Approximating Mixed Nash Equilibria using Smooth
Fictitious Play in Simultaneous Auctions

(Short Paper)

Enrico H. Gerding*

Zinovi Rabinovich*

Andrew Byde** Edith Elkind*

Nicholas R. Jennings*
{eg,zr,ab06v,ee,nrj}@ecs.soton.ac.uk

*School of Electronics and Computer Science, University of Southampton, UK
tHewlett-Packard Laboratories, Bristol, UK.

ABSTRACT

We investigate equilibrium strategies for bidding agehé partic-
ipate in multiple, simultaneous second-price auction$ \érfect
substitutes. For this setting, previous research has stimatiit is a
best response for a bidder to participate in as many sucloascs
there are available, provided that other bidders only giadte in
a single auction. In contrast, in this paper we considerlisgiuim
behaviour where all bidders participate in multiple auasio For
this new setting we consider mixed-strategy Nash equélitmfiere
bidders can bid high in one auction and low in all others. By di
cretising the bid space, we are able to use smooth fictititaystp
compute approximate solutions. Specifically, we find that rés
sults do indeed converge ¢eNash mixed equilibria and, therefore,
we are able to locate equilibrium strategies in such comgéexes
where no known solutions previously existed.

1. INTRODUCTION

The rapid increase of online auctions such as eBay, QXL, aad Y
hoo! has spawned considerable research in the field of asctio
and automated bidding agents. In such auctions we incigdgsin
observe different sellers offering similar or even idestigoods

that, if the strategies converge, in the limit these strategies are a
Nash equilibrium solution [4, Ch 2, Prop 2.1]. Specificaligre
we apply an approach called smoothed or cautious fictitiday p
which is able to converge to approximate, also cadkdthsh mixed,
equilibria. Formally, an equilibrium is-Nash if any single agent
cannot gain more thanby deviating from it.

To date, much of the existing research dealing with multgple
multaneous auctions typically assumes that bidders choosef
them and then bid optimally in that auction. Previous redeaas
shown, however, that if all opponents follow this strategy &id
in a single auction, and given that the auctions do not haserve
prices, itis a best response to bidaithavailable auctions [5]. Here
we extend this work by investigating equilibrium strategiehere
all the agents participate in multiple auctions. Findingesjui-
librium outcome in this setting is a challenging problemwkuaer,
since no closed-form solution exists even for the best lespoase,
and finding the equilibrium by brute-force search is compoita
ally intractable (especially when considering mixed smés). As
aresult, this setting has received very little attentiothanliterature
and the work that exists operates in very limited cases.

In this case, the seminal paper by Engelbrecht-Wiggans asd W
ber [2] provides one of the starting points for the game-tbgo

and services at the same time. In eBay alone, for example, theanalysis of markets where buyers have substitutable goblsy

Nintendo Wii game console has nearly 2000 listings at the tim
of writing, of which over 1500 are proper auctions. In admiti

derive a mixed Nash equilibrium for the special case wheee th
number of buyers is large. Moreover, they assume that ksdder

to the web, such auctions are also considered a key approach t have the same valuations and not all bidders can bid in aficnsc

achieve effective allocation of tasks and resources wahiomber
of research areas of multi-agent systems, including Gicpeding
and multi-robot coordination. Against this backgrounds impor-
tant to develop intelligent agents that are able to bid &ffely in
such auctions. In particular, this paper considers biddirategies
when multiple auctions selling substitutable goods ard kehul-
taneously. Whereas most of the previous research in thiaitiom
focuses on best-response or heuristic strategies, herextende
this research by considering equilibrium outcomes wherrsév
agents optimise their utility by participating in multipdeictions.
To this end, we compute the equilibrium usifigtitious play a
game-theoretic learning algorithm that optimises behavimsed
on the opponents’ history of play. This algorithm has thepprty
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Our analysis, on the other hand, does not make these assaspti
Following this, [6] studied the case of simultaneous aunstiwith
complementary goods. The setting provided in [6] is furtéer
tended to the case of common values in [8]. However, neither o
these works extend easily to the case of substitutable gobith
we consider. This case is studied in [9], but the scenarigiden
ered is restricted to three sellers and two bidders and aith bid-
der having the same value (and thereby knowing the valuehei ot
bidders). The space of symmetric mixed equilibrium strigteds
derived for this special case, but these results do not gkseito
settings with more bidders and sellers, and, most impdytatat
settings where bidders have different valuations.

In more detail, this work advances the state-of-the-artéfol-
lowing ways. First, we derive equations for the bidder'sentpd
utility in the case when all bidders use mixed strategiesthia
way we can compute the equilibrium using smooth fictitioiesypl
without actually simulating the auctions. These equaticarsnot
be easily computed for very large inputs, however, and thexe
we limit the strategy space by assuming that bidders bid &t mo



two different values: high in one auction, and low or equathie
remaining ones. This assumption is based on empirical werk d
scribed in [5] showing this to be a best response in manyngstti
We then show empirically that the learning algorithm cogesrto
e-Nash equilibria.

2. THE MODEL

The model consists of: sellers, each of whom acts as an auction-
eer. Each seller auctions one item; these items are conglbte
stitutes (i.e., they are equal in terms of value and a bidt&ins

no additional benefit from winning more than one of them). #he
auctions are executed simultaneously; in particular, farmmation
about the outcome of any of the auctions becomes availatile un
the bids are placed (in real-life settings, when some of tlti@ns
close at almost the same time, there is insufficient time tainb
the results of one auction before proceeding to bid in th¢ o).
We assume that all the auctions are identical (i.e., a biddadif-
ferent between them). Furthermore, bidders are commidtdxliy
the items they win and thus cannot withdraw their bids. Hawuev
we also assume free disposal, meaning bidders do not auiir
tional costs for disposing of unwanted items. Finally, we assume
that bidders maximise their expected profit.

2.1 The Auctions

This paper focuses on second-price sealed bid auctionsevine
highest bidder wins but pays the second-highest pricegadih we
briefly address the first-price variant when we compare ttee au
tioneer’s expected revenue in Section 4. The second-pace f
mat has several advantages for agent-based settings., iFisst
communication-efficient. Second, for the single-auctiagec(i.e.,
where a bidder places a bid in at most one auction), the optima
strategy is to bid the true value and thus it requires no caapu
tion (once the valuation of the item is known). This stratégy
also weakly dominant (i.e., it is independent of the otheldbrs’
decisions), and therefore it requires no information alo@tpref-
erences of other agents (such as the distribution of thkiatians).
Also, the auction is strategically equivalent to onlinetares such
as eBay by using proxy bidding.

2.2 Bidder Strategies and Expected Utility

In this section we formalise the bidding strategies andvdaibid-
der’s expected utility when bidding in one or more auctioki¢e
note that the equations are based on the continuous bidsahrad v
tions, whereas the numerical results are based on a disettireg.
However, the equations can be easily converted into dsonts.

In what follows, the number of sellers (auctionsyis> 2 and
the number of bidding agents (or simply biddershis> 2. Let
M ={1,2,...,m}andN = {1,2,...,n} denote the set of auc-
tions and bidders respectively. Each ageénprivate valuatiorw;
is independently and randomly drawn from a probability ritist
tion with supportV’ = [0, vmaz). Let F(z) = [ f(z)dz denote
the cumulative distribution functionF’ is assumed to be common
knowledge.

that all the bids are known, is given by:
ug (v, b, b7 ") = |:1 - H (1 - Pw(b";,bjk))}
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where P" is the probability of winning a particular auction given
the bids of all players placed in that auction (the left pdrthe
equation thus denotes the probability of winnatdeastone item),
andC' denotes the unconditional (expected) costs for that auctio
given the bids. Note that this formulation of the utility igidy
general and captures a wide range of simultaneous auctians f
complete substitutes, including first-price and secorickepr Fur-
thermore, althoughP generally reduces to a deterministic func-
tion (e.g., highest bidder always wins), tie breaking rudas be
included, for example in the case of discrete bids, in whatedhe
probability of winning, and thus also the utility, are prbisstic.

The above equation assumes that all bids are known. We can
extend the equation to express uncertainty about the bidthef
bidders as follows. LB’ denote the space of bids for biddeand

=DB' xB? x ... x B" denote the space of all possible joint bids.
Given that optimal bids are no more than a bidder’s true vedna
in first and second-price auctions (clearly this also applethe
case of multiple auctions), without loss of generality weumse
thatB? = V™. Now, the expected utilit{/,, becomes:

@)

where P* (b*|v) denotes the probability of bid vectéf occurring
given the valuation). Note that this is essentially biddkis mixed
bidding policysince it specifies the probabilistic strategy as a func-
tion of his valuation. Furthermore?(b=") is the probability of
the joint bids of the opponents. We can express this prababil
terms of the bidders’ valuation density functigras follows:

ro = ]] (/Vpi(bﬂv’)f(v’)dv’).

ieN\{k}
Again, P'(b*|v’) refers to bidder's policy. Note that the above
equations can be easily applied to the discrete case byciegla
integrals with summations.

U (v) :/BP(b’wv)P(b*’“)uk(v,b’“,b*’“)db

©)

3. SMOOTH FICTITIOUS PLAY

The fictitious play concept was introduced into game theory b
George W. Brown in 1951 [1]. He describes fictitious play as
an iterative process formed by “two statisticians ... plgyimany
plays” of the same game. Each statistician assumes thapgiee o
nent maintains a constant, though potentially probatilighixed)
strategy of game, and estimates the adversaries’ stratbgi¢he
frequency of actions in the history of play, also interpdetess a
player’s beliefsabout the other players’ actions. The statistician
then selects a best response given these beliefs.

In general, a mixed strategy is defined as one which randomly  Brown set this intuition into a formdictitious playalgorithm,

selects between pure, deterministic strategies with aiceprob-
ability. In this problem domain, we define a mixed strategyaas
mapping from a bidder’s valuation to a distribution over kat-
tors, where the bid vectors describe the bids for each auctiet
b denote thgoint bids of all bidders for all auctions. That i%
is a matrix in which each elemeb is bidder:'s bid in auction;.
Furthermore, leb® denote bidde#’s vector of bids,b™* the bids
of all agents and auctions except those of biddanndbj‘i all the
bids in auction;j excepti’s. Now, the utility of agentk, provided

and successfully applied it to recover a pure Nash equilibrof
several simple game instances. It has been later shownf thiat i
the agents in the system adopt the algorithm and the gamayisgl
repeatedly, then in some types of games fictitious play qgessto
a pure Nash equilibrium (see e.g. [7]).

Unfortunately, a pure Nash equilibrium does not alwaystéris
a game, and in such games fictitious play is not guaranteeaito c
verge. Furthermore, in our problem domain the actual giese
are mappings from valuations to (distributions of) bidst obaoly



the actual bids are observed. Therefore, even iflibkeefs con-
verge, it is not possible to reproduce the actual stratdgies the
beliefs since many different mappings result in the samefdat-
liefs. However, there exists a class of fictitious play madifions,
calledsmooth fictitious playwhich can resolve the aforementioned
complications, and explicitly concentrates on mixedisgyg pro-
files. This algorithm class is discussed next.

Assume that the interaction between the agents in the syistem
described by a multi-dimensional utility function,: []_, B —
R"™, mapping actions independently selected by the agentsinto
vector of payoffs. Given that each agent selects adtiah B;, the
utility becomequs, ..., un) = u = u(bs, ..., bn) € R™, and agent
i receives utilityu;®. Furthermore, lep;(b;) denote thaelative
observed frequenayf actionb; by agenti, where_, . p(b:) =
1. The value;(-) are the beliefs about ageiit mixed strategy
Now, given these beliefs, trexpected utilitpecomes:

(B(w1), ey E(un)) = Bw) = Y u(b) [ pi(b:)

bell B;

Now, standard fictitious play selects the pure best respactim
that maximises expected utility. In this case, howevemitdsimal
variation in the beliefs about adversary strategies mageawrad-
ical change in the best response action. Allowing best respo
strategies to vargmoothlyforms the core of themooth fictitious
play algorithm class [3]. The main idea is that, instead of taking
pure best response, the agents select their action withbalpity
proportional to the expected utility of that action. Altlgtuthere
are many variations, in this paper we apphexponential cautious
fictitious play[3]. This method is commonly used since it has a
natural interpretation; it is equivalent to adding an epyroompo-
nent to the utility function, and this component thus prossahe
usage of mixed strategies in a principled way.

In more detail, let;(b) denote the probability that (pure) action
b is played. Furthermore, l&t(u (b)) denote the expected utility
from playing this action. Then thg-exponential fictitious play
response is given by specifying a set of fixed weights wee B,
and setting the probability of applying actiérno:

wyed Ew®)

(b)) = ,
oi(b) S wpet Bu)
b
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where r is termed thetemperature of exploration Note that as

7 — 0 the probability of playing the exact best response actien ap
proached, while for higher temperature values alternative actions
may be selected with higher probability.

Whenw, = 1 for all b € B;, k-exponential fictitious play cor-
responds to computing the best (mixed) response with a reddifi
utility function: U(o(-)) = Efu(a)] + 7H (o) where H(o) =
— 2 pen, 0(b)logo(b) is the entropy of the mixed strategy. In
addition to this, Fudenberg and Levine [3] have shown that
exponential fictitious play converges toeaNash mixed equilib-
rium?, and we build on this convergence property to obtain the ex-
perimental results of this paper.

We now apply the above approach to our domain of bidding in
simultaneous auctions. The standard description of sreddibti-
tious play relies on sampling the actions from the mixedstyias.
Furthermore, since the policies depend on an agent's typethe

!Notice that the utility is based on a single instance of thega
and does not imply, nor depend on, the fact that the game will b
repeated.

2More specifically, they show that for amy> 0, there exists a tem-
peraturer such that the results converge. Furthermore, the closer
comes to zero, the longer convergence may take.

Initialise:

1: Setiteration countto= 0

2. forveV,beB do

3: Initialise beliefsP(b|v)

4: end for{ Players symmetry implie® = V"™.}

Main:

5: loop

6: forallv e Vdo

7 for allb € B do

8: Computes ™ (b|v) w.r.t. expected utilityl/ (v, b), given

that the opponents use mixed-stratégfy), and by using
Equation 4.

9: end for
10:  end for
11: for allv € V do
12: for all b € B do
13: UpdateP (b|v) = n;ﬂ(n * P(blv) + o(b|v))
14: end for
15:  end for
16: end loop

Figure 1: The Smooth Fictitious Play Algorithm.

value it assigns to the auctioned item, we would need to sampl
from that as well. However, using the equations from SecZi@n
we can immediately compute the (mixed) best response gieate
for each type without the need to actually play the auctiomegya
making the update based exclusively on theoretical cortipnta
This has the advantage of considerably reducing the cortiquoddh
costs. Furthermore, we can take advantage of the fact troyi0-
nents are assumed to be symmetric (since we consider syimnmetr
equilibria), which means that the beliefs and best responsed

to be calculated only once for a single agent in each itergdod
computational complexity is independent on the number df bi
ders). In this case the smooth fictitious play is given by Fagli

4. EMPIRICAL RESULTS

The results in this section are based on the following sgtiThe
bidder valuations (types) and bid values are discrete, amdse
integer values ranging frorm to 500. Each valuation occurs with
equal probability, equivalent to a uniform valuation distition in
the continuous case. To allow for tractable results when 2, for
each type the pure-strategy bid space is reduced to two hidsia
a high bid in one of the auctions and a low bid in all others. We
use a tie-breaking rule such that if more than one bidder thiels
same, none of them win the item. However, given the number of
possible bid values, the effect of this rule is negligiblyadimFor
the temperature parameter we use a schedule which stants wit
1 (i.e., almost completely random), and decreases logaidtiiyn
until it ends withr = 2% (a logarithmic schedule is standard in
smooth fictitious play). The algorithm runs fo@00 iterations.

We now evaluate the learning algorithm by showing that the
smoothed fictitious play converges toaNash mixed equilibrium.
To this end, Figure 2 depicts a typical result comparing leegand
smooth fictitious play for second-price auctions. This shokat
the latter has considerably better convergence properties

A typical example of the equilibrium strategies that therdge
converge tois visualised in Figure 3. Whereas the mixedegyds
in fact a3-dimensional matrix (where the dimensions are valuation,
low bid, and high bid), this figure shows a projected view & th
strategies onto &-dimensional surface. The converged strategies
are surprisingly more complex than was initially expectdte-
vious research showed that, by iteratively calculatingkibst re-
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Figure 2: Convergence of the regular or best response fictibus

play (BRFP) and the smoothed variant (SFP) for various set-
tings. This is measured by first averaging the bidding stratgies

over a period of 20 iterations, and then taking the standard de-

viation. A low standard deviation means that little change fas

occurred.
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Figure 3: Projected view of a mixed strategy after100 itera-
tions for m = 4,n = 6, depicting the probabilities of each of
the high bids (left) and low bids (right) given the bidder’s valu-
ation, where darker corresponds to a higher probability. Nde
that the grey planes indicate those parts of the strategy wieh
are not used, since bidders have no incentives to not bid abev
their valuations.

sponse strategy (this is similar to best response fictitiag but
without any history), the strategies cycled between twtestaone
in which bidders bid uniformly, and another where a singferbi
cation occurs: bidders with relatively low valuations bidfarmly,

whereas bidders with high valuations bid close to the trleevian

one auction, and low in all others [5]. Although a similar aeiour
is observed in the initial iterations of the smooth fictisqulay al-
gorithm, the converged strategies are more complex.

This is shown in the example of Figure 3 where the strategy con
sists of4 distinct parts. For low valuations the strategy is to close

to the true value in one auction, and for the remaining ansttbe
bidders are indifferent between a large number of strage@ig in-
dicated by the grey area). Here, the low bids differ signifita
from the best response strategies observed in [5], wheseojpti-
mal to bid uniformly and close to the true value in all auctierhen
valuations are low. The discrepancy occurs because thalpifiiip
of winning is very low in this case, and even a small distudaain
the utility function (e.g., by adding the entropy) can caadarge
deviation in the best response strategy. For bidders wigints}
higher valuations, however, a type of bifurcation is obedrsimi-

lar to that of the best response strategy, and bidders bidihigne
auction, and low in all others. However, a bidder randomises
tween various high-bid strategies. A closer examinatiaisfpart
of the strategy shows that a higher value for the high bid igptzx
with a slightly lower value for the other bids and visa ver$aat
is, the bidders are indifferent between a number of pureesgties
where the values for the high and low bids are negativelyetated.
In the third part of the strategy, bidders bid mostly uniftrnbut
also randomise with a bifurcated strategy. This is consistéth
the iterative best response process, which shows an altarree-
tween uniform and bifurcated bidding. Finally, bidderstwitery
high valuations have a strategy where they bid truthfullgrie auc-
tion, and a low value in all others, which is again consisteiti
the best response strategy. A similar pattern is observedhier
settings. To conclude, although parts of the strategy ansistent
with best response dynamics, the emerging mixed stratebms
some interesting and unexpected patterns which suggdsthina
equilibrium strategy is in fact more complex than a mixtuféhe
pure strategies found by performing iterative best respons

5. CONCLUSIONS

In this paper we analyse equilibrium bidding strategiesminéel-
ligent bidding agents participate in multiple, simultanesecond-
price auctions. We show empirically that, using best-raspdic-
titious play, the strategies do not converge to a pure Nashileq
rium. As a result, we turn our attention to mixed Nash eqridib
Since finding such equilibria is computationally intradéglve use
a learning approach called smooth fictitious play to nunadic
approximate the equilibrium. By combining the learningaaithm
with equations about the expected utility, we can relayieglickly
compute the mixed strategies without the need to simulatadic-
tions. The empirical results show that the strategies agevio
e-Nash mixed strategies.

In future work we intend to formally analyse the (non)-eaiste
of symmetric pure Nash equilibria. Also, we would like to ifer
our conjecture that the equilibrium strategies consist af@st two
different bid values: a low bid and a high bid, and in so doing
show that the incentive to deviate from such a reduced glyaile
it exists, is very small.
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