in the original case required the
generating matrix A(t) to be row stochastic and symmetric.
That is, for all t: (1) aij(t) ≥ 0 for i �= j; (2) aii(t) ≥ 0 for
all i; and (3) aij(t) = aji(t) for all i, j. Because of the prop-
erties of the function g, A(t) is actually row stochastic and
symmetric for all t. To see why, notice that for off-diagonal
elements, ai�=j(t) = φi�=j(t), for all ai, and aj ∈ Ni. Be-
cause of condition 2 on g, the numerator in the definition
of φij (which is g itself) always has the same sign as the
denominator, so their ratio is non-negative. For the diago-
nal elements, notice that aii(t) = 1 −∑j φij(t) ≥ 0 for all
i. But this can always be ensured as long as α is chosen
small enough. Finally, since g(−x,−y) = −g(x, y), we have
φij(t) = φji(t) so the symmetry condition is ensured.6

The guarantee of stochasticity and symmetry allows us to
prove the following:

Theorem 4 (Generalized Feedback). Let X∗ be the
desired shape state that x∗

j − x∗
i = Δ∗

ij. The collective dy-
namics defined by Eq. 8 will ensure that X(t) converges to
X∗ for all initial conditions with convergence rate at least:

μ∗
2 = max

t
μ2(A(t)).

Proof. see Appendix.

Intuitively, what this result says is that the analog of orig-
inal result holds, except that the convergence rate guaran-
tee becomes somewhat looser, as we now have to maximize
μ2(A(t)) over all t. The analog of Theorem 2 can also be
shown:

Theorem 5 (Generalized Feedback). Let φmin be
mini,j,t φij(t) and μ∗

2 be the upper bound on the convergence
rate. Then

μ∗
2 ≤ 1 − 4 · φmin

n · D

Proof. see Appendix.

6We note that the assumption that A(t) is symmetric (condi-
tion 3) can be relaxed, but the upper bound on convergence
rate is less tight. The proof of this case is based on the
theory of nonhomogenous stochastic matrix products [11],
the product A(t) · · ·A(2)A(1) will converge to a rank 1 ma-
trix with exponential rate. The recent result in [3] explicitly
determines an upper bound on convergence rate.

8. DECENTRALIZED VS CENTRALIZED
An important question in networked multi-agent systems

is whether to use a decentralized approach, such as the one
described here where agents iteratively communicate and re-
act to arrive at a solution, or to use a centralized tree-based
approach where a root agent collects all the information from
other agents. This question is not only relevant to modu-
lar robots, but also to robot swarms and sensor networks.
It also applies to many problems from shape formation to
time synchronization. Using our results, we can describe the
tradeoffs between these two approaches.

For the centralized algorithm, we assume that a root agent
collects all the information from all other agents using a
spanning tree, computes a final state for every agent, and
then disseminates the results back to them. This results in
two costs: (a) a communication cost of collecting/disseminating
information and (b) a computation cost for the root node.
In most homogenous multi-agent systems, each agent has
fixed communication and computation power. For the kinds
of tasks we consider here, communication is often a more
severe bottleneck: if an agent can only collect a constant
amount of information per unit time, then the time to col-
lect all the agents’s states is O(n) (n: number of agents)
and not O(D) (D: diameter). This cost is paid for every
shape change, regardless of the distance between the initial
and desired states. This results in poor performance in the
case of small perturbations, where information must travel
all the way to the root agent before it can be resolved.

In contrast, the communication cost of the decentralized
algorithm described here is O(t) (t: iteration number) which
depends on both topology and distance from goal. The rela-
tionship between topology and performance in some cases is
worse than the centralized case. However, if the distance
from goal is small – e.g., a small perturbation or slowly
changing environment – then the system reacts rapidly in
only a few iterations even when n is large (Figure 4 (b)(c)).

This suggests that for consensus-like problems while de-
centralized algorithms may pay a significant start-up cost
to achieve a steady state, they are extremely reactive to
perturbations. Thus they are more appropriate when the
goal is to “maintain” constraints over long periods of time
under uncertain and changing conditions, rather than pro-
duce a solution once. Finally, they are more robust, and less
complex to implement, in situations where agent errors and
topology changes are common.

9. CONCLUSIONS
We have presented and analyzed a class of distributed

sensing-based shape formation algorithms. We prove the
convergence properties and characterize how various factors,
such as the topology of the agent cooperation graph, are re-
lated to the performance of the algorithms. In comparison
with a centralized approach, this approach has a strong ad-
vantage in robustness and reactivity. This framework can
be applied to many other multi-agent problems, e.g. a team
of mobile robots, where the goal of the agents are expressed
as inter-agent relationships and agents must constantly and
quickly adapt to the uncertainties of the environment.

Acknowledgement
We thank R. Olfati-Saber and D. Yamins for their helpful
comments. This work is funded by NSF Grant No. 0523676.

77

10. REFERENCES
[1] http://www.eecs.harvard.edu/∼chyu/aamas08-

appdx.pdf.

[2] H. Bojinov, A. Casal, and T. Hogg. Emergent
structures in modular self-reconfigurable robots. In
Proc. of ICRA, 2000.

[3] M. Cao, A. S. Morse, and B. D. O. Anderson.
Reaching a consensus in a dynamically changing
environment: A graphical approach. To appear in
SIAM Journal on Control and Optimization.

[4] J. A. Fax and R. M. Murray. Information flow and
cooperative control of vehicle formations. IEEE Trans.
on Automatic Control, 49:1465–1476, 2004.

[5] B. Mohar. Eigenvalues, diameter, and mean distance
in graphs. Graphs and Combinatorics, 7:53–64, 1991.

[6] B. Mohar. The laplacian spectrum of graphs. Graph
Theory, Combinatorics, and Applications, 2, 1991.

[7] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa,
K. Tomita, and S. Kokaji. M-tran: Self-reconfigurable
modular robotic system. IEEE/ASME Trans.
Mechatron, 7(4):431–441, 2002.

[8] R. Olfati-Saber. Flocking for multi-agent dynamic
systems: Algorithms and theory. IEEE Trans. on
Automatic Control, 51(3):401–420, 2006.

[9] R. Olfati-Saber, J. Fax, and R. Murray. Consensus
and cooperation in networked multi-agent systems. In
Proc. of IEEE, 2007.

[10] D. Rus, Z. Butler, K. Kotay, and M. Vona.
Self-reconfiguring robots. Communications of the
ACM, 45(3):39–45, 2002.

[11] E. Seneta. Non-negative Matrices and Markov Chains.
Springer Verlag, 1981.

[12] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist,
M. Rubenstein, and J. Venkatesh. Multimode
locomotion for reconfigurable robots. Autonomous
Robots, 20(2):165–177, 2006.

[13] C.-H. Yu, F.-X. Willems, D. Ingber, and R. Nagpal.
Self-organization of environmentally-adaptive shapes
on a modular robot. In Proc. of IROS, 2007.

APPENDIX
Proof of Theorem 1
We first show that analyzing Eq. 10 is equivalent to analyz-
ing a linear dynamical system without the bias vector. The
optimality condition:

X∗ = A · X∗ + b̃ (12)

can be rewritten as: αL · X∗ = b̃. We use the graph Lapla-
cian property [6] that when G is connected, rank(L) = n−1
with null(L) = 1. We can add an additional constraint
to the system based on conservation property of the agent
state:

∑
i xi(0) =

∑
i x∗

i = C (since A is a row stochas-

tic matrix, and
∑

i b̃i = 0). The new linear system with

the additional constraint becomes αL′ · X∗ = b̃′. Since the
new constraint lies in the null space of L, rank(L′) = n and
there exists a unique X∗ for every initial condition X(0).
We subtract the optimality condition from Eq. 4:

Y (t + 1) = A · Y (t) (13)

where Y (t) = X(t) − X∗. The following proof follows the
procedure of [9]. Since L is a real symmetric matrix, the
well-known Courant-Fischer Theorem yields:

λ2(L) = min
‖x‖=1,x⊥1

xT Lx

xT x

As Y (t)T · 1 = 0 for all t and the relationship between λ2

and μ2, we can utilize the results from [9] and show that:

max
Y (t)

Y (t)T AY (t)

Y (t)T Y (t)
= μ2(A) < 1 (14)

μ2(A) denotes the 2nd largest eigenvalue of A. Define a
Lyapunov function V (t) =

∑
i(xi(t) − x∗

i)
2 = Y (t)T Y (t).

Now, following Eq. 14, we get:

V (t + 1) = (AY (t))T (AY (t)) = Y (t)T A2Y (t)

< (μ2(A))2Y (t)T Y (t) = (μ2(A))2V (t) (15)

Thus, Y (t) converges to zero (X(t) converges to X∗) with
exponential rate at least μ2(A) < 1.

Proof of Theorem 4
The A(t) matrix in Eq. 10 can be written as: I − Lw(t)
where Lw(t) is a weighted graph Laplacian matrix. The
properties of the weighted graph Lalpacian are similar to
those of the standard Laplacian [6]. When G is connected,

rank(Lw(t)) = n−1 with null(Lw(t)) = 1. Since
∑

i b̃(t) = 0
and A(t) is stochastic for all t, the agent state conservation
constraint still applies. We can solve X∗ with the same pro-
cedure as the proof of Theorem 1 w.r.t. a particular A(t).
We note that the obtained X∗ satisfies x∗

j − x∗
i = Δ∗

ij for

all ai, aj ∈ Ni, the optimality condition X∗ = A(t)X∗ + b̃(t)
will hold for all t.7 We can again obtain the new dynamics
system:

Y (t + 1) = A(t)Y (t)

Since Lw(t) is a real symmetric matrix for all t. Apply-
ing the Courant-Fisher Theorem to the analagously-defined
Lyapunov function, a similar derivation as Eq. 14 and 15
yields:

V (t + 1) ≤ (μ2(A(t)))2V (t) ≤ (max
t

μ2(A(t)))2V (t)

Therefore, the convergence rate is at least the maximal value
of the second largest eigenvalues among the A(t).

Proof of Theorem 5
This is an extension to the original proof of [5]. Let v
be the Lw(t)’s eigenvector associated with λ2. Based on
Courant-Fischer, we can get:

∑
ai,aj∈Ni

φij(t)(vi − vj)
2 =

λ2

∑
i v2

i . In addition,
∑

i vi = 0 (orthogonal to 1), we ob-
tain: 2n

∑
ai,aj∈Ni

φij(t)(vi−vj)
2 = λ2

∑
i

∑
j(vi−vj)

2. In

[5], it is shown that λ2

∑
i

∑
j(vi − vj)

2 ≤ λ2 · diam(G) ·
n2

2

∑
ai,aj∈Ni

(vi − vj)
2. Since φmin ≤∑ai,aj∈Ni

φij(t)(vi −
vj)

2/
∑

ai,aj∈Ni
(vi − vj)

2, we reach the conclusion: λ2 ≥
4·φmin

n·diam(G)
.

7The ith element of X∗: x∗
i +

∑
aj∈Ni

φij(t)(x
∗
j − x∗

i) −∑
aj∈Ni

φij(t)Δ
∗
ij = x∗

i

78

