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ABSTRACT

This paper addresses the issue of emergence of robust coop-
eration among self-interested agents interacting in N-player
social dilemma games. A series of graphs are created each
exhibiting a different level of community structure; we show
the influence that community structure has on the emer-
gence of cooperation. A strategy set that represent a form
of generalised tit-for-tat is used. Two forms of uncertainty
in the environment are also modelled. The influence of the
game length is also explored.
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1. INTRODUCTION

Social dilemma games such as the prisoner’s dilemmal[l]
and its variants have been studied to model the interactions
between autonomous agents in multi-agent systems. In this
paper we adopt a generalised N-player version of the pris-
oner’s dilemma based on the formalism of Boyd and Rich-
erson [2]. In this game, N players simultaneously interact,
either cooperatively or not.

The strategies used in this paper are generalised versions
of tit-for-tat. The tit-for-tat strategy [1] and can be de-
scribed as follows: cooperate on the first move and then
mirror the opponents’ behaviour. This can be generalised
to work in the N-player iterated prisoners dilemma. Instead
of simply mirroring an opponent’s behaviour, these strate-
gies cooperate if a sufficiently high number of cooperators
existed in the previous iteration.

In this paper, we explore the emergence of cooperation
among agents participating in an N-player social dilemma,;
agents are arranged and their interactions constrained by
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a graph topology exhibiting a level of community structure.
We expand on previous work to show that with simple learn-
ing mechanisms cooperation emerges which is robust in the
presence of high levels of noise. Furthermore, we show that
with the presence of small levels of noise the society of agents
can adapt to dramatic changes in the environment. The in-
fluence of game length is also explored.

2. RELATED WORK

N-player dilemmas are characterised by having many par-
ticipants, each of whom may choose to cooperate or defect.
Any benefit or payoff is received by all participants; any cost
is borne by the cooperators only.

Defection represents a dominant strategy, i.e. for any indi-
vidual, moving from cooperation to defection is beneficial for
that player. However, if all participants adopt this dominant
strategy, the resulting scenario is sub-optimal. If any player
changes from defection to cooperation, the performance of
the society improves, i.e. a society with ¢ + 1 cooperators
attains a greater payoff than a society with ¢ cooperators.

Previous work adopting evolutionary simulations has shown
that without placing specific constraints on the interactions,
the number of participants or the strategies involved, the re-
sulting outcome is that of defection[8][12].

In studying the two-player game, many researchers have
explored the effect of placing spatial constraints on the pop-
ulation of interacting agents. These include, among oth-
ers, experimentation with grid size and topology [7], small
world[11] and scale-free graphs[9].

In this paper, we are interested in one key property of
a graph: that of community structure. This property has
also been explored in recent work[4]. A graph is said to
have a community structure if collections of nodes are joined
together in tightly knit groups between which there are only
looser connections. This property has been shown to exist
in many real-world social networks|6].

Several researchers have addressed related issues to changes
in the environment: evolutionary models and co-evolutionary
models where the population is changing over time and hence
too is the fitness landscape, studies in the viscosity of pop-
ulations[5], changing or reversing the environment [3] or by
introducing noise into the model whereby agents actions are
mis-implemented or mis-interpreted by other agents[10].

3. MODEL
3.1 Graph structure



In the simulations described in this paper, agents are
located on nodes of an undirected weighted graph. The
weight associated with any edge between nodes represents
the strength of the connection (and the likelihood of these
agents participating together in games) between the two
agents located at the nodes. We use a regular graph of de-
gree four neighbours. We use two different edge weight val-
ues in each graph: one (usually, a higher value) associated
with the edges within a community and another associated
with the edges joining agents in adjacent communities. Both
weights used are in the range [0,1]. The graph is depicted
in Fig. 1, where the thicker lines represent intra-community
links (larger value as edge weight) and the thinner lines indi-
cate inter-community links between neighbouring communi-
ties. The rectangles of thicker lines represent communities.
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Figure 1: Graph structure

3.2 Agent Interactions

Agent stratgies are defined by two parameters—first move
and a threshold. The first move specifies what to do on the
first turn in an interaction; the second parameter is used to
calculate a threshold, 7 (represented as a value in the range
0 to 1). If there are less cooperators on turn ¢ than 7 times
the number of particpants, then the agent defects on turn
i+ 1. Othewise, the agent cooperates.

Agents interact with their neighbours in a N-player pris-
oner’s dilemma. The payoffs received by the agents are
calculated according to the formula proposed by Boyd and
Richerson [2], i.e. cooperators receive Bi/N — ¢ and defec-
tors receive Bi/N, where B is a constant (in this paper, B
is set to 5), ¢ is the number of cooperators, N is the number
of participants and c is another constant (in this paper, c is
set to 3).

Each agent may participate in several games. The algo-
rithm proceeds as follows: for each agent a in the population,
agents are selected from the immediate neighbourhood of
agent a to participate in the game with a probability equal
to the edge of the weight between the nodes. An agent’s
fitness is calculated as the average payoff received in the
interactions during a generation.

3.3 Learning

Agents may change their behaviours by comparing their
payoff to that of neighbouring agents. We adopt a simple up-
date rule whereby an agent, following each round of games,
updates their strategy to that used by more successful strate-
gies. These neighbours are chosen according to the weight of
the edge between agent and neighbour. Let s_adj(z) denote
the immediate neighbours of agents x chosen stochastically
according to edge weight. The probability of an agent = up-
dating their strategy to be that of a neighbouring agent y is
given by:

w(z,y)-f(y)
Yesaditmyw(z, 2). f(2) (1)

where f(y) is the fitness of an agent y and w(x,y) is the
weight of the edge between x and y.

We also incorporate a second update mechanism. The
motivation for its inclusion is as follows. Following several
iterations of learning from local neighbours, each commu-
nity is likely to be in a state of equilibrium—either total
cooperation or total defection. Agents in these groups are
receiving the same reward as their immediate neighbours.
However, neighbouring communities may be receiving dif-
ferent payoffs. An agent that is equally fit as its immediate
neighbours may look further afield to identify more success-
ful strategies.

w(z,y)-f(y)
EzEadj(adj(z))u}(m7 Z)f(Z)

(2)

where again f(y) is the fitness of agent y and now (w, z)
refers to the weight of the path between w and z. We use
the product of the edge weights as the path weight. Note
that in the second rule, we don’t choose the agents in pro-
portion to their edge weight values; we instead consider the
complete set of potential in the extended neighbourhood. In
this way all agents in a community can be influenced by a
neighbouring cooperative community.

3.4 Noise and Dramatic Change

The first type of environment change we explore is the
introduction of noise to the environment. Following every
generation, the agent strategies are subjected to noise. For
some agents, the first parameter of their strategy is changed
from cooperation to defection and vice-versa. The second
parameter in their strategy, the threshold (7) is also subject
to change; we merely reassign the value to be 1 — 7.

The second type of environmental change we model is that
of a dramatic environmental change. We achieve this by re-
versing the effects of the agents’ behaviours. Prior to the
dramatic change, a certain action (cooperation) is individ-
ually dominated but collectively optimal; the other action
(defection) is individually dominant but collectively results
in a poor outcome. Subsequent to the change, defection is
now the collectively optimal action and cooperation is the
individually selfish move.

The experiments we undertake are aimed to explore the
following issues: the influence of community structure, the
emergence of cooperation among generalised tft strategies,
the influence of game length on such emergence, the robust-
ness of cooperation to noise and the robustness to dramatic
environmental change.



3.5 Parameter Settings

In our experiments we use a population of 800 agents;
we allow simulations to run for 750 generations. Following
each generation, the first learning rule is applied. Following
every four generations (sufficient for community to reach an
equilibrium), the second learning rule is applied.

We vary the noise level using the following noise levels:
1%, 5%, 10%, 15% and 25%. Dramatic change is mod-
elled by reversing the game pay-offs. We vary the following
parameters—the strength of the inter-community links and
the length of the game.

In this work, the intra-community links are held constant
with a value of one. The value of the inter-community links
have a large influence. The lower the value, the more robust
to defection the cooperative clusters should be. The length
of the game also has a large influence on the outcome. As
the game length increases, the threshold parameter becomes
more important than the initial move.

4. EXPERIMENT RESULTS

4.1 Experiment 1: varying community struc-
ture and game length
In these experiments, we let the game length range from
two to four. We alter the level of community structure by
holding the intra-community links at one and varying the
inter-community links. We set the inter-community links to
be 0.1, 0.3, 0.8 and 1.0.

Game length 2; Varying community structure

Number of Cooperators

Figure 2: Game Length = 2; Varying community
structure

Figures 2,3 and 4 show similar experiments for increasing
game lengths. For each of the game lengths (2, 3 and 4)
we explore the effect of the community structure. In Figure
2, we see that for high levels of community structure, co-
operation emerges; for lower values, defection spreads. For
the graph with no community structure (all edge weights
equal to one), cooperation initially spreads but then quickly
collapses. As the game length increases, the effect of the
game length is more pronounced. In the final graph, with
game length four, cooperation emerges in all cases. This is
due to the effect of the tft-like strategies and the increased
probability of reaching cooperative equilibrium states.

Game length 3; Varying community structure
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Figure 3: Game Length = 3; Varying community
structure

Game length 4; Varying community structure
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Figure 4: Game Length = 4; Varying community
structure

4.2 Experiment 2: Introducing noise

In order to explore the effect of noise, we hold the length of
game and the level of community structure fixed. We set the
game length to be three and the inter-community links to be
0.1 reflecting a population with a high community structure.
We see from Figure 5 that the population remains relatively
robust to low levels of noise; up to 10 per cent noise can
be tolerated with the population still remaining a high level
of cooperation. Due to the presence of noise, defection will
spread within a cluster. However, given the second learning
rule, cooperation will quickly regain its position as the dom-
inant strategy. This process of introducing noise causing an
increasing in defection followed by the subsequent recovery
of cooperation repeats itself. As the noise levels increase to
higher values (15% and 25%), the population still does not
tend to defection. The introduction of noises causes an im-
mediate spread of defection but the cooperative clusters are
relatively robust in the face of this invasion.

4.3 Experiment 3: Introducing dramatic change



Varying levels of
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Figure 5: Varying levels of noise

The final experiment examines the effect of dramatically
changing the agent environment. We reverse the payoffs
for the game. We wish to explore whether or not our spa-
tially organised population with a topology representing a
high community structure can track the new socially benef-
ical behaviour. Ideally the population should converge to
cooperation and following the change in environment the
population should converge to ‘defection’ in the new game.
In reality this new ‘defection’ is really a form of cooperation
(choosing the socially beneficial behaviour) and is counted
as such in the graphs.

In Figure 6, we use a game length of three and a high com-
munity structure (inter community links fixed at 0.1). We
run simulations for two levels of noise (1% and 5%). The
dramatic environmental change occurs at generation 375.
In the graph, we plot the number of agents adopting the
socially beneficial behaviour (cooperation before generation
375, defection after generation 375). We see that the popu-
lation is able to track the change in environment and quickly
realise very high levels of socially beneficial.

Following the dramatic change, the fitness of the society
drops dramatically as most agents are performing the indi-
vidually rational yet collectively sub-optimal behaviour. Im-
mediately prior to the change, a number of agents are ’defec-
tors’ due to the presence of noise; this spreads to their imme-
diate neighbours so we have a few isolated clusters of defec-
tors. Following the change these clusters are now perform-
ing optimally and this behaviour spreads quickly through
the population due to the second learning rule.

5. CONCLUSION

In these experiments, we show that with a sufficiently high
level of community structure, cooperation can emerge in a
population of generalised tit-for-tat agents playing in a N-
player social dilemma. Moreover, as the length of the game
increases, there is less need for the community structure to
encourage cooperation.

We also show that the spread of cooperation can be robust
to the introduction of noise. Higher levels of noise do not
necessarily drive the population to a state of total defection.

Finally, given the presence of a small degree of noise, high
levels of socially beneficial behaviour can be acheived even
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Figure 6: Changing Environment

with the introduction of extreme environmental change.
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