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ABSTRACT
Most models of agents and multi-agent systems include in-
formation about possible states of the system (that defines
relations between states and their external characteristics),
and information about relationships between states. Quali-
tative models of this kind assign no numerical measures to
these relationships. At the same time, quantitative models
assume that the relationships are measurable, and provide
numerical information about the degrees of relations. In
this paper, we explore the analogies between some qualita-
tive and quantitative models of agents/processes, especially
those between transition systems and Markovian models.

Typical analysis of Markovian models of processes refers
only to the expected utility that can be obtained by the
process. On the other hand, modal logic offers a system-
atic method of describing phenomena by combining various
modal operators. Here, we try to exploit linguistic features,
offered by propositional modal logic, for analysis of Markov
chains and Markov decision processes. To this end, we pro-
pose Markov temporal logic – a multi-valued logic that ex-
tends the branching time logic ctl*.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory

Keywords
Temporal logic, Markov chains, Markov decision processes

1. INTRODUCTION
There are many different models of agents and multi-agent

systems; however, most of them follow a similar pattern.
First of all, they include information about possible situa-
tions (states of the system) that defines relations between
states and their external characteristics (essentially, “facts

Cite as: A Temporal Logic for Markov Chains, Wojciech Jamroga,
Proc. of 7th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of life” that are true in these states). Second, they provide
information about relationships between states (e.g, possible
transitions between states).

Models that share this structure can be, roughly speak-
ing, divided into two classes. Qualitative models provide
no numerical measures for these relationships. They are
widely used as basic models of computational systems, in se-
mantics of programming languages (including agent-oriented
languages), and in specification and verification of systems.
Qualitative models seem especially suited for domains in
which quantitative information cannot be reliably obtained
nor assumed. They are also used to model situations in
which the goal of an agent (or the whole system) is not to
maximize a measurable output, but rather to achieve a state
that matches certain characteristics (specified e.g. by a log-
ical formula).

Quantitative models assume that relationships are mea-
surable, and provide numerical information about the de-
grees of relations. For the relations between states, the de-
grees are usually given as probabilities. For the“qualities”of
particular states, one often talks about rewards or utilities.
Quantitative representations are used in stochastic modeling
(Markov chains), decision theory and reinforcement learning
(Markov decision processes), game theory (strategic and ex-
tensive game forms) etc. In this paper, we explore analogies
between transition systems and Markovian models in order
to provide a more expressive language for reasoning about,
and specification of agents in stochastic environments.

Analysis of quantitative process models is usually based
on the notion of expected reward. Still, other features of
Markov chains and Markov decision processes can be also
interesting. We propose to use the methodology of proposi-
tional modal logic in order to study quantitative properties
of systems and processes. Markov temporal logic for Markov
chains, introduced in Section 4, is our first step in this direc-
tion. We also briefly consider two extensions of the logic: for
Markov decision processes (where a single decision maker is
present) and for multi-agent Markov decision processes (in
which many agents can play simultaneously).

1.1 Related Work
Related work includes research on multi-valued logics, es-

pecially fuzzy logics [23, 11], probabilistic logics [21, 22],
and multi-valued modal logics [9, 7]. Of the latter, [17] is
particularly relevant, as it defines a multi-valued version of
ctl*, with propositions and accessibility relations taking
values from a finite quasi-Boolean algebra. Still, the ap-
proach of [17] is too abstract to give an account of quanti-
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Figure 1: (A) Markov chain. (B) Unlabeled transi-
tion system

tative analysis of processes (e.g., by operators that compute
the expected and/or average truth value along a given path).

Logics of probability [12] are also related to the phenom-
ena we study here. Important examples of such logics are
two probabilistic variants of ctl: pctl [13] for real time,
and pctl* [2] for discrete time; both allow to express prob-
ability bounds for a specified behavior. However, logics of
probability do not use the machinery of multi-valued log-
ics. More importantly, like probabilistic logics, they focus
on the probabilities of events (e.g., behaviors), and it is of-
ten hard to attribute an intuitive meaning to combinations
(or patterns) of different probability values. In contrast, we
will argue in Section 2.3 that combining utilities has a very
natural commonsense interpretation.

Our work comes very close to [6], where the “Discounted
ctl” (dctl) is proposed. In fact, our Markov temporal
logic directly extends the ideas behind dctl; a more de-
tailed comparison is presented in Section 6. The variant
of multi-valued ctl from [18], where the domain of truth
values can be any c-semiring (rather than simply the inter-
val [0, 1] of real numbers), is also relevant. While it does
not address quantitative analysis of processes directly, the
choice of c-semirings makes such analysis possible (at least
in principle). It may be interesting to consider a similar
generalization of our framework in the future.

2. LOOKING FOR ANALOGIES
We begin with drawing some analogies between the quan-

titative and qualitative approaches to computational sys-
tems. In particular, we are interested in similarities between
Markovian models of processes and transition systems.

2.1 Quantitative vs. Qualitative Models
The simplest Markovian models are Markov chains [20,

16, 10], discrete-time stochastic processes in which the next
state of the system depends only on the current state and
possibly the current action(s), but it does not directly de-
pend on the past states of the system. A formal definition is
given in Section 3.2. An example Markov chain is depicted
in Figure 1, together with an unlabeled transition system.
It is easy to see the similarities. First, states in the Markov
chain are assigned real reward values R, and states in the
transition system are assigned valuations of atomic propo-
sitions p, q, . . . . Moreover, both kinds of structures include
a set of states and a (single) binary transition relation on
states; however, in the Markov chain, tuples of the relation
are annotated with transition probabilities.

Markov decision processes [4, 3] can be seen as an exten-
sion of Markov chains, where several actions are available in
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Figure 2: (A) Markov decision process. (B) Labeled
transition system

each state. We observe that Markov decision processes are
very much like labeled transition systems. In both cases,
the action-transition structure can be modeled by a num-
ber of binary relations on states (one relation per action),
although the elements of relations in Markov decision pro-
cesses are annotated with probability values (cf. Figure 2).
We also observe the similarity between multi-agent Markov
decision processes from [5] and concurrent game structures
from [1].

2.2 Quantitative vs. Qualitative Descriptions
The tradition of decision theory and reinforcement learn-

ing puts forward the quantitative notion of expected utility
which represents the average of “what we can get” for all
possible executions of the process. At the same time, logical
approaches are usually concerned with“limit properties” like
the existence of an execution that displays a specific tempo-
ral pattern. Logical frameworks are not very well suited to
coping with models that involve probabilities: the existence
of a particular kind of execution may be of little interest
if this kind of execution is unlikely to happen. It does not
mean, however, that these “limit properties” are irrelevant:
in some cases we do want to e.g. make sure that there is no
path violating an important security property. The point we
are trying to make in this paper is that both kinds of prop-
erties are interesting and worth using to describe processes.

One of the nicer features of temporal logics – especially
branching-time logics like ctl and ctl* – is that they offer a
systematic approach in which properties of particular paths
(executions) are distinguished from the properties of sets
of paths (e.g., the set of all executions of a process). The
first kind of properties is facilitated by temporal operators
like “always” (2), “eventually” (3), “next” ( f) etc. The
second kind is based on path quantifiers like “for all paths”
(A) and “there is a path” (E). Both kinds of operators can
be combined: e.g., E2safe says“there is a path such that the
system is always in a safe state”. The same approach can be
employed within the quantitative framework. For instance,
besides the expected value of cumulative future reward, we
can ask of the maximal (or minimal) cumulative reward. Or,
we might be concerned with the expected value of minimal
guaranteed reward etc. We propose a precise semantics for
such combinations (and a semantics of interplay between
qualitative and quantitative properties) in Section 4.

2.3 Logical operators as Minimizers and Max-
imizers

Note that – when truth values represent utility of an agent
– temporal operators “sometime” and “always” have a very
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natural interpretation. “Sometime p” (3p) can be rephrased
as “p is achievable in the future”. Thus, under the assump-
tion that agents want to obtain as much utility as possible,
it is natural to view the operator as maximizing the util-
ity value along a given temporal path. Similarly, “always p”
(2p) can be rephrased as “p is guaranteed from now on”. In
other words, 2p asks for the minimal value of p on the path.
On a more general level, every universal quantifier is essen-
tially a minimizer of truth values, while existential quanti-
fiers can be seen as maximizers. Thus, Aγ (“for all paths γ”)
minimizes the utility specified by γ across all paths that can
occur, etc. Also, conjunction and disjunction can be seen
as a minimizer and a maximizer: ϕ ∨ ψ reads easily as “the
utility that can be achieved through ϕ or ψ”, while ϕ ∧ ψ
reads as “utility guaranteed by both ϕ and ψ”.

Of course, the idea of defining semantics of conjunction
and disjunction through functions min and max, respec-
tively, is not new: the same semantic approach is used e.g.
in fuzzy logic [23, 11]. Also, interpreting quantifiers as out-
come maximization/minimization operators, can be traced
back to the game semantics of classical logic [14, 19].

3. BASIC MODELS: MARKOV CHAINS AND
MARKOV DECISION PROCESSES

Markov chains have been proposed to represent and study
properties of processes in which transitions can be described
in terms of probabilities. Markov chains are often used for
generation of semi-random sequences of words, symbols or
events (algorithms generating spam messages are a good
example here). For these applications, states of a system
(chain) play mostly technical role, as we are mainly after
the events being generated. However, Markov chains can be
also used to model and analyze existing processes (especially
as parts of Markov decision processes, perhaps the most pop-
ular models of reinforcement learning). In that case, we are
usually interested in properties of the states: either quali-
tative (i.e., some facts being true or false in different states
of the process) or quantitative (representing utilities or re-
wards that the process is expected to yield in particular
states). Even more importantly, we are interested in how
these (qualitative or quantitative) properties accumulate as
the system progresses in time.

3.1 Domain
A domain D = 〈U,>,⊥, u〉 consists of: (1) a set U ⊆ R

of utility values (or simply utilities); (2) special values >,⊥
standing for the logical truth and falsity, respectively; Û =
U∪{>,⊥} will be called the extended utility set ; and, finally,

(3) a complement function u : Û → Û . A domain should
satisfy the following conditions:

1. U ⊆ R;

2. The operations of addition and multiplication have
their typical properties on Û , and Û is closed under av-
eraging, i.e., for every probability distribution P over
Û (discrete or continuous),

∑
u∈Û u P (u) ∈ Û ;

3. U is closed under complement: if u ∈ U then u ∈ U ;

4. Complement reverts the classical truth values: > = ⊥
and ⊥ = >;

5. > ≥ 0;
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Figure 3: Markov chain for the gene model

6. ⊥ ≤ u and > ≥ u for all u ∈ Û ;1

7. The complement is quasi-boolean wrt max,min, i.e.,
for every u1, u2, u ∈ Û : max(u1, u2) = min(u1, u2),

min(u1, u2) = max(u1, u2), u1 ≤ u2 iff u2 ≤ u1, and
u = u.

In the rest of the paper, we will assume that U = [0, 1],> =
1,⊥ = 0, u = 1−u. This closely resembles the setting in [6].
Admittedly, using 0 and 1 to represent “false” and“true”has
a long tradition in logic; there is also a tradition of using val-
ues between 0 and 1 in multi-valued logics.

3.2 Markov Chains
Typically, a Markov chain is a directed graph with proba-

bilistic transition relation. In our definition, we include also
a device for assigning states with utilities and/or proposi-
tional values. This is done through utility fluents which
generalize atomic propositions from modal logic, in the sense
that they can also take real numbers as their values.

Definition 1 (Markov chain). A Markov chain over
domain D = 〈U,>,⊥, u〉, and a set of utility fluents Π is a
tuple M = 〈St, τ, π〉, where:

• St is a set of states (we will assume that the set is
finite and nonempty throughout the rest of the paper);

• τ : St × St → [0, 1] is a stochastic transition relation
that assigns each pair of states q1, q2 with a probability
τ(q1, q2) that, if the system is in q1, it will change its
state to q2 in the next moment. For every q1 ∈ St,
τ(q1, ·) is assumed to be a probability distribution, i.e.∑

q∈St τ(q1, q) = 1.

By abuse of notation, we will sometimes write τ(q) to
denote the set of states accessible in one step from q,
i.e. {q′ | τ(q, q′) > 0}.

• π : Π× St→ Û is a valuation of utility fluents.

Example 1 (Gene model). Consider the following ex-
tension of the “gene model” from [10]. A trait in animals of
a particular species is governed by a pair of genes, each of
whom may be of type G or g. Very often the GG and Gg
types are indistinguishable in appearance; we say that type
G dominates type g. Thus, an individual can have the dom-
inant combination GG, recessive combination gg, or hybrid
combination Gg (which is genetically the same as gG).

Mating of two animals produces an offspring that inherits
one gene of the pair from each parent, and the basic assump-
tion of genetics is that these genes are selected at random,
independently of each other. Suppose that we breed animals
by starting with an individual of known genetic character

1Note that this implies that max(u,>) = >, min(u,>) = u,

min(u,⊥) = ⊥, and max(u,⊥) = u for all u ∈ Û .
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and mate it with a hybrid. We assume that there is at least
one offspring. Then, at each round, a random offspring is
chosen and mated with a hybrid, and so on. Suppose also
that a statistical study of survival produced the following fit-
ness function for individuals of the species (in relation to
genotype): f(GG) = 0.5, f(Gg) = 0.3, and f(gg) = 0.9 –
i.e., the individuals with recessive genes are the fittest, and
hybrids are the least fit of all. Furthermore, utility fluent
f is used to represent fitness values. A Markov chain that
models the process is shown in Figure 3.

A run in Markov chain M is an infinite sequence of states
q0q1 . . . such that each qi+1 can follow qi with a non-zero
probability, i.e., for every i = 0, 1, . . . we have τ(qi, qi+1) >
0. We denote the set of all runs in M by RM . The set
of runs starting from state q is denoted by RM (q).2 Let
λ = q0q1... be a run and i ∈ N0. Then: λ[i] = qi denotes
the ith position in λ; λ[i..j] = qi . . . qj denotes the subpath
of λ from position i to j; and λ[i..∞] = qiqi+1 . . . denotes
the infinite subpath of λ from position i on.

Finite prefixes of runs are called histories. HM = {h | h =
λ[0..i] for some λ ∈ RM , i} denotes the set of all histories in
M . HM (q) is the set of histories starting from q; Hk

M (q)
restricts the set further to the histories of length k. Note
that each history h can be uniquely identified with the set
of runs that “complete” it. By a slight abuse of notation,
we will also use h to denote the set, and HM (q) to denote
all such subsets of RM (q). Finally, by λ(h) we denote an
arbitrary infinite continuation of h (e.g., the run from h
which is minimal wrt to alphabetical ordering of runs).

3.3 Markov Decision Processes
Markov decision processes extend Markov chains with an

explicit action structure: transitions are now connected to
actions that generate them.

Definition 2 (Markov decision process). A Markov
decision process over domain D = 〈U,>,⊥, u〉, and a set of
utility fluents Π is a tuple M = 〈St,Act, τ, π〉, where: St, π
are like in a Markov chain, Act is a nonempty finite set of
actions, and τ : St × Act × St → [0, 1] is a stochastic tran-
sition relation; τ(q1, α, q2) defines the probability that, if the
system is in q1 and the agent executes α, the next state will
be q2. For every q ∈ St, α ∈ Act, we assume that either (1)
τ(q, α, q′) = 0 for all q′ (i.e., α is not enabled in q), or (2)
τ(q, α, ·) is a probability distribution.

Additionally, we define act(q) = {α ∈ Act | ∃q′.
τ(q, α, q′) > 0} as the set of enabled actions in q.

A policy is a conditional plan that specifies future actions
of the decision-making agent. Policies can be stochastic as
well, thus allowing for randomness in the agent’s play.

Definition 3. A policy (or strategy) in a Markov deci-
sion process M = 〈St,Act, τ, π〉 is a function s : States ×
Act→ [0, 1] that assigns each state q with a probability dis-
tribution over the enabled actions act(q). That is, s(q, α) ∈
[0, 1] for all q ∈ St, α ∈ act(q), and

∑
α∈act(q) s(q, α) = 1.

Values of s(q, α) for α /∈ act(q) are irrelevant.
Policy s is pure iff for each state q it specifies a single

action α (i.e., s(q, α) = 1, and s(q, α′) = 0 for all the other

2If the model is clear from the context, the subscripts will
be omitted.
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Figure 4: Markov decision process that allows for
various mating policies

α′). By abuse of notation, we will sometimes write s(q) = α
instead of s(q, α) = 1 for pure policies.

The set of all policies in M is denoted by ΣM . The set of
all pure policies in M is denoted by σM .

Note that, if the agent’s policy is fixed, a Markov decision
process reduces to a Markov chain.

Definition 4. Policy s : States × Act → [0, 1] instan-
tiates mdp M = 〈St,Act, τ, π〉 to a Markov chain M †
s = 〈St′, τ ′, π′〉 with St′ = St, π′ = π, and τ ′(q, q′) =∑

α∈act(q) s(q, α) τ(q, α, q′).

Example 2 (Gene model ctd.). An extension of the
“gene model”Markov chain from Example 1 is shown in Fig-
ure 4. Now, it is possible to mate the offspring with an
animal that has dominant genes (action d), recessive genes
(action r), or hybrid genes (action h). Note that the pure
policy s(GG) = s(Gg) = s(gg) = h instantiates the mdp to
the Markov chain from Figure 3.

4. MTL0: A LOGIC OF MARKOV CHAINS
In this section we present our first take on Markov Tem-

poral Logic (mtl), a logic that allows for flexible reasoning
about outcomes of agents acting in stochastic environments.
The core of the logic is called mtl0, and addresses outcomes
of Markov chains. Intuitively, mtl0 is a quantitative ana-
logue of the branching-time logic ctl* [8]; we will formalize
(and prove) this claim later, in Section 4.4.

Operators of mtl0 include path quantifiers E,A,M for the
maximal, minimal, and average outcome of a set of tempo-
ral paths, respectively, and temporal operators 3,2,m for
the maximal, minimal, and average outcome along a given
path.3 Propositional operators follow the same pattern. Be-
sides ∨,∧ for maximization and minimization of outcomes
obtained from different utility channels or related to differ-
ent goals, we use (after [6]) the “weighted average” operator
⊕ which will prove useful when we formulate e.g. fixpoint
properties of temporal operators with discount. Addition-
ally, we introduce a “defuzzification” operator 4; ϕ1 4 ϕ2

yields “true” if the outcome of ϕ1 is less or equal to ϕ2, and
“false” otherwise. This provides a neat two-valued interface
to the logic. Among other advantages, it allows to define
the classical computational problems of validity, satisfiabil-
ity and model checking for mtl.

3The temporal operators will allow to discount future out-
comes with a discount factor c. Also, we will introduce the
“until” operator U , which is more general than 3.
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4.1 Syntax of MTL0

The syntax of mtl0 (parameterized by a set of utility flu-
ents Π) is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ⊕c ϕ | ϕ 4 ϕ | Eγ | Mγ,
γ ::= ϕ | ¬γ | γ ∧ γ | f

c γ | 2cγ | γ Uc γ | mcγ.

where p ∈ Π is a utility fluent, and c ∈ (0, 1] is a discount
factor. We will use the symbol Lstate(Π) to denote the set
of “state formulae” ϕ, and Lpath(Π) to denote the set of
“path formulae” γ.

Additionally, we define the Boolean constants T,F (stand-
ing for “true” and “false”), disjunction, and the “sometime”
temporal operator 3 as below. Except for T, all of them are
just standard definitions that can be found in any textbook
on temporal logic. We will show in Section 4.2 that their
semantics corresponds to our intuition also in this setting.

• T ≡ p 4 p,

• F ≡ ¬T,

• ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2),

• Aγ ≡ ¬E¬γ,
• γ1 ∨ γ2 ≡ ¬(¬γ1 ∧ ¬γ2),

• 3cγ ≡ TUc γ,

• ϕ1
∼= ϕ2 ≡ (ϕ1 4 ϕ2) ∧ (ϕ2 4 ϕ1).

We may also use the following shorthands for discount-
free versions of temporal operators: f≡ f

1 ,3 ≡ 31,2 ≡
21, U ≡ U1 .

Example 3. The following mtl0 formulae define some
interesting characteristics of the breeding process from Ex-
ample 1: Mm0.9f (expected average fitness with time discount
0.9), Am0.9f (guaranteed average fitness with the same dis-
count factor), M2f (expected minimal undiscounted fitness),
and A3f (guaranteed maximal fitness).

4.2 Semantics of MTL0

The main idea behind mtl0 is to treat formulae in a
sufficiently general way, so that they can represent both
quantitative utilities and qualitative truth values referring
to something which is completely true or false, like a task
that has been completely achieved. Besides advantages in
terms of modeling, this allows to freely mix qualitative and
quantitative properties, which (hopefully) makes the result-
ing semantics elegant and powerful. Thus, we are going to
treat complex formulae as fluents, just like the atomic util-
ity fluents from Π, through a valuation function that assigns
formulae with extended utility values from Û .

Let M = 〈St, τ, π〉 be a Markov chain over domain D =
〈U,>,⊥, u〉 and a set of utility fluents Π. The truth value
of formulae in M is determined by the valuation function
[·] : (St×Lstate(Π))∪ (R×Lpath(Π)) → Û , defined below.
We will omit M in [·]M,q, [·]M,λ when the model is clear from
the context.

• [p]q = π(p, q), for p ∈ Π;

• [¬ϕ]q = [ϕ]q;

• [ϕ1 ∧ ϕ2]q = min([ϕ1]q, [ϕ2]q);

• [ϕ1 ⊕c ϕ2]q = (1− c) · [ϕ1]q + c · [ϕ2]q;

• [ϕ1 4 ϕ2]q = > if [ϕ1]q ≤ [ϕ2]q and ⊥ otherwise;

• [ϕ]M,λ = [ϕ]M,λ[0].

• [¬γ]λ = [γ]λ;

• [γ1 ∧ γ2]λ = min([γ1]λ, [γ2]λ);

• [ f
c γ]λ = c · [γ]λ[1..∞];

• [2cγ]M,λ = infi=0,1,...{ci[γ]M,λ[i..∞]};
• [γ1 Uc γ2]λ =

supi=0,1,...

{
min( min0≤j<i{cj [γ1]λ[j..∞]}, ci[γ2]λ[i..∞])

}
;

• The Markovian temporal operator mc produces the av-
erage discounted reward along the given run:

[mcγ]λ =

{
(1− c)

∑∞
i=0 c

i[γ]λ[i...∞] if c < 1

limi→∞
1

i+1

∑i
j=0[γ]λ[i...∞] if c = 1

• [Eγ]q = sup{[γ]λ | λ ∈ R(q)};
• The Markovian path quantifier Mγ produces the ex-

pected truth value γ across all the possible runs (from
now on). Given M, q, we first define the probability
space 〈R(q),H(q), pr〉 induced by the next-state tran-
sition probabilities τ (cf. also [6, 16]). In this space, el-
ementary outcomes are runs from R(q), events are sets
of runs that share the same finite prefix (i.e., ones from
H(q)), and the probability measure pr : H(q) → [0, 1]
is defined as pr(q0 . . . q1) = τ(q0, q1) · . . . · τ(qi−1, qi).
Then, we use the valuation of γ as the random vari-
able; the truth value of Mγ is defined as its expected
value:

[Mγ]q = lim
k→∞

∑
h∈Hk(q)

[γ]λ(h)τ(h[0], h[1])·. . .·τ(h[k−1], h[k]).

Example 4. The valuations of the mtl0 formulae from
Example 3 for the breeding process from Figure 3 are as
follows. [Mm0.9f]GG = 0.484, [Mm0.9f]Gg = 0.480, and
[Mm0.9f]gg = 0.554; i.e., the expected average fitness with
time discount 0.9 is 0.484, 0.480, 0.554 if we start with dom-
inant, hybrid, and recessive genes, respectively. Moreover,
[Am0.9f]GG = 0.32, [Am0.9f]Gg = 0.3, and [Am0.9f]gg = 0.36:
the guaranteed average fitness (with discount) is 0.32, 0.3,
and 0.36, respectively. Finally, the expected minimal undis-
counted fitness [M2f]q = 0.3 for all states q, and the guar-
anteed maximal fitness [A3f]q = 0.3 for all states q.

Proposition 1. We note that the derived operators have
the following semantic characteristics:4

1. [T]M,q = > for every M, q;

2. [F]M,q = ⊥ for every M, q;

3. [ϕ1 ∨ ϕ2]M,q = max([ϕ1]M,q, [ϕ2]M,q);

4. [γ1 ∨ γ2]M,λ = max([γ1]M,λ, [γ2]M,λ);

5. [Aγ]M,q = inf{[γ]M,λ | λ ∈ R(q)};
6. [3cγ]M,λ = supi=0,1,...{ci[γ]M,λ[i..∞]};
7. [ϕ1

∼= ϕ2]M,q = > if [ϕ1]M,q = [ϕ2]M,q, and ⊥ other-
wise.

The undiscounted versions of temporal operators “always”
and “sometime” have the usual relationship, but it does not
transfer to the discounted case. Moreover, discounted “al-
ways” is trivial for many domains.

4Proofs of propositions (omitted here due to lack of space)
can be found in the technical report [15].
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Proposition 2. 1. [2γ]M,λ = [¬3¬γ]M,λ,

2. [2cγ]M,λ = 0 if c < 1 and Û ⊆ R+ ∪ {0}.

4.3 Levels of Truth
Since every domain must include a distinguished value for

the classical (complete) truth, validity of formulae can be
defined in a straightforward way.

Definition 5 (Levels of validity). Let M be a Markov
chain, q a state in M , and ϕ a formula of mtl0. Then:

• ϕ is true in M, q (written M, q |= ϕ) iff [ϕ]M,q = >.

• ϕ is valid in M (written M |= ϕ) iff it is true in every
state of M .

• ϕ is valid for Markov chains (written |= ϕ) iff it is
valid in every Markov chain M .

Example 5. Let M be the Markov chain from Figure 3
with additional utility fluents 0.3, 0.32 and 0.36 such that
π(0.3, q) = 0.3, π(0.32, q) = 0.32, and π(0.36, q) = 0.36
for all q ∈ St. Then, we have that M,GG |= Am0.9f ∼=
0.32, M,Gg |= Am0.9f ∼= 0.3, and M, gg |= Am0.9f ∼= 0.36.
Moreover, the following formula is valid in M : M |= 0.3 4
Am0.9f ∧ Am0.9f 4 0.36.

Note that T is valid for Markov chains, while F is true in
no M, q. Other examples of validities are: A2γ ∼= A¬3¬γ,
E2γ ∼= E¬3¬γ etc. (cf. Proposition 2.1).

Definition 5 enables the traditional view of mtl0 that
identifies “the logic” with the set of valid formulae of that
logic. Moreover, it allows to define the typical decision prob-
lems for mtl0 in a natural way:

• Given a formula ϕ, the validity problem asks if |= ϕ;

• Given a formula ϕ, the satisfiability problem asks if
there are M, q such that M, q |= ϕ;

• Given a model M , state q and formula ϕ, the model
checking problem asks if M, q |= ϕ. Alternatively, the
output of model checking can be defined as the value
of [ϕ]M,q.

An important corollary of Proposition 1.7 is that the no-
tion of equivalence defined by ∼= is strong enough to make
equivalent formulae interchangeable on all levels of validity.

Corollary 3. If M, q |= ϕ1
∼= ϕ2, and ψ′ is obtained

from ψ through replacing an occurrence of ϕ1 by ϕ2, then
M, q |= ψ iff M, q |= ψ′.

4.4 Transition Systems as Markov Chains. Cor-
respondence between MTL0 and CTL*

Markov chains can be seen as generalizations of transi-
tion systems, where quantitative information is added via
non-classical values of atomic statements and probabilities
of transitions. As action labels are absent in Markov chains,
these in fact generalize unlabeled transition systems (uts).
In this section, we redefine uts as a proper subclass of
Markov chains, in which all the fluents can assume only
classical truth values.

Definition 6. Let M be a Markov chain. Formula ϕ is
propositional in M iff it can take only the values of >,⊥,
i.e., [ϕ]M,q ∈ {>,⊥} for all q ∈ St.

Propositions have a simple characterization for Markov
chains.

Proposition 4. Let M be a Markov chain and ϕ a for-
mula of mtl0. Then ϕ is propositional in M iff formula
(ϕ ∼= F) ∨ (ϕ ∼= T) is valid in M .

An unlabeled transition system can be defined as a Markov
chain with only propositional fluents. This way, we obtain
the class of models that are used for qualitative branching-
time logics, i.e. ctl and ctl*. Of course, when interpreting
formulae of ctl*, one must also ignore the probabilities that
are present in Markov chains. The next two propositions
show that mtl0 strictly generalizes ctl*.

Proposition 5. Let M be a transition system, and ϕ a
formula of ctl*. Then, M, q |=mtl0

ϕ iff M, q |=
ctl*

ϕ.

Proposition 6. There is a transition system M with states
q, q′ which cannot be distinguished by any ctl* formula, and
can be distinguished by a formula of mtl0.

4.5 State-Based MTL0

“Ctl without star” (or “vanilla ctl”) is the most often
used variant of computation tree logic, mainly due to the
complexity of its model checking problem and the fact that
its semantics can be defined entirely in relation to states.
“Vanilla” ctl can be seen as a syntactic restriction of ctl*,
in which every temporal modality is preceded by exactly
one path quantifier. In this section, we consider a similar
syntactic restriction on mtl0; we call it state-based mtl0.

Definition 7. State-based mtl0 ( smtl0 in short) is
given by the following grammar (where p ∈ Π stands for
utility fluents, and c ∈ (0, 1] for discount factors):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ⊕c ϕ | ϕ 4 ϕ | Eγ | Aγ | Mγ,
γ ::= f

c ϕ | 2cϕ | ϕUc ϕ | mcϕ.

Lemma 7 shows that M f
c ϕ implements the discounted

expected value of ϕ in the next moment. Proposition 8
presents fixpoint characterizations for most modalities of
smtl0. The results from [6] suggest that M2c and MUc

do not have fixpoint characterizations, but this remains to
be formally proven.

Lemma 7. Let ϕ be a formula of smtl0. Then, [M f
c ϕ]q =

c
∑

q′∈τ(q)[ϕ]q′τ(q, q
′).

Proposition 8. The following formulae of smtl0 are valid:

• Eϕ1 Uc ϕ2
∼= ϕ2 ∨ ϕ1 ∧ E f

c Eϕ1 Uc ϕ2;

• Aϕ1 Uc ϕ2
∼= ϕ2 ∨ ϕ1 ∧ A f

c Aϕ1 Uc ϕ2;

• E2cϕ ∼= ϕ ∧ E f
c E2cϕ;

• A2cϕ ∼= ϕ ∧ A f
c A2cϕ;

• Emcϕ ∼= ϕ⊕c E fEmcϕ;

• Amcϕ ∼= ϕ⊕c A fAmcϕ;

• Mmcϕ ∼= ϕ⊕c M fMmcϕ.

The above characterizations enable computing the truth
values of most smtl0 formulae by solving sets of simple equa-
tions.
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Example 6. The valuations of formula Am0.9f for states
GG,Gg, gg of the “gene model” Markov chain can be derived
from the following equations:

[Am0.9f]GG = 0.1 · 0.5 + 0.9min([Am0.9f]GG, [Am0.9f]Gg),
[Am0.9f]Gg = 0.1 · 0.3 + 0.9min([Am0.9f]GG, [Am0.9f]Gg,

[Am0.9f]gg),
[Am0.9f]gg = 0.1 · 0.9 + 0.9min([Am0.9f]Gg, [Am0.9f]gg).

5. MTL1: A LOGIC OF MARKOV DECI-
SION PROCESSES

The main aim of this paper is to offer a systematic study
of temporal operators for Markov chains; the study was pre-
sented in the previous section. This section briefly shows
how mtl0 can be extended to strategic reasoning about
Markov decision processes. We propose to use an explicit
strategic quantifier 〈〈a〉〉 , similar to the cooperation modal-
ity from alternating-time temporal logic atl. The intuitive
meaning of 〈〈a〉〉ϕ is “the most that the decision maker can
make out of ϕ”. Note that there is always only one agent
behind an mdp, so putting his name (e.g., “a”) inside the op-
erator is superfluous – but it will make the framework easier
to extend to the multi-agent case in the future.

5.1 Syntax and Semantics of MTL1

The syntax of mtl1 is given by the following grammar:

ϑ ::= p | ¬ϑ | ϑ ∧ ϑ | ϑ⊕c ϑ | ϑ 4 ϑ | 〈〈a〉〉ϕ,
ϕ ::= ¬ϕ | ϕ ∧ ϕ | ϕ⊕c ϕ | Eγ | Mγ,
γ ::= ϑ | ¬γ | γ ∧ γ | f

c γ | 2cγ | γ Uc γ | mcγ.

Note that a is just a fixed symbol and not a parameter of
the strategic operator.

Let M = 〈St,Act, τ, π〉 be a Markov decision process over
domain D = 〈U,>,⊥, u〉 and a set of utility fluents Π. The
truth value of formulae in M is determined by the valuation
function [·] that extends the valuation of mtl0 formulae from
Section 4.2 as follows:

• [p]M,q = π(p, q), for p ∈ Π;

• [¬ϑ]M,q = [ϑ]M,q;

• [ϑ1 ∧ ϑ2]M,q = min([ϑ1]q, [ϑ2]M,q);

• [ϑ1 ⊕c ϑ2]M,q = (1− c) · [ϑ1]M,q + c · [ϑ2]M,q;

• [ϑ1 4 ϑ2]M,q = > if [ϑ1]M,q ≤ [ϑ2]M,q and ⊥ other-
wise;

• [〈〈a〉〉ϕ]M,q = sup{[ϕ]M†s,q | s ∈ ΣM};
• [ϑ]M†s,λ = [ϑ]M,λ[0].

We use the same definitions of derived Boolean and tem-
poral operators as in Section 4.1. Additionally, we define
ϑ1

∼= ϑ2 ≡ ϑ1 4 ϑ2 ∧ ϑ2 4 ϑ1, and [[a]]ϕ ≡ ¬〈〈a〉〉¬ϕ. The
following proposition shows that [[a]]ϕ implements the out-
come of the worst possible policy with respect to ϕ.

Proposition 9. [[[a]]ϕ]M,q = infs∈ΣM{[ϕ]M†s,q}.

Example 7. Let M be the “gene model” mdp from Fig-
ure 4. Then, we have e.g. [〈〈a〉〉Mm0.9f]GG = 0.762,
[〈〈a〉〉Mm0.9f]Gg = 0.791, and [〈〈a〉〉Mm0.9f]gg = 0.9. Indeed,
using only individuals with recessive genes for mating is the
best policy when we want to maximize the expected average
fitness discounted with 0.9.

On the other hand, mating with hybrids proves best if we
want to minimize the expected average fitness (with discount
0.9) from state GG on; for states Gg and gg, mating with
dominant genes gives the worst expectancy: [[[a]]Mm0.9f]GG =
0.484, [[[a]]Mm0.9f]Gg = 0.464, and [[[a]]Mm0.9f]gg = 0.507.

We observe that various levels of satisfaction and validity
of mtl1 formulae (and thus also the typical computational
problems) can be defined analogously to Section 4.3.

The semantic definition od 〈〈a〉〉 refers to the set of all
stochastic policies Σ, which suggests that looking for the
best policy can be quite a complex task. Is it possible to
restrict the search to pure policies only? Unfortunately, it
turns out that it is not the case in general. However, we
conjecture that an analogous property should hold for the
“state-based” fragment of mtl1.

Proposition 10. Let ϑ ≡ 〈〈a〉〉ϕ be a formula of mtl1.
Then, equation [〈〈a〉〉ϕ]M,q = sups∈σM

{[ϕ]M†s,q} does not
hold. It does not even hold for labeled transition systems,
i.e., Markov decision processes where all the utility fluents
take only classical truth values >,⊥.

Conjecture 11. Let ϑ ≡ 〈〈a〉〉ϕ be a formula of mtl1

in which every temporal operator is immediately preceded by
exactly one path quantifier, and every path quantifier is im-
mediately preceded by exactly one strategic operator. Then:
[〈〈a〉〉ϕ]M,q = sups∈σM

{[ϕ]M†s,q}.

5.2 Beyond MDP: the Multi-Agent Case
In the more general case, a system can include multiple

agents/processes, interacting with each other. Here, we only
briefly discuss how Markov temporal logic can be extended
to handle such interaction.

On the language level, we propose to extend the strate-
gic operator 〈〈a〉〉 to a family of operators 〈〈A〉〉 , parameter-
ized with groups of agents A. Intuitively 〈〈A〉〉ϕ refers to
how much agents A can “make out of” ϕ by following their
best joint policy. This would yield a language similar to the
alternating-time temporal logic atl* from [1], albeit with
strategic operators separated from path quantifiers.

On the semantic level, multi-agent Markov decision pro-
cesses [5] can be used as models. The semantics 〈〈A〉〉ϕ
should be of course based on the maximal value of ϕ with
respect to A’s joint strategies. However, it is not entirely
clear how the other agents’ actions should be fixed in or-
der to instantiate the mmdp to a Markov chain. One option
is to assume that the opponents play a strategy that mini-
mizes ϕ best. This way, operator 〈〈A〉〉 would correspond to
the maxmin of the two-player game where A is the (collec-
tive) maximizer, and the rest of agents fills in the role of the
(collective) minimizer. Still, such a semantics would entail
a very strong assumption, namely that the opponents of A
must also play only memoryless strategies.

6. COMPARISON TO DCTL
Markov temporal logic (mtl), proposed in this paper, is in

many respects similar to the “Discounted ctl” (dctl) by de
Alfaro and colleagues [6]. This section lists some differences
between both logics.

1. In dctl, the set of truth values is [0, 1]. We keep the
choice more open: it can be any continuous subset of
R ∪ {−∞,+∞}.
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2. mtl has more general syntax than dctl: mtl0 extends
ctl* and mtl1 extends the single-agent fragment of
atl*, while de Alfaro et al.’s dctl extends only the
“vanilla” ctl.

3. E,A are true path quantifiers in our framework, in the
sense that they refer to “limit properties” of paths. For
aggregation of utilities via expected value, we propose
a separate path operator M. In contrast, [6] propose a
semantics in which both E,A are based on the expected
reward. In consequence, neither universal nor existen-
tial quantification on paths is expressible in dctl for
models with quantitative transition relations. One pe-
culiar consequence of such approach is that the dctl’s
Eγ yields the same truth value as Aγ for all Markov
chains, which is not the case in our framework. An-
other consequence is that the semantics of path quan-
tifiers in [6] is different for qualitative and quantitative
models, which is not the case in our semantics.

4. mtl includes the operator 4, which can serve both as
a kind of crisp material implication on fuzzy operands,
and as a “defuzzification” operator that maps quanti-
tative characteristics to qualitative descriptions.

5. The last feature allows us to define the notions of sat-
isfaction and validity. Thus, standard problems like
satisfiability and validity are properly defined in our
framework.

6. mtl includes the full “until” operator U , while dctl
includes only “sometime” (3).

7. We propose only the “path semantics” for mtl. We
believe it is more appropriate to introduce fixpoint op-
erators rather than to define two different semantics of
the same formulae.

8. In contrast to [6], we do not try to capture strategic
properties of the decision-making agent with temporal
path quantifiers. Instead, we propose to use an explicit
strategic quantifier 〈〈a〉〉 .

In essence: we attempt at a more systematic exploration
of linguistic features that are offered by propositional modal
logic for analysis of Markovian models of agents.

7. CONCLUSIONS
Two kinds of models are used in multi-agent systems to

represent and reason about behavior of agents/processes:
quantitative and qualitative ones. In this paper, we suggest
that both traditions are complementary rather than com-
petitive. In fact, we believe that an integration of both ap-
proaches may bring a really powerful framework for dealing
with multi-agent systems. To this, end, we propose Markov
temporal logic mtl which can be seen as an extension of“Dis-
counted ctl” from [6]. We show that the simplest version
of mtl (for Markov chains) strictly extends the branching-
time logic ctl*, and we discuss some fixpoint properties for
a “state-based” subset of the logic. Finally, we discuss how
the basic logic can be extended to address strategic abilities
of agents in Markov decision processes, in a way similar to
atl*.
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