
Predictability & Criticality Metrics for Coordination in
Complex Environments

Rajiv T. Maheswaran
Information Sciences Institute
Univ. of Southern California
4676 Admiralty Way, #1001
Marina Del Rey, CA 90292

maheswar@isi.edu

Pedro Szekely
Information Sciences Institute
Univ. of Southern California
4676 Admiralty Way, #1001
Marina Del Rey, CA 90292

pszekely@isi.edu

M. Becker, S. Fitzpatrick,
G. Gati, J. Jin,

R. Neches, N. Noori,
C. Rogers, R. Sanchez,
K. Smyth, C. Vanbuskirk

ABSTRACT
We address the problem of coordinating the activities of a team of
agents in a dynamic, uncertain, nonlinear environment. Bounded
rationality, bounded communication, subjectivity and distribution
make it extremely challenging to find effective strategies. In these
domains it is difficult to accurately predict whether potential policy
modifications will lead to an increase in the value of the team re-
ward. Our Predictability and Criticality Metrics (PCM) approach
errs on the side of safety, and advocates considering policy modifi-
cations that are guaranteed to not harm the current policy, and uses
simple metrics to choose from within that set a modification that
increases the team reward. In the context of the DARPA Coordi-
nators program, we show how the PCM approach yielded a system
that significantly outperformed several competing approaches in an
extensive independent evaluation.

General Terms
Algorithms

Keywords
Multi-Agent, Uncertainty, Dynamism, Coordination, Scheduling

1. INTRODUCTION
The coordinated execution of activities of a multi-agent team in

dynamic and uncertain environments is of critical interest in do-
mains such as large-scale disaster rescue, joint military operations
and project management, among others. There are many character-
istics of these domains that make effective coordination extremely
challenging. The team begins with an initial plan of activities which
have uncertainty in duration and outcome. As uncertainties are re-
solved through execution, agents may need to modify their plans,
e.g., change timings or perform alternate activities. As the scale of
the problems increases, it becomes infeasible to calculate and store
an optimal set of policies that prescribe appropriate plan changes
for all contingencies. This introduces one form of dynamism, where
agents must modify their policies over time. A second form of dy-
namism occurs when agents’ models of the world or the team re-
ward function changes during execution. An agent might discover
Cite as: Predictability & Criticality Metrics for Coordination in Complex
Domains, R. T. Maheswaran, P. Szekely, M. Becker, S. Fitzpatrick, G.
Gati, J. Jin, R. Neches, N. Noori, C. M. Rogers, R. Sanchez, K. Smyth,
and C. VanBuskirk , Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons(eds.),May,12-16.,2008,Estoril,Portugal,pp.647-654.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

that an activity will take much longer or is more likely to fail than
originally anticipated. The team might find unexpected and sig-
nificant new tasks to perform in the middle of execution. Under
these conditions, the initial plan becomes invalid and agents must
coordinate in real time to get a high quality solution.

Other domain characteristics include distribution and subjectiv-
ity. As execution evolves, each agent can observe the outcomes of
only some activities. As agents modify their policies, each agent
is only aware of the changes to its policy. Agents only have partial
knowledge of the team reward function involving their activities
and those with direct dependencies. Thus, agents must share infor-
mation to choose the appropriate policy modifications.

Any coordination technology must work within the pace of ex-
ecution, and the bounded communication and bounded rationality
limitations of the infrastructure and equipment available. When
coupled with dynamism, centralization is not a viable strategy, es-
pecially as the problem scales. Also, having a single point of failure
is risky and undesirable. As the number of agents increases, it be-
comes infeasible to share all information among all agents without
incurring delays that exceed the times at which decisions must be
made. The shared information must be processed and subsequent
policy modifications must be analyzed using the reasoning cycles
available between decision points. Thus, time-critical domains re-
strict the number of contingencies that can be considered.

The impact of these difficulties are greatly magnified due to global
nonlinearity in the team reward function. We consider domains
where the team reward is defined in terms of a task decomposition
hierarchy where tasks are decomposed into subtasks using con-
junction (all subtasks must succeed) and disjunction (at least one
subtask must succeed) among others. The leaves of the hierarchy
represent activities that the agents can perform. The reward is cal-
culated bottom-up from the activities: successful execution of an
activity yields some positive amount of quality (a real number),
and failure yields zero quality. Quality flows up to the root through
the intermediate subtasks. Each subtask applies various operators
such as sum, max, and min to aggregate the quality of its subtasks.
Our domains of interest also feature links between tasks in different
parts of the hierarchy. Enables links will zero out the quality of the
target task if the source task fails to obtain positive quality; con-
versely, disable links zero out the target quality if the source task
obtains positive quality before agents start the activities under the
target task. The result is a non-linear reward function where small
perturbations in the execution of an activity can greatly affect the
team reward. If an activity fails or obtains quality too soon or late,
it can cause other tasks to obtain zero reward, and that zero can
travel up and forward in the decomposition network zeroing out
many tasks.

647



Uncertainty and dynamics often cause small disruptions, such
as a delays, which don’t directly cause failure, but the cumulative
effect may lead to failures that propagate to many tasks resulting
in many tasks failing. Even if such events are infrequent, detecting
and preventing them is crucial for good team performance. This
is challenging because bounded communication forces agents to
reason with imperfect information, and bounded rationality forces
agents to act without completely understanding the full impact of
proposed policy modifications. As scale grows, the task networks
grow, and avoiding such failures becomes more difficult.

We illustrate the key concept in Figure 1, where the horizontal
axis represents all the possible modifications that could be made to
the agent policies, and the vertical axis represents the team reward
obtained at the end of execution. The team reward plot has many
“ravines" where the reward of some policies is significantly lower
than that of similar policies. For example, two policies may differ
on the start time of a single activity, but the delay will trigger an
unwanted nonlinear effect. Ideally, the agent team should select
the policy modification labeled a, which yields the highest reward.
However, if agents use approximate computations, they could be
selecting b or c, when they are attempting to choose a.

Our hypothesis is that conventional techniques for solving these
classes of problems compute a general approximation of the policy-
to-reward function that perhaps follows the true function to a large
extent, but often smooths over the deep ravines in the function (the
dotted line in Figure 1.) In contrast, our PCM approach focuses
on creating a criticality metric (dashed line) which may only be
applicable on a certain (predictable) subset of the policy modifi-
cation space where we are able to detect the ravines (e.g., d and
e). Our experiments show that even though we don’t compute a
good approximation of the true policy-to-reward function, knowing
the ravines allows our system significantly outperforms the systems
that attempt to compute a general approximation of this function.

Our main contribution is the predictability and criticality met-
rics (PCM) approach for solving problems with these character-
istics. Predictability advocates restricting policy modifications to
classes where nonlinearities can be understood. Criticality metrics
refer to focused information that reveal features of the team reward
function and help decide if a policy modification will trigger an
unwanted nonlinear effect.

Predictability and criticality are closely related. We recognize
that it is difficult to design criticality metrics that accurately reveal
the reward ravines across all potential policy modifications. For
example, one metric can reveal ravines d and e, but not b or c.
The PCM approach dictates that we carve up the space of all policy
modifications into subspaces where a set of criticality metrics can
consistently reveal the ravines. The agents are then restricted to
choose policy modifications from those subspaces, using the criti-
cality metrics to avoid bad policies.

For example, in Figure 1, agents would not be able to choose
policy a, which yields the maximum reward, rm, because policy a is
not in the predictable region. However, agents following the PCM
approach would be guaranteed to choose a policy modification that
yields at least reward r0.

We formulated this methodology while developing our Criticality-
Sensitive Coordination (CSC) system for the DARPA Coordinators
program in a domain with the characteristics discussed here. While
our system work is interesting and useful in its own right, we view
it mainly as an illustration and evaluation of our PCM approach
which is extremely effective for this coordination application. This
was verified by an independent evaluation where our CSC system
significantly outperformed prominent competing approaches. Fig-
ure 2 shows that only our system was able to decidedly outperform

Nonlinear Reward Function
General Approximation

Policy Modification Space

Predictable Policy Modification Space

Criticality Metric

ab cd e

R
ew

ar
d

r0

rm

Figure 1: Evaluating Nonlinearity

CSC

Distributed MDPs

Flexible Scheduling

Baseline

98

56

80

77

Figure 2: Comparison of Four Coordination Approaches

a simple baseline. The chart shows average normalized scores over
an independently generated problem set.

2. THE PCM APPROACH
We propose an approach based on predictability and criticality

metrics (PCM). Predictability refers to the types of policy modifi-
cations one should consider. Because nonlinearities have the poten-
tial to severely punish solution quality and agents do not have a full
understanding of the consequences of their actions, policy modifi-
cations should be limited to classes where potential impact can be
identified as accurately as possible. Criticality metrics refer to the
information used to trigger and evaluate potential policy modifica-
tions. Even when considering a small class of policy modifications,
it is difficult to assess whether they increase or decrease the global
reward. To do this, we use criticality metrics to provide different
features of the unknown reward function. In order to function in
a dynamic, uncertain, distributed nonlinear environment, criticality
metrics must have the following properties:

Timely: Agents operate in a dynamic environment, so criticality
metrics must be updated as the environment changes. It is crucial
to update metrics before decisions need to be made. This is chal-
lenging as bounded communication limits how fast metrics can be
updated when they depend on information from other agents.

Bounded: In order to scale to large numbers of agents and ac-
tivities, the size required to store a metric must not grow beyond a
fixed limit. Thus, it shouldn’t be a function of number of agents,
number of nodes or time horizon. For example, a metric that calcu-
lates the exact quality distributions for tasks over time would have
a domain that could be immense for nodes near the root. Bounded
computation and communication would make such criticality met-
rics impractical for large problems.

Global: The purpose of a criticality metrics is to provide infor-
mation about features of the global reward that can be achieved
from the current state. Consequently, they must incorporate in-
formation from many agents as individual agents only know small
portions of the reward and the global state.

Accurate: Figure 1 highlights the difference between accurate

648



and approximate. A general approximation could be considered a
better estimate of the true reward than the criticality metric. How-
ever, given our focus on nonlinearities, the criticality metric is more
accurate with respect to an important feature of the reward.

If we want to consider a particular type of policy modification,
we must bring it into the predictable space and that will require de-
veloping (timely, bounded, global and accurate) criticality metrics
to detect nonlinearities within that space. Otherwise, the modifica-
tion, even though it may have tempting promise of improvement,
should be ignored to avoid pitfalls of nonlinearity. Because each
criticality metric estimates a single feature of the reward, it is im-
portant to use multiple criticality metrics when evaluating policy
modifications. Predictability and criticality metrics can also be con-
sidered generalizations of a philosophy of doing no harm first, then
within that restriction, choosing what does the most good.

3. THE COORDINATORS PROBLEM
The goal of the DARPA Coordinators program is to create “dis-

tributed intelligent software systems that will help fielded units
adapt their mission plans as the situation around them changes and
impacts their plans." 1 The problem is formally modeled using a
version of the TAEMS (Task Analysis, Environment Modeling, and
Simulation) framework [3] called CTAEMS [1]. Agents have a set
of activities, known as methods, that they can perform, but they
can execute only one at a time. Methods have probabilistic out-
comes for duration (how long to complete if executed) and quality
(obtained after completion). If an activity can be performed by
multiple agents, each of those agents has a unique method for that
activity. Methods yield zero quality if started before a release time
or completed after a deadline that can be unique to each method.

The team reward function is represented using a task decomposi-
tion graph. The root task represents the mission quality. Tasks can
be decomposed into many levels of subtasks. Leaf nodes represent
methods that can be executed by agents in the team. Each task is as-
sociated with a quality accumulation function (QAF) that captures
how its quality is calculated from the qualities of its children.

The Max, Sum, and SyncSum QAFs represent disjunctive decom-
positions where a task can be achieved by performing one or more
subtasks. The SyncSum QAF represents synchronization: the qual-
ity of the parent is the sum of the qualities of the children that
start at the same time. The Min and SumAnd represent conjunc-
tive decompositions. The ExactlyOne QAF represents exclusive-or
decompositions. Agents cannot simply compute an optimal sched-
ule for a given set of methods. Disjunctive QAFs force agents to
choose which methods to execute, creating a combined planning
and scheduling problem.

All methods yield zero quality until they are completed. The
quality of the root task is ultimately a function of the qualities of
all the methods. The goal is to maximize the quality achieved at the
root at the end of the mission.

Additional relationships between nodes (tasks and methods) are
represented using directional links, known as non-local effects (NLEs).
The enables NLE requires that the target of the link start execution
after the source has achieved positive quality. Otherwise, the target
receives zero quality. The disables NLE precludes the target from
achieving positive quality if it starts after the source achieves posi-
tive quality. The facilitates NLE modifies the quality and duration
distributions of the target to make methods take less time and yield
more quality, in proportion to the quality achieved by the source.
The hinders NLE has the opposite effect. If the target of an NLE is
a task, it is interpreted as multiple NLEs from the source to all the

1http://www.darpa.mil/ipto/Programs/coordinators/

target’s descendant methods.
With these elements (QAFs and NLEs), one can create highly

nonlinear reward functions. For example, methods that enable tasks,
or children of Min and SumAnd tasks, can be far more critical than
others. In these situations, small changes to the success likelihood
of individual methods can impact the success likelihood of many
tasks, thus having a large impact on team reward.

Agents are not given the full task decomposition graph, and thus
have incomplete knowledge of the team reward function. Instead
of the complete graph, known as the objective view, they are given
a subgraph or subjective view. The subgraph is composed of (1)
methods they own, (2) ancestors of these methods and (3) nodes
that are sources or targets of NLEs with a node in (1) or (2).

Agents only know quality and duration distributions for methods
in their subjective view. Each agent is also given an initial schedule
(methods and start times) calculated by an oracle that has the ob-
jective view. While agents are free to share this information, unan-
ticipated delay and failure (getting zero quality) forces the team to
modify the policies they generated from the schedule. Exogenous
events such as distribution changes, release/deadline changes and
new tasks can alter the reward function during execution and force
agents to modify their plans.

4. THE CSC SYSTEM
We developed Criticality-Sensitive Coordination (CSC) system

for the Coordinators program using the PCM approach. Each prob-
lem that CSC solves is represented in CTAEMS. The full task de-
composition, NLEs, method duration and quality distributions, and
an initial schedule for each agent are specified in a single file called
the objective view. The objective view also contains dynamic changes
that will occur during execution and the times when they will be re-
vealed to the subset of agents who are affected.

A Simulator reads the CTAEMS objective view, instantiates the
agents and partitions the objective view into subjective views. It
then gives each agent its subjective view and an initial schedule for
its methods. The simulator accepts commands from agents to start
or abort methods that it can execute. It keeps track of the execu-
tion clock and informs agents about the passage of time and the
quality achieved by a method when it completes execution. The
Simulator draws the method outcome, duration and quality ran-
domly from the probability distributions defined in the objective
view. The simulator verifies that execution is valid according to the
rules of CTAEMS (e.g., enabling activities completed successfully,
execution request is after the release time) and records the quality
accrued at the root task.

The initial schedule that agents receive consists of a set of meth-
ods and associated start times. This schedule is brittle because du-
ration uncertainty may prevent agents from starting methods at spe-
cific times. We use the initial schedule to construct a more robust
policy, where the time points are extended into intervals.

Figure 3 shows the architecture of CSC agents. The Execution
Controller is responsible for executing the policy. It interprets the
method start intervals and priorities and sends commands to the
Simulator to start or abort methods as dictated by the policy. It
also receives observations about the environment from the Simula-
tor such as the passage of time or the qualities of executed methods.
The Execution Controllers in multiple agents communicate to wait
for enablers to accumulate quality before starting a method. It also
communicates with other agents to wait for synchronized methods
to be ready to start before starting any of them. To accommodate
these delays, the Execution Controller can move the start times of
methods to any time within the intervals defined in the policy.

Policy modifications are made through various Activity Man-

649



CSC Agent 1

State Manager

Execution Controller

Policy

Simulator

PolicyCriticality
Metrics

Meta-Manager
Opportunistic 

Inserter

Observations

Activity
Manager

CSC Agent 2

State Manager

Execution Controller

Policy

PolicyCriticality
Metrics

Meta-Manager
Opportunistic 

Inserter

Observations

Activity
Manager

Figure 3: CSC Agent Architecture

agers. Each Activity Manager is responsible for investigating a
specific type of policy modification. When an Activity Manager
is triggered, it uses criticality metrics to determine if a policy mod-
ification (of the type it is responsible for) should be made. Activity
Managers live within a Meta-Manager to ensure that they do not
make interfering parallel policy modifications.

The State Manager is responsible for computing criticality met-
rics. This involves incorporating observations from the Execution
Controller along with collecting, aggregating and sharing critical-
ity metrics from other State Managers. The State Manager also
maintains the current policy, records all modifications by the Activ-
ity Managers, and updates the Execution Controller with the latest
version. While CSC has many Activity Managers, we focus on the
Opportunistic Inserter to demonstrate the PCM approach.

5. OPPORTUNISTIC INSERTER
Method insertion refers to a class of policy modifications whereby

new methods are inserted into existing policies. Even within this
class there are many types of modifications: Do you allow addi-
tions over multiple agents simultaneously? Do you add one method
or multiple methods? Can you add methods with windows in the
future? The more complex the modification, the more difficult it is
to predict the consequences. Our approach of not wandering where
we cannot see advises focusing on simple insertions whose effects
we can predict.

The Opportunistic Inserter only considers single method addi-
tions to the policy of the agent where it resides. It can only add a
method to start at the current time, i.e., the method’s window must
include the current time, and it can only do so if no methods in the
current policy are running or can start at the current time. Essen-
tially, if there is nothing else to do, the Opportunistic Inserter can
insert a method that can start immediately. Even this focused class
of policy modifications can be dangerous. Method insertion can de-
lay the execution of other methods and cause failure. To avoid this
danger, the Opportunistic Inserter inserts methods at a low prior-
ity. Methods from the initial schedule are added with high priority.
The Execution Controller will abort a low priority method if it has
not completed and a higher priority method becomes ready to exe-
cute. This class of insertions is more predictable in the sense that it
cannot delay high priority methods in the future.

While it will not harm the mission through delay, we still need
to select a method from the set of methods that can start imme-
diately. Our approach advocates creating criticality metrics that
reveal the nonlinearities of the reward function: what is the most
critical method to insert that is not in the current policy? what is
the most critical method to avoid inserting? We describe two types
of coordination metrics that help make these decisions: the back-

M1 M2 M3

T2
Max

M4 M5 M6

T3
Sum

M7 M8 M9

T4
Min

T1
Min

Figure 4: Example Coordination Problem in CTAEMS

bone and backbreaker values.
Backbone Value: The backbone value estimates how crucial a

particular node (method or task) is for the success of the root task.
Specifically, the backbone value for a node estimates the probabil-
ity that the root task will fail (get zero quality), if the node fails (gets
zero quality). If a node has achieved positive quality, its backbone
value is zero, since it cannot fail. Otherwise, its backbone value
can be calculated simply as follows.

We distinguish two types of backbone values: (1) the backbone
value from ancestry is calculated along parent/child relationships.
(2) the backbone value from enablement is calculated along enables
links. If the node QAF is conjunctive (Min, SumAnd) where all chil-
dren must succeed for a node to succeed, the backbone value from
ancestry of the children is identical to that of the parent. If the node
QAF is disjunctive (Max, Sum, SumAnd, ExactlyOne), the back-
bone value from ancestry of the children is the backbone value of
the parent divided by the number of children who can still achieve
positive quality. If a child node is assured to fail, it does not have a
backbone value. Some children may not be able to achieve quality
due to expired deadlines, undesired outcomes or disablement. Be-
cause the children able to accrue quality and node qualities change
during execution, the backbone values are dynamic.

Backbone value can also arise from enablement. If a node is the
source of an enables NLE, then its backbone value from enable-
ment for that NLE is the backbone value of its target. The total
backbone value for a node is calculated by aggregating the back-
bone value from ancestry and the backbone value from enablement
for all outgoing enables NLEs. Different aggregation functions lead
to different criticality metrics that give different projections of the
state and reward function. Using maximum as an aggregator gives
the backbone value along the single-most critical path. Using sum-
mation identifies nodes that have multiple outgoing enables. If the
maximum backbone value of a method is one, then it must succeed
in order for the problem to be successful.

Consider the example shown in Figure 4, where the link between
M6 and M7 is an enables NLE. Agent 3 may not be able to iden-
tify, from its subjective view, that M6 was absolutely necessary
for the team to achieve positive quality. By using the backbone-
value criticality metric, Agent 3 can identify M6 as critical and the
Opportunistic Inserter would insert it at the first available opportu-
nity, if it was not in the current policy. Also, If M1 and M2 failed,
then M3 would be the only child of T2 that could achieve posi-
tive quality, and its backbone value would become one. Thus, the
backbone value, which changes dynamically, can identify methods
whose criticality arises during execution.

Because the backbone value of a node depends on the backbone
values of neighboring nodes and no agent has the objective view of
the graph, agents must forward updated backbone values to other
agents. Because the calculations involved are simple and the infor-
mation flows are unidirectional (down from parents, backwards via
NLEs), backbone value computation is timely. It is bounded as it is
a single real number. It is global as it aggregates information from

650



the entire reward graph and accurate with respect to the specific
purpose for which it was constructed.

Backbreaker Value: The backbreaker value estimates how detri-
mental a particular node is for the success of the root task. It esti-
mates the probability that the root task will fail (get zero quality),
if the node succeeds (gets positive quality). If a node has posi-
tive quality, its backbreaker value is zero, since it cannot do fur-
ther damage. Otherwise, its backbreaker value can be calculated
in a manner similar to the backbone value. If a node is a source
of a disables NLE, its backbreaker value from disablement is the
backbone value of its target. If a node is a child of a node that
has positive backbreaker value, its backbreaker value from ancestry
can be calculated similarly to backbone values, except parents with
disjunctive QAFs give all their backbreaker value to their children
and parents with conjunctive QAFs split their backbreaker values
among children who are able to accrue positive quality. In the ex-
ample, if the link between M6 and M7 was a disables NLE, Agent 3
would know from the backbreaker value that it should never insert
M6, even if the opportunity arises.

The Opportunistic Inserter uses low priority and immediate in-
sertion to enhance the predictability of policy modification. It uses
criticality metrics such as the backbone and backbreaker values
(among others) to identify nonlinearities. . The backbone and back-
breaker values allow an agent to see very far in a focused direction.
It knows whether a method is critical, even though its criticality
may arise in places of the reward function that it cannot see di-
rectly, and from the state of agents it does not communicate with
directly. The criticality metrics allow agents to coordinate implic-
itly. The agent who inserts a backbone method does not explicitly
coordinate with affected agents at the time it considers inserting
the method. Explicit coordination would require coordinating with
all the agents that contribute to the backbone value. The number
of such agents can be arbitrarily large, so this would be difficult.
Implicit coordination is much simpler and more timely.

6. RELATED WORK
Two other approaches were also investigated in the Coordina-

tors program. They represent two distinct and prevalent schools of
thought in addressing multi-agent coordination of activities.

MDPs: This approach uses distributed Markov Decision Pro-
cesses (MDPs) as an underlying formalism [4]. When applying
this approach under the constraints of the domain, it is infeasible to
base a policy on the entire state space even if restricted to that of a
single agent. One solution is to choose a subset of possible states
that are reachable from the current state, and update this subset pe-
riodically; this process is referred to as “unrolling". The reasoning
to determine the best actions for these states is based on the sub-
jective view of the reward function. Values for the frontier of the
unrolled state space are determined through a fast greedy search. To
address inter-agent coupling, negotiated commitments are allowed
to bias the reward function obtained from the subjective view to in-
duce desired coordinated behavior [10]. An important difference in
the approximation techniques is that whereas MDPs often discard
the least probable states, the PCM trims out policies that cannot be
accurately analyzed with respect to severe failures.

Distributed Scheduling This approach uses a Simple Temporal
Network (STN) to create time windows that indicate feasible start
times for methods intended for execution [5]. As execution evolves,
the system uses STN constraint propagation to update the start in-
tervals of the methods in the schedule. When the STN becomes
infeasible, methods complete, or exogenous events arrive, agents
engage in speculative schedule modifications. Agents first deter-
mine profitable method insertions, and necessary changes to the

STN constraints in order to make such insertions feasible. They use
quality estimates to negotiate constraint modifications with other
agents and accept constraint modifications when the quality gains
of one agent are greater than the quality reductions in other agents.
The system uses expected quality and expected duration estimates
to establish the STN and negotiate with other agents.

Other: Earlier approaches to TAEMS problems include Gener-
alized Partial Global Planning (GPGP) [3] and Design-To-Criteria
(DTC) [9]. This approach used a notion of commitments whereby
an agent promises to achieve quality on certain nodes by speci-
fied times. Agents maintain local policies to achieve their commit-
ments and re-negotiate commitments when they cannot keep them
or when the opportunity arises to achieve better quality. Our work
on criticality metrics shows that it is crucial to reason and quan-
tify why it is important to achieve or not achieve quality on a node.
Any agent that can see a node can see the criticality metrics allow-
ing them to coordinate implicitly. Our approach resembles more a
well trained football team. When the players see a situation, they
recognize what is important and what is not, and they all know what
to do. They don’t need to talk to renegotiate their commitments.

Alternate scheduling models that address uncertainty are Simple
Temporal Problems with Uncertainty (STPU) [8] and Probabilistic
Simple Temporal Problems (PSTP) [7]. STPUs model uncertain
durations using lower and upper bounds. A polynomial algorithm
can compute activity start times that satisfy all constraints as execu-
tion unfolds. If the constraints cannot be satisfied, STPUs provide
no measure of the extent to which the constraints cannot be solved.
PSTPs extend STPUs by using probability distributions to quantify
duration uncertainty. PSTPs cannot be solved in polynomial time,
so are not useful for constructing timely metrics.

A Distributed Constraint Optimization Problem (DCOP) based
solution to CTAEMS problems is addressed in [6]. Uncertainty
modeling in DCOPs leads to state space explosion, making it in-
feasible to find solutions with current algorithms. The timeliness of
full centralization, partial centralization and decentralization schemes
for multi-agent systems in dynamic domains and solving problems
with graphical reward functions was investigated in [2]. Centraliza-
tion is shown to be a poor strategy under bounded rationality and
communication. However, partial centralization that takes advan-
tage of reward structure can make information sharing more timely.

7. EXPERIMENTS
The three approaches were evaluated under two experiments.

The data set for the first experiment used CTAEMS scenarios con-
structed by an independent third party, assisted by two of the orig-
inal designers of TAEMS. The second experiment used three sets
of CTAEMS scenarios: one created by us, and the other two cre-
ated by the proponents of the Flexible Scheduling and Distributed
MDP approaches. These data sets were run with the CSC sys-
tem, the two systems built according to the Flexible Scheduling
and Distributed MDP approaches, a centralized solver that used
the objective view, and several baseline systems that we created.

The independently created data set consists of 13 groups of sce-
narios, each group containing 32 similar scenarios, for a total of
416 scenarios. The scenarios were produced using a scenario gen-
erator that randomly combined a variety of templates. Each tem-
plate produces a CTAEMS structure that captures a specific coor-
dination challenge. Examples include (1) Synchronization, where
agents must maximize activities started at the same time, (2) Dy-
namics, where the task structure, NLEs and other constraints are
changed after execution has started, and (3) NLE-Chains, where
a group of tasks are connected by a variety of randomly chosen
NLEs. Each scenario group contains a different mix of instances

651



of these templates. Each group also differs on the settings of sce-
nario generator parameters that controls failure rates, distributions
of method outcomes, tightness of release/deadline constraints and
activity overlap. The scenarios have between 25 and 70 agents, 848
and 4,752 nodes, and 104 and 781 NLEs2.

Proponents of each approach submitted 64 scenarios each, in-
tended to highlight the strengths of their approach. Some scenarios
were handcrafted and others were created by the scenario genera-
tor used for the first data set, and subsequently edited. All scenarios
contain an initial schedule produced by a centralized scheduler.

The simulations for the main systems were run on a cluster of In-
tel Core Duo machines connected by a Gigabit network. Each agent
and the simulator ran on a different machine3. Message throughput
was limited as all inter-agent messages were sent via the simulator
where logs were kept. In the 100-agent simulations, agents are able
to send between 25 and 65 messages per second.

The simulator marked time with pulses that were one second
long. Scenarios had horizons between 373 and 1,728 pulses. Method
durations varied, but over 95% of them are between 3 and 14 pulses.
In scenarios with many agents, several methods could complete on
each pulse, i.e.,, dynamism was on the order of a second.

The score of a simulation is the quality achieved at the root task
at the end of a simulation run. The scores on different scenarios
varied significantly from a few hundred to tens of thousands. To
normalize each scenario, the best score obtained by any system or
baseline was set to100, and the scores of the other system and base-
lines were scaled accordingly.

To give some context to the performance of the systems and to
gain further insights into the PCM approach, we created a set of
baseline systems that use simple approaches: (1) Coordinated Ex-
ecution: agents execute only methods in the initial schedule but
adjust start times to wait for executing methods and enablers to
complete; agents also wait to synchronize, and remove disabled or
expired methods. (2) Random Insertion: when idle, agents insert
a method randomly chosen from those that could get positive qual-
ity, if started immediately. (3) Quality Insertion: when idle, agents
insert the method with the potential for the highest quality gain,
if started immediately. (4) CSC Insertion: when idle, agents insert
the method that would be chosen by the Opportunistic Inserter from
the CSC system, according to its criticality metrics. No other Ac-
tivity Manager functionality was included. All insertion baselines
have all the capabilities of Coordinated Execution.

We additionally parameterized these baselines by the priority at
which methods are inserted. In low-priority (LP) insertion mode,
the inserted method will be aborted if it does not finish by the time
any method in the initial schedule needs to start. This ensures that
inserted methods cannot delay execution of a method in the initial
schedule. In high-priority (HP) insertion mode, the agent will wait
for inserted methods to finish.

All baselines and CSC were run on the complete set of scenar-
ios twice: once with the initial schedule (IS) and once without the
initial schedule. We have no data on the performance of the Flexi-
ble Scheduling and Distributed MDP approaches without an ini-
tial schedule because we don’t have access to the software for the
corresponding systems. Figure 5 shows the results. Rows repre-
sent systems and columns represent scenario groups. The num-

2A scenario group with 100 agents, ∼13,000 nodes and ∼700
NLEs was also used (CSC:100, MDP:96, Scheduling:94). We
didn’t run our baselines on them as each one ran for over 4 hours.
3The baselines were run on a different configuration where all
agents ran on a single machine as Java threads. We ran a subset of
scenarios in both configurations and verified that the average score
differs by less than 0.1%.

bers in parenthesis represent the number of agents in each scenario
in a group. The cells show the average normalized scores for all
systems by scenario group. In the third-party scenarios, each cell
shows the average normalized score over 32 similar scenarios. In
the team scenarios, each cell shows the average normalized score
for the 64 scenarios each team submitted.

The rows are partitioned into three groups. The first two show the
scores for the baselines, with and without the initial schedule. The
third group shows the scores for the main approaches. We show
two rows for the CSC system to compare scores with and without
the initial schedule.

The cells are shaded to show performance with respect to two
baselines marked as BAR 1 and BAR 2. BAR 1 shows the scores
of random method insertion on a blank schedule. BAR 2 shows
the scores of random insertion on an initial schedule that was con-
structed using a centralized scheduler with access to the full objec-
tive view. BAR 1 is the simplest possible baseline. Any cell with a
score not significantly better than BAR 1 has a white background
(worst performance)4. The BAR 2 baseline is also extremely sim-
ple, but benefits from the initial schedule. All scores that are not
significantly better than the BAR 2 scores are shaded in light gray
(second worst). All systems had access to the same initial schedule,
so they would be expected to perform better than BAR 2. Scores
significantly better than the BAR 2 baseline are colored in the next
shade of grey (expected performance). They represent scores that
outperform this baseline. Scores that beat BAR 2 and are over 90
are shaded in dark grey (good performance). Finally, the best score
in each scenario group has a white border around it.

8. DISCUSSION
Coordinated Execution: Coordinated Execution with the ini-

tial schedule shows that the data set has many scenarios where
simply executing the initial schedule without modification leads to
mediocre results (Average: 38). If the evolution of the schedule is
very unpredictable (Contingent, Dynamic, Real World), this strat-
egy leads to complete failure.

Random Insertion (LP): Random Insertion (LP) (BAR 2) is
a very simple instantiation of our approach. It has predictability
but lacks criticality metrics. It is a predictable policy modification
because low priority method insertion cannot cause delays on the
existing schedule. The only possible negative effect is that inserted
methods may disable or hinder other methods that may be impor-
tant in the future. This strategy significantly improves over Coor-
dinated Execution (Average: 77 vs 38). However, in the Negative
NLEs group, which has scenarios with high density of disables and
hinders NLEs, Random Insertion (LP) lost significantly to Co-
ordinated Execution (52 vs 80). This shows the need for a criti-
cality metric to avoid insertion of damaging methods. The use of
the CSC criticality metrics (CSC Insertion (LP)) boosts the score
significantly over Coordinated Execution (96 vs 80).

The Random Insertion (LP) result is remarkable. Even though
it lacks any criticality metrics, its score is extremely close to Flex-
ible Scheduling (Average: 77 vs 80) and much higher than Dis-
tributed MDP (Average: 77 vs 56). Both of these approaches
use a significantly larger set of policy modification techniques. We
hypothesize that the reason these approaches don’t perform better
is because they cannot accurately predict whether policy modifi-
cations are indeed improvements. The inaccuracies allow agents to
fall in ravines frequently enough to undo any gains accrued through

4Significantly better means that the score difference is greater than
the sum of standard errors. Thus, some scores have the same color
even with slightly higher values than the baseline.

652



Figure 5: Experimental Results: Average Normalized Scores for Systems and Baselines Over Different Groups of Scenarios.

a wider class of policy modifications.
In Flexible Scheduling, policy modifications are based on met-

rics calculated from expected quality and expected duration of meth-
ods. This can dampen nonlinearities arising from method failure
and conjunctive QAFs. In Distributed MDP, the policy modifi-
cations are based on two inadequate approximations: (1) The be-
havior and states of other agents are folded into the local reward
function and are not revised frequently enough as states change. (2)
The frontier of the unrolled state space is evaluated with a greedy
technique leading to inaccurate valuations of possible future states.
Both introduce many “blind spots" to nonlinear effects.

Random Insertion (HP) and Quality Insertion (HP): Random
Insertion (HP) and Quality Insertion (HP) are variations of Ran-
dom Insertion (LP) where we drift away from PCM by weakening
predictability. They insert methods at high priority so they are more
likely to damage the existing policy. Though HP and LP Random
Insertion achieved the same score (Average: 77), the largest differ-
ence favored Random Insertion (LP) (Real World-1: 39 vs 32),
suggesting that predictability is a worthwhile feature. The dismal
performance of Quality Insertion (HP) against Random Inser-
tion (LP) without initial schedules (Average: 5 vs 48) suggests
that the culprit is nonlinearity rather than unpredictability. High-
quality methods are on average only twice as long as the shorter
methods, yet it appears they are long enough that agents cannot
perform critical methods leading to complete failures.

CSC Insertion: CSC Insertion extends Random Insertion (LP)
by replacing randomness with selection based on criticality metrics.
Thus, it more completely instantiates the PCM approach. CSC In-
sertion uses multiple criticality metrics. A criticality metric which
estimates a method’s ability to contribute to the root is used to prune
methods that are deemed useless, even though they can accumulate
quality. The backbone and backbreaker metrics are used to select
methods that must be done and must be avoided. Other criticality
metrics about probability and quality break ties when the backbone
and backbreaker effects are mild. The results are striking. CSC In-
sertion outperforms Random Insertion in all scenario groups by a
significant margin (Average: 97 vs 77).

Initial Schedules: Weak baselines (without criticality metrics)
obtained significantly higher scores in scenarios with initial sched-
ules (Average: 77 vs 48 in Random Insertion (HP), 60 vs 5 in
Quality Insertion (HP)). However, the scores of CSC Insertion

(LP) with and without initial schedules are similar (Average: 97 vs
96). We argue that when techniques are weak, the initial schedule
is a useful crutch. But, when techniques are stronger, the initial
schedule adds little, and can sometimes hurt: CSC Insertion in the
Distributed MDP group: 38 (without IS) vs 23 (with IS).

Centralized: The Centralized system is not as constrained by
bounded rationality. It can stretch pulses to be as long as needed
to compute its next policy modification. It is also not constrained
by bounded communication as it has access to the full state and the
objective view. However, this system reasons with expected qual-
ity and expected duration. So, even though its metrics are timely,
bounded and global, they are not accurate. The scores of the Cen-
tralized system are lower than the CSC Insertion baseline in all
scenario groups except Negative NLEs. In Negative NLEs, the
CSC system can identify the key methods that are both backbones
and backbreakers. It knows the method should be inserted, how-
ever, it lacks a good metric to determine when the method should
be inserted.

CSC: The full CSC system builds on the CSC Insertion base-
line by adding several policy modification strategies using the PCM
approach. The improvement over CSC Insertion is small, except
in the scenarios submitted by our own team. The reason is that
to maintain predictability we had to significantly narrow the set
of policy modifications that these strategies were allowed to make.
The resulting policy modifications were seldom relevant in the third
party scenarios, but they played a crucial role in the scenarios that
our team submitted. By following our PCM approach, we ensured
that the additional policy modifications that the full CSC system
can perform have no detrimental effect, and they yield significant
improvements on some scenarios.

Team Scenarios: Each team contributed scenarios that high-
lighted capabilities of their approaches. CSC scenarios required
agents to quickly notice situations where methods should be aban-
doned. Our criticality metric that detects ability to contribute to the
root identified such situations, and the Remover Activity Manager
enacted the required policy changes. This is why only the full CSC
system was able to do well in these scenarios.

The Distributed MDP team contributed scenarios where the
MDP can be fully unrolled to find the optimal solution. The sce-
narios contain sequential lotteries where complete uncertainty and
reward knowledge is required to solve the problem. Their sys-

653



tem performed well on these problems because they were relatively
small, and the embedded lotteries were confined to a single agent.
Therefore, they bypassed the bounded rationality and communi-
cation limitations that arise in general problems. These scenarios
show that the focused lights of our current criticality metrics can-
not see features in the Distributed MDP scenarios to determine the
appropriate course of action. The more general versions of these
scenarios are challenging because it is difficult to produce timely
and bounded metrics to characterize the situation.

9. CONCLUSION AND FUTURE WORK
Our work suggests that real-time multi-agent problems involv-

ing uncertainty, dynamism and a nonlinear reward function involve
challenges that are not addressed well by extensions of traditional
techniques such as MDPs and scheduling algorithms. These prob-
lems are so computationally intensive that all practical algorithms
must use heuristics and approximation techniques. However, as ex-
pected, the type of approximation has a significant impact in the
quality of the results. We show that in these problems it profitable
to reason precisely about features of the nonlinear reward function
that can significantly amplify failures.

The criticality aspect of PCM involves computing criticality met-
rics (timely, bounded, global and accurate) that identify some fea-
ture of the nonlinear reward function that agents can use avoid the
amplification of failures. The backbone metric measures how the
failure of an activity or task affects the failure of higher level tasks.
If the backbone value is close to one, agents should not let that
activity fail, even though they do not understand why or how the
higher level failure comes about.

The backbone and backbreaker metrics reason only about the
network structure of the reward function. They do not consider
other aspects of the reward involving uncertainty, time or quality.
Thus, PCM advocates creating many metrics addressing these other
features. Taken together, a collection of criticality metrics to steer
agents toward policy modifications that avoid failures that the non-
linear reward will amplify.

Backbones consider the significance of a node without consid-
ering how likely the node is to fail. It may be more important to
support a low backbone activity that has a low probability of suc-
cess rather than a high backbone activity that is sure to succeed.
Thus, we defined criticality metrics that measure how the success
of any activity or task affects the probability of success of higher
level tasks. To address the quality of activities, we defined critical-
ity metrics that measure the maximum amount of quality that any
activity or task should obtain. Quality beyond that maximum can-
not contribute to the overall team reward. This metric is zero for
useless activities, thereby allowing agents to remove them and work
on new tasks. The predictability aspect of PCM advocates consid-
ering only subsets of all potential policy modifications, i.e., only
those for which criticality metrics can accurately evaluate modifi-
cations that lead to unwanted nonlinear effects.

PCM is the first step towards solving these difficult problems
in distributed, dynamic, uncertain, nonlinear environments. Inde-
pendent evaluation and our additional experiments show the ef-
fectiveness of this approach. We significantly outperform random
baselines, distributed-MDP and distributed scheduling-based ap-
proaches, and even a centralized system based on a traditional sched-
uler. Additionally, the alternative approaches are either below or
similar to the random baseline. 5.

5The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032. The
U.S.Government is authorized to reproduce and distribute reports

10. ADDITIONAL AUTHORS
Marcel Becker (Kestrel, becker@kestrel.edu), Stephen Fitz-

patrick, (Kestrel, fitzpatrick@kestrel.edu), Gergely Gati, (ISIS,
Vanderbilt, gergely@isis.vanderbilt.edu), Jing Jin, (ISI, USC,
jing@isi.edu), Robert Neches, (ISI, USC, rneches@isi.edu),
Nader Noori, (ISI, USC, noori@isi.edu), Craig M. Rogers, (ISI,
USC, rogers@isi.edu), Romeo Sanchez, (ISI, USC,
rsanchez@isi.edu), Kevin Smyth (ISIS, Vanderbilt,
ksmyth@isis.vanderbilt.edu) and Chris Van Buskirk (ISIS,
Vanderbilt, vbuskirk@isis.vanderbilt.edu)

11. REFERENCES
[1] M. Boddy, B. Horling, J. Phelps, R. P. Goldman, R. Vincent,

A. C. Long, B. Kohout, and R. Maheswaran. CTAEMS
language specification: Version 2.04, 2007.

[2] T. Harbers, R. T. Maheswaran, and P. Szekely. Centralized,
distributed or something else? Making timely decisions in
multi-agent systems. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, pages 738–743,
Vancouver, BC, Canada, July 2007.

[3] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey,
B. Horling, D. Neiman, R. Podorozhny, M. N. Prasad,
A. Raja, R. Vincent, P. Xuan, and X. Q. Zhang. Evolution of
the GPGP/TAEMS domain-independent coordination
framework. Autonomous Agents and Multi-Agent Systems,
9(1-2):87–143, 2004.

[4] D. J. Musliner, E. H. Durfee, J. Wu, D. A. Dolgov, R. P.
Goldman, and M. S. Boddy. Coordinated plan management
using multiagent MDPs. In Proceedings of the 2006 AAAI
Spring Symposium on Distributed Plan and Schedule
Management, March 2006.

[5] S. Smith, A. T. Gallagher, T. L. Zimmerman, L. Barbulescu,
and Z. Rubinstein. Distributed management of flexible times
schedules. In Proceedings of the Sixth International Joint
Conference on Autonomous Agents and Multi Agent Systems
(AAMAS 2007), Honolulu, HI, May 2007.

[6] E. Sultanik, P. J. Modi, and W. C. Regli. On modeling
multiagent task scheduling as a distributed constraint
optimization problem. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence,
pages 1531–1536, Hyderabad, India„ January 2007.

[7] I. Tsamardinos. A probabilistic approach to robust execution
of temporal plans with uncertainty. In Proceedings of the
Second Hellenic Conference on Artificial Intelligence, pages
97–108, Thessaloniki, Greece, April 2002.

[8] T. Vidal and H. Fargier. Handling contingency in temporal
constraint networks: From consistency to controllabilities.
Journal of Experimental and Theoretical Artificial
Intelligence, 11:23–45, 1999.

[9] T. Wagner and V. R. Lesser. Design-to-criteria scheduling:
Real-time agent control. In Agents Workshop on
Infrastructure for Multi-Agent Systems, 2000.

[10] S. Witwicki and E. Durfee. Commitment-driven distributed
joint policy search. In Proceedings of the Sixth International
Joint Conference on Autonomous Agents and Multi Agent
Systems (AAMAS 2007), Honolulu, HI, May 2007.

for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected
with them.

654




