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ABSTRACT
In many complex multi-agent domains it is impractical to compute
exact analytic solutions. An alternate means of analysis applies
computational tools to derive and analyze empirical game models.
These models are noisy approximations, which raises questions
about how to account for uncertainty when analyzing the model.
We develop a novel experimental framework and apply it to bench-
mark meta-strategies – general algorithms for selecting strategies
based on empirical game models.

We demonstrate that modeling noise is important; a naïve ap-
proach that disregards noise and plays according to Nash equilib-
rium yields poor choices. We introduce three parameterized algo-
rithms that factor noise into the analysis by predicting distributions
of opponent play. As observation noise increases, rational players
generally make less specific outcome predictions. Our comparison
of the algorithms identifies logit equilibrium as the best method for
making these predictions. Logit equilibrium incorporates a form
of noisy decision-making by players. Our evidence shows that this
is a robust method for approximating the effects of uncertainty in
many contexts. This result has practical relevance for guiding anal-
ysis of empirical game models. It also offers an intriguing rationale
for behavioral findings that logit equilibrium is a better predictor of
human behavior than Nash equilibrium.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence, Multi-Agent Systems

General Terms
Experimentation, Economics

Keywords
Computational game theory, meta-strategy analysis, empirical game
modeling, multi-agent systems, uncertainty, strategy selection, ex-
perimentation, simulation, methodology

1. INTRODUCTION
Game theory provides a rich set of tools for analyzing multi-

agent decision problems. These methods require a complete and
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precise specification of the players, their strategy sets, and the pay-
offs for the possible outcomes. For complex domains with large
strategy spaces or stochastic outcomes, it may be implausible to
specify such a model fully. In these cases we can facilitate analysis
by applying computational methods to derive an empirical model
of the game. Versions of this approach have been used to study
domains including TAC Travel [17], TAC SCM [23, 20], contin-
uous double auctions [16], and simultaneous ascending auctions
[17]. The success of these studies raises additional questions about
which methods yield the best results. We develop a novel frame-
work for evaluating alternative approaches and apply it to study
ways selecting strategies using empirical models.

Players using empirical game models to make strategy choices
are playing a game of incomplete information [9], similar to the
global games introduced by Carlsson and van Damme [6, 14]. The
common solution concept for games of incomplete information is
Bayes-Nash Equilibrium (BNE), which enforces consistent beliefs
and simultaneous payoff maximization for all players. Unfortu-
nately, computing exact Bayes-Nash equilibria is generally infea-
sible for the games we are interested in. Finding BNE is known
to be intractable in the general case [7]. In this specific case, the
information available to players is very complex, implying intri-
cate beliefs. Carlsson and van Damme [6] note that global games
are mathematically challenging beyond the the 2 player, 2 action
model they study. Moreover, the details of how players can learn
about the game are likely to vary across applications, limiting the
value of any exact solution that depends on a specific observation
model.

Our approach focuses on evaluating general solution algorithms
using empirical evidence, seeking to identify the state of the art.
Each algorithm takes as input an empirical game model and returns
a strategy to play. We evaluate performance using regret – how
much a player could gain by using a different algorithm. This mea-
sure is related to how well an algorithm approximates a BNE of the
full game of incomplete information. One of the important advan-
tages of this approach is that we can easily vary the class of game
and the observation model. This yields insights into the robustness
of the algorithms to different forms of uncertainty.

We begin by introducing meta-games to model the empirical ob-
servation process. Our solution algorithms are meta-strategies in
this model. We show that ignoring the uncertainty in empirical ob-
servations and naïvely applying Nash equilibrium yields poor strat-
egy choices. We then introduce three parameterized algorithms that
generalize equilibrium notions to predict distributions over the pos-
sible outcomes. These predictions depend on the noise in an intu-
itive way; as noise increases, broader predictions are preferable.
Our evaluation shows that an algorithm based on logit equilibrium
[13] consistently outperforms the others.
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This result has immediate implications for applications of em-
pirical game-theoretic analysis, such as the previously-cited stud-
ies of auctions and market games. Identifying point Nash equilib-
ria of empirical games is not very informative; instead, analysis
should focus on distributional outcome predictions. We identify
logit equilibrium as the best known method for making such pre-
dictions. This work also has an interesting connection to behav-
ioral game theory. Logit equilibrium was originally used to explain
differences between human behavior and Nash equilibrium predic-
tions in laboratory experiments [13, 1, 8]. Our results provide a
stronger rationale for this behavior as a robust method to deal with
many forms of uncertainty.

2. THE META-GAME MODEL
Figure 1 depicts an abstract model of the interaction between

players using empirical game models to make decisions. This model
is intended to capture the salient features of typical applications of
empirical game-theoretic reasoning, including payoff uncertainty
and the absence of common knowledge. The essence of the model
is a standard one-shot normal-form game embedded within an ob-
servation process.1 A base game representing the true underlying
payoffs is selected at random from a specified game class. Each
player independently observes a different empirical game, repre-
senting the player’s noisy estimate of the base game. The players
select strategies based on the empirical games and receive payoffs
defined by their joint choices and the base game payoffs.

We refer to the full model as a meta-game, and strategies in the
meta-game as meta-strategies. The general strategy selection al-
gorithms we are interested in map directly to meta-strategies in
this model. We can view players as selecting meta-strategies (so-
lution algorithms) that act on their behalf once game observations
are made. Modeling solution algorithms as strategies in a larger
game motivates evaluation of the algorithms with game-theoretic
concepts, such as regret and equilibrium.

Meta-Game

3,92,7B

4,05,5A

DC

PossibleBase Games
1,16,0B

2,41,8A

DC

6,61,7B

5,24,4A
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7,82,5B

3,16,5A

DC

Player 2Player 1

EmpiricalGameEmpiricalGame Noisy Observation Noisy Observation
StrategySelection(B) StrategySelection(D)

Figure 1: A graphical depiction of a meta-game showing selec-
tion of the base game, generation of empirical games, and strat-
egy selections based on the empirical games. Here, player 1
chooses strategy B and receives payoff 3, while player 2 chooses
strategy D and receives payoff 9.

1We study the one-shot case in part to make a clean distinction be-
tween empirical learning of game parameters and opponent model-
ing, which are both possible in repeated interactions.

Meta-games are games of incomplete information [9] in which
the signals are empirical game models. There are also many inter-
esting issues in directing simulations to derive an empirical model
[10]. We consider these beyond the scope of this paper and take
the empirical model as given. Global games [6] also embed an un-
derlying game within a noisy observation model. Analytic results
for global games show that uncertainty can motivate the selection of
risk-dominant over payoff-dominant equilibria. In ensemble games
[3], players also play collections of game instances. Cognitive lim-
itations can lead agents to sub-optimally choose similar strategies
across game instances. Our approach of using game-theoretic cri-
teria to evaluate solution algorithms is similar in spirit to efficient
learning equilibrium [4], which proposes an equilibrium between
learning algorithms in repeated games.

2.1 Normal-form Games
A normal-form game is defined by a tuple {I, {Si}, {ui(s)}}.

I is the set of players, which has size m. Si is the set of pure
strategies available to player i. The payoff function ui gives the
payoffs player i receives for each outcome profile, which speci-
fies a pure strategy for each player, s ∈ {S1 × · · · × Sm}. The
notation s−i denotes a profile of strategies for all players except
i. A homogeneous profile is one in which all players play the
same strategy. A mixed strategy σi assigns a probability of playing
each of player i’s pure strategies; pure strategies are special case of
mixed strategies. Mixed strategy outcome profiles are denoted by
Σ = {σ1 × · · · × σm}.

A Nash equilibrium is a mixed-strategy profile Σ with the prop-
erty that no player would benefit by deviating to a different strategy.
That is, for all players i and all strategies si ∈ Si, ui(Σi, Σ−i) ≥
ui(si, Σ−i). Nash equilibria are stable in the sense that no player
regrets their strategy choice once the choices of all players are re-
vealed. We define the regret, ε, for each strategy profile to be the
maximum benefit any player could gain by deviating (which may
be negative). Any profile with ε ≤ 0 is a Nash equilibrium. An
ε-Nash equilibrium is an approximate equilibrium with maximum
regret ε.

2.2 Meta-Games
A meta-game, Γ, encompasses a base game, G, and the empirical

games observed by the players, Ωi. The base game and empirical
games are normal-form games with identical sets of players and
strategies but potentially different payoff functions. A meta-game
is defined by a tuple {I, {Si}, U, f,O, Θ}. The sets of players and
strategies, I and Si, mirror those in a normal form game. The set
of possible payoff functions for G is U . Payoffs for G are drawn
randomly from U according to the density f . The set of possible
empirical games is O. The conditional probability function Θ =
Pr{Ωi|G} gives the relationship between the base game and the
empirical observations.2 Typically, we define O and Θ implicitly
by defining a noise process used to generate empirical games from
the base game. The meta-game has three phases:

1. Game Selection: Nature draws the base game payoffs G
from U according to f .

2. Observation: Nature generates the empirical games Ωi, con-
ditioned on G.

3. Strategy Selection: Players select mixed strategies σi, con-
ditioned on Ωi. Payoffs are determined by the outcome Σ
and base game G.

2We assume that the observations are the same for all players for
notational convenience.
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To distinguish strategies in the base game G from strategies in
the meta-game Γ, we refer to the latter as meta-strategies. Meta-
strategies map from empirical games to strategies in the base game.
This is precisely the function of a typical solution algorithm ap-
plied to an empirical game. Strategy selection algorithms are meta-
strategies. For example, an algorithm that finds a Nash equilibrium
and plays according to this equilibrium maps every empirical game
into a strategy choice, so it is a meta-strategy. Another simple meta-
strategy is to play the uniform mixed strategy regardless of the ob-
servation.

In principle, players may have knowledge of the underlying game
class and observation model which could be used to derive explicit
Bayesian beliefs. The meta-strategies we consider in this work
do not make use of any specific information about the underlying
model. This has an important advantage. These meta-strategies
are generic, and can be applied without modification regardless of
the specifics of the model. For many real domains there are diffi-
cult questions about how players would acquire such knowledge or
what form it would take. Nevertheless, we would expect more tar-
geted meta-strategies that make use of specific distributional infor-
mation to yield better choices. It would be interesting to investigate
this type of meta-strategy in future work.

3. EXPERIMENTAL FRAMEWORK
Our goal is to identify the best methods for selecting strategies

based on noisy empirical game models. Analytic approaches are
limited for two reasons. Generally, solving realistic meta-games
for exact Bayes-Nash equilibria is intractable, both conceptually
and analytically. A more subtle issues is that applications present a
wide variety of game distributions and observation mechanisms. In
practice, these are often very difficult to estimate accurately. Even
if we were able to solve a particular meta-game model analytically,
there remain important questions about how robust the solution is
to variations in these parameters.

We develop an experimental framework for benchmarking can-
didate meta-strategies. This approach produces useful results even
when the meta-game is too complex to solve exactly. It can be used
to identify best practices, setting a baseline for further advances.
An important benefit of this approach is that it is relatively easy
to vary the game class and observation model. This provides im-
portant evidence about the robustness of the solutions that is dif-
ficult to obtain analytically. Similar benchmarking approaches are
common in other decision problems where optimal algorithms are
unknown, including many machine learning problems. Recently,
experimental benchmarking has also been applied to learning in re-
peated games [11].

We begin by selecting a set of candidate meta-strategies (solu-
tion algorithms) to analyze.3 These may be solutions to simplified
problems, algorithms that appear in the literature, or simple heuris-
tic approaches. It is often useful to define spaces of parameterized
meta-strategies to explore specific hypotheses. To instantiate the
meta-game model we must also specify a class of games and an
observation model. In our experiments we will vary these as pa-
rameters of the meta-game model.

Given a set of implemented meta-strategies and an instantiated
meta-game model, we can use simulation to estimate the payoffs in
the meta-game. The steps follow those outlined in Section 2.2. To
determine the payoffs for a single combination of meta-strategies

3Analyzing a restricted set of strategies is sometimes called heuris-
tic strategy analysis [22]. One method for approximating Bayes-
Nash equilibria uses “constrained equilibrium” of restricted strat-
egy spaces [2].

(one for each player), we start by sampling from the distribution
of games and generate observations for each player. We run the
meta-strategies to select strategies based on the observations. These
strategies are played against one another to determine the payoffs
for each player and the associated meta-strategy. To achieve an
accurate estimate, this process is repeated many times.

We simulate payoffs in this manner for each possible combina-
tion of meta-strategies. The end result is an estimate of the ex-
pected meta-game payoffs for this restricted set of meta-strategies.
These payoffs can be represented in a symmetric, normal-form pay-
off matrix. We apply game-theoretic solution concepts to analyze
this payoff matrix. For instance, we can evaluate the regret a player
has for using a meta-strategy given the opponents’ meta-strategies.
We can also identify constrained meta-strategy equilibria and dom-
inance relationships.

3.1 Game Classes and Observation Models
We present experimental results for combinations of three game

classes and two observation models. All games are 2-player, 4-
strategy games with asymmetric payoffs normalized to the interval
[0, 1]. The three classes of games are uniform random, common
interest, and constant sum. Instances of these game classes are
generated using the Gamut toolkit [15]. Uniform random games
are generated using the random game generator, while the common
interest and constant sum game classes are instances of covariance
games, with covariance of 1 and -1, respectively.4 We generated
2500 instances of each class; the same instances are used in each
experiment.

We consider two observation models, stochastic observation and
incomplete observation. For stochastic observations we generate
the empirical game by adding mean-zero Gaussian noise to each
payoff in the base game. We vary the standard deviation of the
distribution to vary the noise level. For the incomplete observa-
tions the empirical game reveals the exact payoffs for a randomly-
selected subset of the pure-strategy profiles. The payoffs for the
remaining profiles are interpreted as “unobserved,” which in our
model means that they contain only the mean payoff for the game
class as an estimate (0.5 for all classes we consider). The noise level
in this case is determined by the number of profiles observed. In the
stochastic model, each outcome has an identical level of associated
uncertainty. The incomplete model is characterized by very un-
even levels of uncertainty for the individual outcomes. While these
game classes and observation models are clearly not exhaustive, we
intend them to present a diverse set of plausible conditions.

4. NAÏVE EQUILIBRIUM ANALYSIS
We begin with a simple experiment to demonstrate the signifi-

cance of first-order payoff uncertainty to strategic decisions. Con-
sider two candidate meta-strategies. Naïve Pure Strategy Nash Equi-
librium (NPSNE) plays according to the most stable pure-strategy
Nash equilibrium of the empirical game.5 The “most stable” crite-
ria generically selects a unique equilibrium for the class of games
we test. This meta-strategy is naïve in that it ignores uncertainty
and applies the perfect-information Nash equilibrium solution to
the empirical game. Best-Response to Uniform (BRU) plays a best-
response to uniform random opponent play, making no attempt to
4Payoffs for each outcome of a covariance game are drawn from
a multivariate normal distribution, fixing the correlation between
each pair of player’s payoffs.
5The results in this section exclude 612 of the 2500 instance that
have no PSNE, ensuring that NSPSE will find an equilibrium. The
same qualitative result is observed without this screening, and for
the other game classes and observation models.
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predict opponent behavior using payoff information.
We tested the meta-strategies on random games with the stochas-

tic observation model, varying the noise level. Each noise level
corresponds to a different meta-game, represented by a set of sym-
metric 2x2 payoff matrices. In Figure 2 we plot the payoffs in these
meta-games against the level of observation noise. Each line cor-
responds to the payoffs for a meta-strategy playing against either
itself or the other meta-strategy.
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Figure 2: Payoffs to NPSNE and BRU with varying noise levels,
for random games and stochastic observations.

In the limiting case where observations contain no noise, the
NPSNE strategy will always select and play the same Nash equilib-
rium. Therefore, we know that in this case the profile where both
players select strategies using NPSNE must be an equilibrium of
the meta-game. We can see this in Figure 2. For the noise level
of 0, the NPSNE achieves a very high payoff of approximately
0.83 when the other player is also using NPSNE. Changing to play
BRU against NPSNE results in a payoff of roughly 0.67 – substan-
tially worse. The equilibrium analysis is still beneficial as small
amounts of noise are introduced. As the noise level increases, the
performance of NPSNE relative to BRU steadily decreases. For
noise levels higher than roughly 0.2, BRU is a dominant meta-
strategy; regardless of whether the opponent is using NPSNE or
BRU, the player achieves a higher payoff using BRU. This is a
striking demonstration of the fact that ignoring payoff uncertainty
in equilibrium analysis can lead to poor strategy choices. When
there is sufficient uncertainty, even the extreme method of predict-
ing completely random opponent play results in better choices than
making strategic predictions based on faulty assumptions.

5. CANDIDATE META-STRATEGIES
It is useful to think of meta-strategies as having two stages: pre-

diction and best-response. A meta-strategy first predicts how op-
ponents will play, and then computes a best response to this predic-
tion. Both NPSNE and BRU take this form, but the predictions they
make lie at opposite ends of a spectrum. At one extreme lie com-
pletely uninformed predictions, at the other, predictions based on
idealized strategic reasoning. In between we envision methods that
factor noise into the strategic analysis in some intermediate way to
make distributional predictions about the possible outcome. Vorob-
eychik and Wellman [21] advocate using similar distributional so-
lution concepts in the context of mechanism design.

We introduce three classes of meta-strategies that interpolate be-
tween uninformed and equilibrium predictions using a single pa-
rameter. These meta-strategies allow us to explore an inherent ten-
sion in the prediction task. Specific predictions allow a player to
compute a targeted best-response. However, if the prediction is in-
accurate this may be a very poor choice. Noisy payoff observations
increase the risk of inaccurate predictions, because players share
less knowledge of the game. We explore this tradeoff by analyz-
ing the relationship between observation noise and the most stable
parameter settings for these meta-strategies. In general, we expect
that as noise increases, the most stable meta-strategies will make
broader predictions about the possible outcomes.

5.1 Approximate Pure-Strategy
Nash Equilibrium

The ε-Nash Solver (ENS) generalizes NPSNE by best-responding
to a distributional prediction that places greater weight on profiles
with lower regret. The motivation is that low-regret profiles may
be likely outcomes, even if they are not exact equilibria of the em-
pirical game. Approximate equilibria may in fact be equilibria of
the base game, or appear to be equilibria in the empirical games
observed by other players. We construct a distributional predic-
tion from the regret measure for each profile, denoted ε(s), using a
Boltzmann distribution:

Pr(s) =
e−ε(s)/τP

s′∈(S\s) e−ε(s′)/τ
(1)

The “temperature” parameter τ interpolates between the uniform
distribution as τ →∞ and the most stable outcome distribution as
τ → 0. This method may produce distributions that require corre-
lated strategies. For example, the two outcomes where both players
choose strategy 1 or both players choose strategy 2 could each oc-
cur with probability 0.5. This cannot occur unless the players have
access to a common randomization device. Our model does not ex-
plicitly allow correlation, so we interpret this as an approximation
of an uncorrelated outcome distribution.

5.2 Approximate Nash Equilibrium
The Replicator Dynamics Solver (RDS) searches for approx-

imate Nash equilibria using replicator dynamics [18, 17]. This
method can find mixed-strategy equilibria, so it finds better approx-
imations on average than ENS. The replicator dynamics model an
evolving population where better strategies have greater represen-
tation in the subsequent population. We use the update rule:

pg(si) ∝ pg−1(si) · (EP (si)−W ), (2)

where pg(si) is the fraction of the population for player i play-
ing pure strategy si in generation g, EP (si) is the expected payoff
to si in generation g, and W is the lowest payoff. RDS runs for
1000 generations, applying random restarts if the population is not
close to equilibrium after every 5 generations.6 The lowest-ε profile
found is the equilibrium estimate. We use a generic parameteriza-
tion to interpolate between this prediction and the uniform distri-
bution. We form a weighted combination, placing weight δ on the
uniform distribution and 1− δ on the equilibrium distribution.

6These search parameters empirically identified good equilibrium
approximations quickly; the average ε is roughly 0.3% of the max-
imum payoff.
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5.3 Logit Equilibrium
The Logit Equilibrium Solver (LES) plays a best response to pre-

dictions made using logit equilibrium [13]. Logit equilibrium is a
fixed point where all players use stochastic choice functions that
place higher probability on playing strategies with higher payoffs,
but no strategy is selected with certainty. This can be interpreted
as a Bayes-Nash equilibrium where each player privately observes
a vector of payoff perturbations for each pure strategy and maxi-
mizes their perturbed payoffs. Players know that their opponents
have perturbed payoffs, but do not observe the values. The magni-
tude of the perturbations is defined by the parameter λ. As λ → 0,
noise is infinite and play is uniform random. As λ →∞, noise is 0
and the logit equilibrium is a Nash equilibrium. We use the Gambit
solver to compute logit equilibria [19, 12]. This solver generically
identifies a unique Nash equilibrium for large λ.

Logit equilibrium is a particularly interesting meta-strategy for
two reasons. It can be interpreted as an exact solution to a simpli-
fied version of the meta-games we study. A significant restriction
of logit equilibrium is that noise terms are associated only with in-
dividual pure strategies, rather than strategy profiles. Logit equilib-
rium is also of broader interest because it explains many qualitative
aspects of human behavior that are not predicted by Nash equilib-
rium [13, 1, 5].

5.4 Noise and Distributional Predictions
The parameters of these meta-strategies all control how specific

the predicted distribution of opponent play is, as shown for LES in
Figure 3. This captures a key tradeoff: a more specific prediction
allows a fine-tuned best-response, but risks tuning for the wrong
outcome. Intuitively, observation noise makes prediction more dif-
ficult and the distribution should reflect this uncertainty. We test
this hypothesis using our meta-strategy parameter spaces.
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We ran experiments to determine the most stable parameter set-
ting across different noise levels for each class of meta-strategies in
self-play. The stability measure we use is the regret for the homoge-
neous profile where all players use the same parameter setting.7 We
7Typically, these homogeneous profiles are equilibria and among

tested roughly 15 parameter settings for each meta-strategy class on
random games with both observation models. The meta-games for
each noise level are averages of 12,500 samples, with 5 observa-
tions each for 2500 base game instances.

Figure 4 shows the most stable parameter settings for each noise
level. There is a clear pattern that holds for all meta-strategies,
game classes, and observation models. As noise increases, the
most stable parameter settings make broader (less specific) pre-
dictions about the outcome. This supports the intuition that our
meta-strategy parameterizations are capturing an important aspect
of strategic reasoning under uncertainty. It also suggests a general
preference for distributional solution concepts over point predic-
tions when uncertainty is a factor.

6. META-STRATEGY COMPARISON
Our final experiment directly compares the quality of the strategy

choices made by the candidate meta-strategies. This comparison
has immediate practical relevance for applications and sets a base-
line for future algorithms to improve upon. We present results for
the three game classes paired with both observation models, again
varying the noise level. We take 12,500 samples for each meta-
game, using 5 observations for each of 2500 base game instances.
The meta-strategy candidates include one instance each of the ENS,
RDS, LES, and BRU meta-strategies. The parameters used for each
noise level correspond to the most stable settings given in Figure 4.
There are two reasons we use a single parameter setting for each
noise level. One is to keep the computational costs for simulat-
ing and analyzing the meta-game manageable. The other is that
the measures we present are based on the benefit to deviating to an
alternate strategy. In this section we wish to focus analysis of devi-
ations between classes of meta-strategies, rather than deviations to
different parameter settings.

The results of the meta-strategy analysis are presented in Fig-
ure 5. To visualize performance differences across different noise
levels, we need a measure that summarizes the results of the meta-
game for each noise level. We use the regret for the homogeneous
profile where both players use the same meta-strategy as the per-
formance metric. This measure roughly summarizes the stability
of each meta-strategy, and allows us to identify meta-strategies for
which the homogeneous profile is a Nash equilibrium of the con-
strained meta-game.8 Equilibria of the constrained game may not
be equilibria of the full game, since there may be beneficial de-
viations to meta-strategies that are not in the set of candidates.
However, any profile that is not an equilibrium of the constrained
game can be definitively rejected as an equilibrium of the full game.
Equilibria of the constrained game should be interpreted as candi-
date solutions that have survived all known challengers.

Typically, ENS, RDS, and LES are all homogeneous meta-strategy
equilibria for low noise levels. This is not surprising, since all three
identify and play approximate equilibria of the base game in this
case. The fact that deviating to a different meta-strategy results in
a net loss is evidence of a coordination effect, due to the tendency
of the different classes of meta-strategies to select different equilib-
ria. We generally observe larger regret magnitudes at lower noise
levels, with regret converging to zero in the high noise conditions.
This is also intuitive; under very noisy conditions, the outcome of
any analysis depends largely on the noise and the final selections
are close to random for all meta-strategies.

the most stable profiles overall. Alternative stability measures yield
qualitatively identical results.
8No one-dimensional measure can fully capture the strategic anal-
ysis of a game. We evaluated several other measures, each of which
revealed similar performance patterns.
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Figure 4: The parameter settings for ENS, RDS, and LES with the most stable homogeneous profiles for different noise levels. Results
are shown for both the stochastic and incomplete observation models on random games. For ENS and RDS, higher parameter settings
correspond to less specific predictions, while higher settings for LES correspond to more specific predictions.
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The most striking result is the strong performance of the LES
meta-strategy across all conditions tested. The homogeneous pro-
file of this meta-strategy is almost always an equilibrium of the
meta-game. Often, it is the only equilibrium. Where there are mul-
tiple equilibria, this is often the one with the greatest loss for devi-
ating. The performance of LES relative to the other meta-strategies
is especially strong when there is moderate noise. In these cases,
there is typically a large incentive to deviate from the other meta-
strategies to LES. This constitutes strong evidence that logit equi-
librium is an effective method for factoring uncertainty into strate-
gic reasoning. Our results also provide important evidence that this
is a robust approximation for a wide range of games and observa-
tion mechanisms.

7. DISCUSSION
We define a meta-game model where players make decisions

based on empirical observations of an underlying game. Though
we are not able to solve this model directly, it motivates an exper-
imental framework for benchmarking general solution algorithms
applied to empirical game models. We demonstrate that the payoff
noise captured by our model is consequential for strategy choice.
While naïve equilibrium predictions perform well for low levels of
noise, they are dominated by uninformed predictions when there is
sufficient observation noise.

We describe three candidate meta-strategies that make distribu-
tional predictions. These methods are parameterized to interpo-
late between the extremes of uninformed predictions and complete-
information equilibrium predictions. There is a systematic rela-
tionship between the parameter settings that minimize regret in the
meta-game and the level of observation noise. As noise increases,
the most stable parameters correspond to less specific outcome pre-
dictions. This supports the hypothesis that these parameter spaces
capture a key tradeoff for strategic reasoning under uncertainty.

Our final experiment provides a direct comparison of the candi-
date meta-strategies. The performance of a meta-strategy based on
logit equilibrium is very compelling. It is especially encouraging
that this method is robust to substantial variations in the parame-
ters that define the underlying uncertainty. In addition to offering
guidance for analysis of empirical models, this result provides a
new perspective on the success of logit equilibrium in explaining
behavioral data in humans.

8. ACKNOWLEDGMENTS
This work was supported in part by grant IIS-0414710 from the

National Science Foundation.

9. REFERENCES
[1] S. P. Anderson, J. K. Goeree, and C. A. Holt.

Minimum-effort coordination games: stochastic potential
and logit equilibrium. Games and Economic Behavior,
34:177–199, 2001.

[2] O. Armantier, J.-P. Florens, and J.-F. Richard.
Approximation of Bayesian Nash equilibrium. Journal of
Applied Economics, 2006. Submitted.

[3] J. Bednar and S. Page. Can game(s) theory explain culture?
The emergence of cultural behavior within multiple games.
Rationality and Society, 19(1):65–97, 2007.

[4] R. I. Brafman and M. Tennenholtz. Efficient learning
equilibrium. Artificial Intelligence, 159(1–2):27–47, 2004.

[5] C. M. Capra, J. K. Goeree, R. Gomez, and C. A. Holt.
Anomalous behavior in a traveler’s dilemma? American
Economic Review, 89(3):678–690, 1999.

[6] H. Carlsson and E. van Damme. Global games and
equilibrium selection. Econometrica, 61(5):989–1018, 1993.

[7] V. Conitzer and T. Sandholm. Complexity results about Nash
equilibrium. In 18th International Joint Conference on
Artificial Intelligence, pages 765–771, 2003.

[8] J. K. Goeree, C. A. Holt, and T. R. Palfrey. Regular quantal
response equilibrium. Experimental Economics,
8(4):347–367, 2005.

[9] J. Harsanyi. Games with incomplete information played by
Bayesian players, Parts I, II, and III. Management Science,
14:159–182, 320–334, 486–502, 1967–1968.

[10] P. R. Jordan, Y. Vorobeychik, and M. P. Wellman. Searching
for approximate equilibria in empirical games. In
AAMAS-08, 2008. To appear.

[11] A. Lipson. An empirical evaluation of multiagent learning
algorithms. Master’s thesis, University of British Columbia,
2005.

[12] R. D. McKelvey, A. M. McLennan, and T. L. Turocy.
Gambit: Software tools for game theory, version
0.2006.01.20, 2006. http://econweb.tamu.edu/gambit.

[13] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for normal form games. Games and Economic
Behavior, 10:6–38, 1995.

[14] S. Morris and H. S. Shin. Global Games: Theory and
Applications, volume Advances in Economics and
Econometrics (Proceedings of the Eighth World Congress of
the Econometric Society). Cambridge University Press,
2003.

[15] E. Nudelman, J. Wortman, K. Leyton-Brown, and
Y. Shoham. Run the GAMUT: A comprehensive approach to
evaluating game-theoretic algorithms. In AAMAS-04, 2004.

[16] S. Phelps, M. Marcinkiewicz, S. Parsons, and P. McBurney.
A novel method for automatic strategy acquisition in
n-player non-zero-sum games. In AAMAS-06, pages
705–712, Hakodate, 2006.

[17] D. M. Reeves. Generating Trading Agent Strategies:
Analytic and Empirical Methods for Infinite and Large
Games. PhD thesis, University of Michigan, 2005.

[18] P. Taylor and L. Jonker. Evolutionary stable strategies and
game dynamics. Mathematical Biosciences, 16:76–83, 1978.

[19] T. L. Turocy. A dynamic homotopy interpretation of the
logistic quantal response equilibrium correspondence.
Games and Economic Behavior, 51:243–263, 2005.

[20] Y. Vorobeychik, C. Kiekintveld, and M. P. Wellman.
Empirical mechanism design: Methods, with application to a
supply-chain scenario. In Seventh ACM Conference on
Electronic Commerce, 2006.

[21] Y. Vorobeychik and M. P. Wellman. Mechanism design
based on beliefs about responsive play (position paper). In
ACM EC-06 Workshop on Alternative Solution Concepts for
Mechanism Design, 2006.

[22] W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart.
Analyzing complex strategic interactions in multi-agent
systems. In AAAI-02 Workshop on Game-Theoretic and
Decision-Theoretic Agents, 2002.

[23] M. P. Wellman, J. Estelle, S. Singh, Y. Vorobeychik,
C. Kiekintveld, and V. Soni. Strategic interactions in a supply
chain game. Computational Intelligence, 21:1–26, 2005.

1101



-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  0.1  0.2  0.3  0.4  0.5

H
o

m
o

g
e

n
o

u
s

 P
ro

fi
le

 R
e

g
re

t

Observation Noise

Random Games

BRU
ENS
LES
RDS

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12  14  16

H
o

m
o

g
e

n
o

u
s

 P
ro

fi
le

 R
e

g
re

t

Observation Noise

Random Games

BRU
ENS
LES
RDS

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  0.1  0.2  0.3  0.4  0.5

H
o

m
o

g
e

n
o

u
s

 P
ro

fi
le

 R
e

g
re

t

Observation Noise

Common Interest Games

BRU
ENS
LES
RDS

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  2  4  6  8  10  12  14  16

H
o

m
o

g
e

n
o

u
s

 P
ro

fi
le

 R
e

g
re

t

Observation Noise

Common Interest Games

BRU
ENS
LES
RDS

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1  0.2  0.3  0.4  0.5

H
o

m
o

g
e

n
o

u
s

 P
ro

fi
le

 R
e

g
re

t

Observation Noise

Constant Sum Games

BRU
ENS
LES
RDS

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  2  4  6  8  10  12  14  16

H
o

m
o

g
e

n
o

u
s

 P
ro

fi
le

 R
e

g
re

t

Observation Noise

Constant Sum Games

BRU
ENS
LES
RDS

Figure 5: Comparison of four classes of meta-strategies across different noise levels for six combinations of game class and observa-
tion model. The stochastic observation model results are on the left, and the incomplete observation model on the right.
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