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ABSTRACT

We propose Markov random fields (MRFs) as a probabilistic
mathematical model for unifying approaches to multi-robot
coordination or, more specifically, distributed action selec-
tion. The MRF model is well-suited to domains in which
the joint probability over latent (action) and observed (per-
ceived) variables can be factored into pairwise interactions
between these variables. Specifically, these interactions oc-
cur through functions that evaluate “local evidence” be-
tween an observed and latent variable and “compatibility”
between a pair of latent variables. For multi-robot coordina-
tion, we cast local evidence functions as the computation for
an individual robot’s action selection from its local observa-
tions and compatibility as the dependence in action selection
between a pair of robots. We describe how existing methods
for multi-robot coordination (or at least a non-exhaustive
subset) fit within an MRF-based model and how they con-
ceptually unify. Further, we offer belief propagation on a
multi-robot MRF as a novel approach to distributed robot
action selection.

Categories and Subject Descriptors

1.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms

Algorithms, Measurement, Performance
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1. INTRODUCTION

A key challenge in the progress of multi-robot systems is
distributed action selection: a group of robots works
collectively as a team, but each must make local decisions,
relying on locally available information. Though multi-robot
control is a well-studied area with many existing techniques |8}
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3| /1], defining comparisons, relationships, and unifying mod-
els between these techniques remains an open problem. Tovey
et al. [14] have proposed one perspective on a unifying model
through a theoretical analysis of multi-robot routing. We
propose a novel approach, in which we view the problem of
distributed action selection as an instance of distributed
probabilistic inference. In our formulation, the goal is to
construct a joint probability distribution over a set of latent
variables (the robots’ actions) from local evidence (a robot’s
own sensing) and pairwise interactions between latent vari-
ables (inter-robot task dependencies). Action selection at
each robot is construed as its belief (as a probability dis-
tribution) that is conditionally dependent on its own obser-
vations and the beliefs of other robots and is a marginal of
the overall joint probability.

We model this system of evidence, belief, and conditional
dependence using a Markov random field (MRF), which is a
pairwise probabilistic graphical model. We claim the MRF
is a natural choice for representing multi-robot problems in a
general and consistent fashion that allows for simplifying as-
sumptions and analogies (e.g., physics, economics). Further,
our MRF model provides a unifying framework in which we
can represent, analyze, and compare many existing multi-
robot algorithms.

A multi-robot MRF is a mathematical model that can
be solved using a variety of inference algorithms. The re-
sult of the inference process is a posterior distribution over
possible actions for each robot. In this paper, we discuss
how existing approaches to multi-robot control can be mod-
eled as MRFs and how their algorithms perform inference
in these models. Casting solutions as MRF solving tech-
niques allows us to leverage the large body of existing MRF
research to analyze them. In addition, MRF-based mod-
els allow for the straightforward application of probabilistic
(loopy) belief propagation (BP) [15]. Using BP, each robot
locally computes its belief probabilistically over actions as
the product of its local evidence and “messages” from other
robots. Messages in this case are distributions over a robot’s
actions which could be used to generalize robot communica-
tion. Although loopy BP provides no direct guarantees for
convergence, BP has been shown to have free energy proper-
ties that facilitate convergence when all robots can directly
communicate (i.e., all-pairs communication) or when some
pairs of robots are out of communication range.

2. MULTI-ROBOT MRFS
An MRF [15] is a graphical model that factors a system
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Figure 1: Spectrum of coordination approaches rep-
resented by MRF-based graphical models, ranging
from acting in isolation (left) to local formation of
complete team plans (right).

into a finite set of observed and hidden, or latent, variables
with pairwise interactions between them. In a multi-robot
MRF, the robots are represented as nodes in the graph, with
edges between pairs of robots that are in direct communi-
cation range. Each robot ¢ maintains two random variables:
y;, an observed variable representing a robot’s own percep-
tion; and z;, a hidden variable representing the action that
it should take. Although these variables can be either dis-
crete or continuous, we assume x; is a discrete enumeration
over the set of possible actions. Further, a latent variable is
considered to be a random variable (i.e., a probability dis-
tribution) that will assume a single value when the entropy
of the distribution is zero.

Consider the example of wireless coverage for a team of
robots. In this scenario, robots, each with wireless com-
munication and localization capabilities, work together to
provide coverage for a wireless mobile ad-hoc network over
a two-dimensional space. In this case, x; enumerates ac-
tions as a discrete set of valid poses and radio transmission
power levels for robot i. The action x; is inferred both from
the local observations y;, containing the current estimated
pose of robot 4, and in coordination with x;|j # 4, the action
selection of other robots.

Given these variables, a pairwise MRF factors all possible
collective team actions x into two functions: pairwise com-
patibility 1, ;(z;,x;) between each robot pair (ij) and lo-
cal evidence ¢;(x;,y;). The joint probability distribution
can then be stated as follows:

H¢J, Tj,Ti H¢z xz,yz (1)

(i5)

The normalization constant Z ensures that the distribution
sums to 1. The formulation in has two key benefits: we
factor the global coordination and local computation into
distinct terms; and we can express a spectrum of multi-robot
action selection methods by modifying these terms.

The local evidence ¢(x;,y;) expresses the likelihood of
robot i choosing each of its actions x;, given its observa-
tions y;. This function is analogous to likelihood models
as they are used in Bayes filters [13| for localization and
could be instantiated in various forms, from a simple one-
step utility estimator to a more sophisticated local planner.
The pairwise compatibility ;:(z; = as,z; = a:) encodes
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the likelihood of robots 7 and j selecting actions as € x;
and a; € x;, respectively, from their combined action space
Tj X Tj.

If we ignore pairwise compatibility (i.e., exchange no mes-
sages between robots), then each robot will compute its be-
lief (i.e., distribution over actions) and select actions inde-
pendently, solely based on its own observations. In previous
work [2], we have shown that this purely local approach,
though naive, can produce good performance in domains
similar to wireless coverage. However, it is unclear how
these local methods perform when noise and uncertainty are
present.

3. UNIFICATION THROUGH MRFS

Multi-robot task assignment Gerkey and Matarié¢ char-
acterized multi-robot task assignment (MRTA) problems as
instances of problems in optimization [3]. The simplest ver-
sion of MRTA, with robots capable of a single task, each task
taking only a single robot, and conducting only instanta-
neous assignment rather than creating time-extended plans
(the problem denoted ST-SR-IA in [3]), can be converted
into a Markov random field in which the hidden nodes are
completely connected (third from the left in Figure [1) and
with evidence and compatibility functions defined as follows:

eVi(isyi)

bi(@i, yi) = ZI eUi(zi,yi)
' 2)
o 0 if Ti = Ty
Ylsx5) = { 1 otherwise
where U;(x;,y;) is the utility of the robot for a particu-
lar task, x;, based on its local information, y;. Using the
properties of the products of exponents it can be shown
that maximizing the joint probability given by in this
MRF is equivalent to maximizing the sum of the utilities
under the restriction that no two robots may do the same
task. That is, the maximum a posteriori assignment that
can be computed for this MRF is an optimal solution to
the underlying assignment problem. It has been shown [3|
how linear programming techniques, such as the Hungarian
method [6], compute an optimal solution to this problem in
O(mn?) time, where m is the number of robots and n is the
number of tasks. We can thus conclude that for the fam-
ily of MRFs described by . with m nodes and n states,
the maximum a posteriori solution can be found in O(mn? )
time, by first converting to the equivalent linear program-
ming representation.

A significant advantage of our MRF model over the op-
timization view is that the MRF model allows richer, more
complex compatibility functions. Importantly, we need not
assume that a robot’s utility for a task is independent of
which other tasks are being executed. In many real-world
problems, especially those involving a component of spatial
arrangement, the utility of a set of tasks depends not just
on the utilities of the individual tasks, but also on the tasks’
compatibility. For example, in the wireless coverage prob-
lem, the compatibility of two robots’ tasks will gradually
increase as the robots move away from each other, but then
fall off quickly as they move out of communication range.
Another advantage of the MRF model is that it allows us
to model uncertainty in our utility estimates. For example,
by smoothing our local evidence function we can include a



robot’s uncertainty about its current utility estimates into
the decision making process.

While the MRF model is best suited for describing the
ST-SR-IA variety of MRTA problems, it can be extended to
all variations of MRTA. For the multi-task robot and multi-
robot task variations, the adaptation can be done by increas-
ing the state space of the nodes. For the multi-task cases the
state space of each node becomes the combinations of tasks
a robot is capable of, and for the time-extended problems
the state space comprises ordered lists of such tasks. The
compatibility function is binary: zero when the sets of tasks
for two robots overlap and one otherwise. Unfortunately
when robots are capable of many tasks or are planning over
a long series of tasks, the state space is expanding expo-
nentially. The multi-robot tasks case is difficult to directly
cover with our model because compatibility between tasks
can no longer be defined as a function of only two nodes.
Multi-robot tasks can be described using the SharedPlans
framework we discuss later in this section. There are ways
to fit it into the MRF model, but they are complicated and
require sacrificing some of the advantages of the model.

Auction algorithms Task-swapping auction algorithms
[1] can be rephrased into the MRF structure with the func-
tions given in the last section because they are applied to
MRTA problems. Tasks are originally assigned in a greedy
or a random fashion, but then a subset of the actual joint
probabilities are calculated and tasks are exchanged if any
superior combinations are found. Calculating all the possi-
ble combinations is NP-hard and amounts to the brute force
method for solving an MRF. However, by intelligently choos-
ing subsets of the joint probabilities to explore, we can find
larger probabilities (better solutions) than by simply using
the greedy algorithm alone. The more combinations that are
explored, the larger the computational time, but the solution
becomes closer to the optimal. For example, the two-party,
single task exchange calculates the joint probability of two
nodes i and j with tasks a and b after exchanging tasks.
If p(xzi = a,z; = b) < p(z; = b,x; = a) then the tasks
are exchanged, since the switch will increase the total joint
probability. Exchanges are made until no more increases can
be found. In auction systems with leaders, there are clus-
ters of nodes for which the leader can evaluate a larger set
of the combinations and exchange the values of the nodes to
optimize over the whole cluster.

SharedPlans SharedPlans [4] is another way of thinking
about planning for multi-robot tasks. Each robot plans for
its individual actions and also plans for the actions of other
robots that are required to make its individual plan effective.
In this case, the local evidence function corresponds to the
probability of a particular plan being optimal, where a plan
includes a robot’s individual plans and its plans for others.
The compatibility function between two plans would then be
binary: one if actions in the first robot’s plan for the second
robot were included in the second robot’s individual plan
and zero otherwise. The joint probabilities will go to zero
for any poorly coordinated actions and will be functions of
the sum of the utilities when plans are compatible.

Centralized vs. distributed coordination Many of
the current algorithms for solving multi-robot coordination
problems involve having a central planner or having each
robot calculate the total control policy in parallel. These
methods correspond to one or each robot building a map of
the entire MRF and generating optimal solutions. With al-
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gorithms such as belief propagation, marginal probabilities
can be calculated locally. Other techniques can be a combi-
nation of local and distributed control, such as some auction
techniques which require an auctioneer to distribute tasks
originally but then allow robots to trade amongst them-
selves.

Completely connected vs. partially connected In
many robot task selection problems, the graph should theo-
retically be completely connected, because the robots’ task
selection depends directly on all other robots. However,
in problems where spatial location is relevant, two robots
that are unable to communicate are unlikely to be conduct-
ing strongly dependent tasks, and so connecting only those
robots that are in communication gives a good approxima-
tion and allows us to perform inference without using relays
to get messages between two unconnected robots. This can
also reduce the number of edges in the MRF, accelerating
the computation of solutions.

4. MULTI-ROBOT BELIEF PROPAGATION

To perform action selection with a multi-robot MRF, each
robot must compute its “piece” of the joint probability distri-
bution 4 That is, for each robot i, we want to compute the
marginal probability p;(x;), which expresses the likelihood
of robot ¢ taking an action, given both its own observations
and knowledge of the other robots’ actions. Naively, this in-
ference procedure would require communicating all robots’
observations to a centralized decision-maker. Instead, we
will exploit the factored structure of the MRF to apply the
BP algorithm [15], which performs inference in a distributed
manner.

BP operates by passing “advice messages” between robots,
and using these messages, in combination with local observa-
tions, to maintain a belief b;(x;) for each robot i. When BP
converges, the belief b;(x;) is exactly equal to the marginal
probability p;(z;) that we need for coordinated action selec-
tion. Robot ¢ exchanges messages only with its neighbors
N (1), ensuring that the algorithm can scale to large teams.
Robot i’s belief b; (z;) is given by the following product, with
normalization constant Z:

bi(wi) = Z¢i(wi,yi) [ mailes) (3)

JEN(i)

The term m;;(x;) is an advice message from robot j to
robot i suggesting how robot ¢ should act, given what robot
7 knows about the world. Robot j computes its message to a
neighboring robot ¢ as a product of robot j’s local evidence,
the pairwise compatibility between their actions, and incom-
ing messages from robot j’s neighborhood (except for those
coming from robot ¢), summed over all possible actions x;:

mya(r:) =Y (s, y) iz, m)  [[ mes@) ()

T keN(5)\¢

Multi-robot belief propagation is performed through selec-
tive updating of inter-robot messages. The essence of in-
ference with belief propagation lies in the pairwise messages
my,i(x;). Messages between robots are continually but selec-
tively updated according to and domain-specific compat-
ibility and likelihood functions. Beliefs are computed only
when needed to make a decision.

Selecting actions The result of multi-robot belief prop-
agation will be an action posterior, a probabilistic belief dis-



tribution over actions for each robot. Whenever an individ-
ual robot needs to make a new action decision, it computes
its action posterior as a belief from local evidence and in-
coming messages, according to . This belief distribution
can then be sampled (e.g., using expectation or MAP esti-
mators) to select a specific action for the robot to execute.

Convergence Because our multi-robot MRF's will most
often contain cycles, we must address the issue of conver-
gence. Strictly speaking, the beliefs computed by BP are
guaranteed to converge to the true marginal probabilities
only when the graphical model is tree-structured [10]. In-
deed, pathological graphs can be constructed in which BP
fails to converge [7]. However, BP has been successfully
applied to a wide array of problems that feature cyclical
graphs. Recent analysis has drawn a connection between BP

convergence and free energy approximations from physics [15].

While we cannot guarantee convergence to optimal action
selection, these approximations provide an analytical foun-
dation showing why convergence of BP in cyclical graphs
is typical, even in noisy and ambiguous situations. Recent
approaches have demonstrated some success using BP for
multi-robot chain-of-sight and group behaviors |11} |12] and
for static sensor networks using loopy BP [5] and junction
trees [9].

4.1 Wireless Coverage Example

The key to applying our multi-robot belief propagation
approach is the appropriate definition of local evidence and
joint compatibility functions. In this section we present can-
didate definitions for the wireless coverage problem intro-
duced earlier.

Evidence functions The coverage evidence function
¢i(xi,y;) could compute the expected contribution to the
overall network of each of robot i’s available actions (posi-
tions to move to and radio power levels to select). Of course,
this function is a domain-dependent policy combination of
terms that encode the user requirements, connectivity goals,
and energy limits.

One possible local evidence function could be a product of
three terms, each of which expresses a preference over robot
i’s actions:

Gi(wi,yi) = H(xi, y:)C(ws, yi) E(2i, yi) (5)

The term H(x;,y;) encodes a preference for actions that
provide connectivity (whether single- or multi-hop) to the
greatest number of human users or gateways. This term is
the foundation for establishing good coverage of users. Sim-
ilarly, the term C'(x;,y;) prefers actions that provide con-
nectivity to the other robots. The term E(z;,y;) expresses
a preference for actions that expend the least energy, incor-
porating both movement cost and radio transmission cost.
This term could be derived from platform- and application-
specific characteristics, including motor power requirements,
radio power requirements at each transmission level, battery
level, and expected lifespan of the network.
Compatibility functions The compatibility ; ;(zi, z;)
will act as a “local coordination” factor, determining the
value of joint actions for robots ¢ and j as a function of
the resulting pairwise signal strengths between them (recall
that BP messages, and thus compatibility functions, are only
defined for robots that are in direct communication):

Wi j (@i, 25) = S(xi, ;) (6)
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The term S(x;,x;) prefers joint actions that provide “good
enough,” but not maximal, signal quality between robots ¢
and j. If the robots were to simply maximize their pair-
wise signal strengths, they would tend to cluster very close
together, leading to isolated network components, and pro-
viding poor spatial coverage. Such tendencies could be coun-
teracted by defining the term S(z;, x;) to prefer signal levels
that are high enough to provide the necessary quality of ser-
vice, but not any higher. Ideally, our planned experimental
trials on the wireless coverage problem will demonstrate the
effectiveness of using the Markov random fields framework.
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