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ABSTRACT
The application of reinforcement learning algorithms to Par-
tially Observable Stochastic Games (POSG) is challenging
since each agent does not have access to the whole state
information and, in case of concurrent learners, the environ-
ment has non-stationary dynamics. These problems could
be partially overcome if the policies followed by the other
agents were known, and, for this reason, many approaches
try to estimate them through the so-called opponent mod-
eling techniques. Although many researches have been de-
voted to the study of the accuracy of the estimation of op-
ponents’ policies, still little attention has been deserved to
understand in which situations these model estimations can
be actually useful to improve the agent’s performance.

This paper presents a preliminary study about the impact
of using opponent modeling techniques to learn the solution
of a POSG. Our main purpose is to provide a measure of
the gain in performance that can be obtained by exploit-
ing information about the policy of other agents, and how
this gain is affected by the accuracy of the estimated mod-
els. Our analysis focus on a small two-agent POSG: the
Kuhn Poker, a simplified version of classical poker. Three
cases will be considered according to the agent knowledge
about the opponent’s policy: no knowledge, perfect knowl-
edge, and imperfect knowledge. The aim is to identify which
is the maximum error that can affect the model estimate
without leading to a performance lower than that reachable
without using opponent-modeling information. Finally, we
will show how the results of this analysis can be used to im-
prove the performance of a reinforcement-learning algorithm
coped with a simple opponent modeling technique.
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1. INTRODUCTION
In this paper, we propose a preliminary study about the

effectiveness of using Opponent Modeling (OM) techniques
to improve the performances of reinforcement-learning algo-
rithms in Partially Observable Stochastic Games (POSG).

To this day, the main studies in this field concern the
development of OM algorithms [6] devoted to improve the
accuracy of opponent behavior estimation. OM approaches
can be classified according to the amount of prior knowledge
required for their application. Statistical classifiers, artificial
neural networks, deterministic finite automata, and decision
trees are examples of general-purpose methods, while ex-
pert systems, feature-based methods, and plan recognition
belong to the set of domain-specific techniques. Regardless
of which technique is considered, we want to point out that,
when the approximation error of the estimated model is too
large, using this information could prove detrimental for the
learning process.

In order to avoid this eventuality, McCracken and Bowling
studied OM from a different point of view, aiming to ensure
efficacy from its usage. Their research is founded on admit-
ting success of OM, but also focuses on the fact that such
success depends on situations: exploiting a wrong or ineffec-
tive opponent model may drastically reduce performances.
They introduced the Safe Policy Selection algorithm to prof-
itably exploit OM [5], defining as safe a policy that leads to
a total reward not lower than the expected value of the op-
timal policy; in this way, when OM yields to decrease such
safety value, it is not used. McCracken and Bowling apply
the cited above algorithm to Rock-Paper-Scissors, a zero
sum matrix-game, where information about the state space
is complete, while we aim to study OM effectiveness in a
POSG context.

Going in the same direction of such evaluation, we pro-
vide a preliminary analysis on the performances achievable
by exploiting OM techniques, in order to numerically quan-
tify them both in worst and best cases. In particular, we
show how the knowledge of the policies followed by other
agents can be effectively used by the player to improve her
performance. On the other hand, when the opponent’s pol-
icy is not exactly known, but the player can exploit only an



estimated model based on the previously observed actions,
the advantage can be significantly reduced, or it can even
turn into a loss of performance. On the basis of this anal-
ysis, we experimentally show that it is possible to improve
the performance of an RL agent by avoiding to exploit OM
information when the accuracy of the estimated model is too
low.

Recently, many research works have focused on Texas
Hold’em Poker [1] [2], considered as the ideal testbed for
studying POSG. Nevertheless, as Texas Hold’em is too com-
plex for a preliminary analysis, we focus our attention on
studying OM techniques in a simplified version of Poker
Game: the Kuhn Poker [4]. Although this problem is quite
trivial, it still has the key features of the primal game, and
for this reason it was already studied, with other purposes,
in past works [6] [3].

The rest of the paper is structured as follows: next section
briefly describes Kuhn Poker’s rules and its formalization as
a POSG. In Section 3 we expose our OM analysis, which is so
structured: at first, we study the case where no information
about the opponent’s policy is considered, then we analyze
the improvement that can be obtained when the policy fol-
lowed by the opponent is known, and finally we show how
the use of an approximate model of the opponent’s policy
may have negative effects. In Section 4 we experimentally
compare the performance of three RL agents: without OM,
with OM, and using OM only when the model estimation
is accurate enough. In the last section we draw conclusions
and describe future directions.

2. KUHN POKER
Kuhn Poker is a simplified two-person poker, its rules are

as follows:

• Two player, each of whom has two dollars

• 3 card deck: King (K), Queen(Q), Jack (J)

• At start, both players ante one dollar and receive a
private card; the third card remains hidden to each of
them.

• After anting, players can choose between two actions:
BET and PASS.

After both players anting, the non-button chooses whether
to BET or to PASS; then the button replies with her chosen
action. A hand terminates when both players choose BET
or the second action of betting sequence is PASS. The most
long betting sequence is when the non-button chooses PASS
and the button replies with BET: only in this case, non-
button must act again, then the hand is terminated. A
player wins a hand when her opponent folds, or when she
has the highest card in the showdown. The game goes to
showdown when both players bet or pass. If only one player
bets and the other replies with a PASS, showdown does not
occur. Given this betting sequence, the highest pot is 4
dollars, so the best gain an agent can obtain is 2 dollars;
this occurs when both players bet. If showdown is reached
by a two pass sequence, the pot is 2 dollars and the gain for
the winning agent is 1 dollar.

Although the Kuhn Poker is a Partially Observable Stochas-
tic Game (POSG), in this paper we limit our analysis to
the case of fixed opponents, so that the problem can be

modeled as a POMDP, that is described as the tuple: <

S , A, T , R, Ω, O >, where S is the state space describ-
ing the environment, A is the set of actions that can be
performed in the environment, T is the transition function,
expressing the probability to go from a starting state to a
next state when a given action is executed, and R is the
reward function, measuring the goodness of taking an ac-
tion in a certain state. Ω is the set of observations that the
agent can make; O : S × A× Ω −→ [0,1] is the observation
function, where O(s′, a, o) = P (Ωt = o|St = s′, At−1 = a)
is the probability of experiencing observation o, given the
performed action a and being s′ the ending state. The be-
havior of each player is specified by her policy π, which is a
function that, given a state s and an action a, returns the
probability to execute a in s: π : S × A → [0, 1].

3. OPPONENT MODELING ANALYSIS
In this section, we analyze the effectiveness of exploiting

information about the opponent’s policy in the Kuhn Poker
game. Our analysis is carried out by considering that the
opponent is following a stationary policy, so that the prob-
lem can be formalized as a POMDP, where the opponent’s
actions can be used as observations of the hidden part of the
state space. In particular, we consider opponent’s policies
that depend only on her private card, and, fixed one policy,
we compute the utility value for the best-response policy.

Without any information about the opponent’s policy,
each player knows only her own private card. This means
that, if a player owns a Queen, the probabilities that her
opponent owns a Jack or a King are both equal to 0.5. On
the other hand, by knowing the opponent’s policy and ob-
serving her actions, a player can exploit this information to
reduce her uncertainty about the private card of the oppo-
nent. To measure the amount of information that can be
obtained about the opponent’s private card by knowing her
policy, we use the mutual information quantity between the
random variable A, which represents the opponent’s action,
and the random variable C, which represents the opponent’s
private card:

I(A; C) = H(C) −H(C|A), (1)

where H is the entropy function, that measures the uncer-
tainty about a stochastic variable. Since the private card
of the opponent is always randomly extracted, the entropy
H(C) is constant, and attains its maximum value. On the
other hand, the conditional entropy of variable C given the
value of variable A is strictly dependent from the policy πopp

followed by the opponent. Given the assumption that the
opponent’s policy depends only on the value of her private
card, H(C|A) is formally defined as:

H(C|A) = −
X

a∈A

Pr(a)
X

c∈C

Pr(c|a)log(Pr(c|a))

= −
X

a∈A

 

X

c∈C

πopp(c, a) · Pr(c)

!

·

·
X

c∈C
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log

„

πopp(c, a)

Pr(a)

«

. (2)

Low values of the conditional entropy H(C|A) (and, con-
sequently, high values of the mutual information I(A; C))
mean that, by knowing the opponent model and observ-
ing her actions, we can significantly reduce the uncertainty
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Figure 1: Mutual information and best-response
performance for 1,000 fixed opponent’s policies. No
information about the policies is used.
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Figure 2: Mutual information and best-response
performance for 1,000 fixed opponent’s policies.
Policies are exactly known.

about the opponent’s card. On the other hand, when the
opponent follows a policy that does not depend on the value
of her own card (e.g., a random policy), the conditional en-
tropy H(C|A) is equal to the entropy H(C), so that the
mutual information is zero; in these cases, the use of OM
techniques is useless.

To study the effect of OM techniques in the Kuhn Poker,
we consider several possible stationary policies for the oppo-
nent. For each one of these policies, we compute the corre-
sponding mutual information I(A; C) and the performance
attained by its best-response policy. In general, given an
opponent policy πopp, the expected performance of a policy
π is the average of the expected values of the states weighted
by the probability of visiting the corresponding state:

U(π|πopp) =
X

s∈S

Pr(s|π, πopp)V (s|π, πopp).

The best-response policy π∗ against a given policy πopp is
the one which attains the highest utility:

π
∗
πopp

= arg max
π∈Π

U(π|πopp).

Figure 1 shows relation between the mutual information
of the opponent’s policy (y-axis) and the performance of
its best-response policy (x-axis), in the case where no in-
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Figure 3: The arrows show the improvement due to
the knowledge of the opponent’s policy.
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Figure 4: The arrows show the improvement (blue)
or the worsening (red) when the player exploits an
estimated model whose distance from the actual op-
ponent’s policy is up to 0.1.

formation about the opponent’s policy is exploited 1. As
we can see from the graph, the opponent’s policy which is
less exploited has a quite high mutual information value. In
particular, it is worth noting that there is no policy for the
opponent that is placed near the origin of the graph. This
means that, if the opponent wants to adopt a policy that can
be hardly exploited, it has to follow a policy that reveals in-
formation about her private card. On the other hand, when
the opponent wants to hide at most the value of her card,
she can be easily exploited. This trade-off is what makes the
use of OM techniques interesting.

Figure 2 shows how the situation changes when the player
knows the policy followed by the opponent, so that the prob-
lem can be formalized as a POMDP and solved by using the
observable histories as state information. As it can be no-
ticed, several points have been moved to the right, since ex-
ploiting the information of the opponent’s policy has allowed
to identify best-response policy with higher performances.
To give a better visualization of the effect of knowing the
opponent’s policy, in Figure 3 we have used arrows to rep-
resent the gain. As expected, when the mutual information
is low, knowing the opponent’s policy results in small gains.

1Each point corresponds to a different opponent’s policy.
The 1,000 policies have been generated by considering ten
evenly-spaced values for the probability of betting given each
value of the private card.



On the other hand, it is not always true that the knowledge
of policies that convey much information can lead to high
gains, especially when the policies are quite weak (look at
the right side of the graph).

Unfortunately, in adversarial problems, a player does not
know the policy of her opponent. For this reason, the resort
to OM techniques is quite common. The problem is that
the estimated model is an approximation of the policy actu-
ally followed by the opponent. Using a model affected by a
large approximation error could lead to a performance that
is worse than that achievable using no model at all. Figure 4
shows how much, in the worst case, the performances change
when the distance between the actual opponent’s policy and
the estimated one is not larger than 0.12. The arrows that
point toward left (red arrows) corresponds to opponent’s
policies for which the agent may have a loss of performance
when using a model with a low accuracy. As we can notice,
the opponent’s policies that are associated to larger losses
are those that have little or not advantage when knowing
the actual policy followed by the opponent.

In the next section, we show how this analysis can be used
to improve the performance of an RL player.

4. LEARNING EXPERIMENTS
In this section, we show some preliminary experiments

obtained by using Q-learning [7], a popular reinforcement-
learning algorithm, against a fixed opponent. In particular,
we consider three different versions of Q-learning:

• Q-learning without OM: the state space depends only
by the player’s private card;

• Q-learning with OM: the state space depends by the
player’s private card and by the observed opponent’s
action3

• Q-learning with reliable OM: in this version, we keep
an estimate of the accuracy of the opponent’s model,
so that when the accuracy is below a certain threshold
we use Q-learning without OM, otherwise we exploit
the opponent modeling information. The choice of the
threshold is made according to the analysis described
in the previous section.

In Figure 5, the performances of the three learning algo-
rithms are represented. As it can be noticed, Q-learning
with OM is ineffective in the first learning steps when the
information about the opponent’s policy is still highly un-
certain. On the other hand, Q-learning without OM is able
to quickly learn a good solution, but it has not enough infor-
mation to exploit the opponent at best. As we can notice,
the third approach, which uses the opponent-modeling in-
formation only when it is accurate enough, is able to attain
both a good learning speed and a good performance in the
long-run.

5. CONCLUSIONS
2The distance between two policies is computed as the L2-
norm of the difference vector between the two vectors that
specify the policies in the two models.
3In this problem, this information is equal to the history of
observations, thus allowing Q-learning to solve the POMDP
problem.
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Figure 5: Comparison of three RL algorithms
against a fixed opponent’s policy. Results are av-
eraged over 1,000 runs

In this paper we have presented a preliminary study on
measuring the usefulness of using opponent-modeling tech-
niques in Partially Observable Stochastic Games, by focus-
ing on a simple poker game. The results of our analysis
show that, in a context like Kuhn Poker, OM technique can
be very useful, but only under the necessary condition that
the model describing the opponent’s behavior is accurately
estimated.

This paper represents just a first step and opens several
directions for future research. The following steps will be
devoted to extend this analysis to cases where the oppo-
nent can adopt more complex policies, such as stationary
policies that consider the actions performed by the player,
non-stationary policies, and non-stationary policies based on
OM information. The final goal of this work is to extend the
results of these analyses to more complex problems, such as
the Texas Hold’em Poker.
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