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ABSTRACT
The ability to provide flexible, automated management of
air traffic is critical to meeting the ever increasing needs of
the next generation air transportation systems. This prob-
lem is particularly complex as it requires the integration of
many factors including, updated information (e.g., chang-
ing weather info), conflicting priorities (e.g., different air-
lines), limited resources (e.g., air traffic controllers) and very
heavy traffic volume (e.g., over 40,000 daily flights over the
US airspace). Furthermore, because the Federal Flight Ad-
ministration will not accept black-box solutions, algorithmic
improvements need to be consistent with current operating
practices and provide explanations for each new decision.
Unfortunately current methods provide neither flexibility for
future upgrades, nor high enough performance in complex
coupled air traffic flow problems.

This paper extends agent-based methods for controlling
air traffic flow to more realistic domains that have coupled
flow patterns and need to be controlled through a variety
of mechanisms. First, we explore an agent control structure
that allows agents to control air traffic flow through one of
three mechanisms (miles in trail, ground delays and rerout-
ing). Second, we explore a new agent learning algorithm
that can efficiently handle coupled flow patterns. We then
test this agent solution on a series of congestion problems,
showing that it is flexible enough to achieve high perfor-
mance with different control mechanisms. In addition the
results show that the new solution is able to achieve up to
a 20% increase in performance over previous methods that
did not account for the agent coupling.
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1. INTRODUCTION
The ability to effectively control air traffic with traditional

control/optimization algorithms is decreasing rapidly as the
air traffic levels and aircraft heterogeneity increase and re-
strictions on flight plans decrease. New strategies are needed
to cope with this added complexity and to provide robust
safety levels while ensuring that air traffic delays do not
reach unacceptable levels. Indeed, even at current air traf-
fic levels, in 2005 alone there were an estimated 322,272
hours of delays within the United States airspace with a
total cost estimated to exceed three billion dollars by indus-
try [7]. With an expected increase in air traffic, unless the
air traffic management processes are overhauled, these de-
lays are expected to become significantly worse. The Next
Generation Air Transportation Systems (NGATS) initiative
is designed to address future issues in air traffic manage-
ment without requiring major infrastructure changes (e.g.,
airports, runways, and towers) or adding large numbers of
additional air traffic controllers. To accomplish this, new
robust algorithms are needed that can safely manage com-
plex air traffic flows while making optimal use of current
infrastructure.

Controlling air traffic flow is a complex task that involves
multiple controls, including ground delays, airplane separa-
tion and rerouting [15, 16]. It is also complicated by the
fact that while typically the airspace as a whole is loosely
coupled, at certain times coupling is tight and has to be
taken into account. To tackle this difficult problem we pro-
pose to extend the multi-agent solution introduced in [16].
While this previous approach provided good solutions, it
only handled one mode of control (separation) and assumed
that there was little coupling between agents1. The contri-
butions of this paper are to extend those results in three
directions, and to investigate:

• the impact of two new agent actions: ground delays
and re-routes (in addition to setting aircraft separa-
tion);

• the impact of coupling between agent actions; and

• the benefits of estimating agent rewards using pre-
computed values.

Other agent-based work on the air traffic problem includes
multi-agent learning, satisficing utilities, agent negotiation
and mechanism design approaches to lead agents to reach

1This previous work assumed no coupling in terms of airflow
dynamics, but did assume an overall coupling in terms of
reward. The work presented here handles coupling in both.
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a global satisfactory goal [18, 10, 12, 8]. Additionally there
have been numerous traditional modeling approaches to this
problem [11, 13, 9]. We seek to extend ideas from both
communities to produce a compelling multi-agent solution.

This paper shows how these extensions allow the multi-
agent air traffic management algorithms both to achieve
higher performance and to be applicable to more realistic
environments. In Section 2, we describe the air traffic flow
problem and the simulation tool, FACET. In Section 3, we
present the agent-based approach, focusing on the agents’
action space, learning algorithms and reward structures. In
Section 4 we present results in multiple domains with differ-
ent types of congestions and different agent actions. Finally,
in Section 5, we discuss the implications of these results.

2. COUPLED AIR TRAFFIC DOMAIN
Large numbers of flights, unpredictable weather, complex

route patterns, concerns for safety and fairness are just some
of the issues that make controlling traffic flow management
a demanding problem. Automated air traffic methods not
only have to create solutions for all these issues on a system
with 5000 flights an hour in the United States alone, they
have to provide solutions that are trustworthy and palatable
to the human operators controlling the airspace [13].

Fortunately the current operating assumptions that traf-
fic is mostly uncoupled (both in air traffic controller actions
and in current agent based solutions) is acceptable in most
cases. While most flights have local interactions, they do
not interact across the airspace (e.g. flights on the East
Coast have little affect on flight on the West Coast), making
the current air traffic system workable. However, there are
some significant interactions that cannot be assumed away
(e.g. intersecting jet routes) and accounting for such cou-
pling is critical in improving upon the current approaches to
air traffic management.

2.1 Airspace Configuration
The airspace in the US is decomposed into a hierarchy

that has both decentralized and centralized components. At
a high level the airspace consists of 20 regional centers (han-
dling 200-300 flights per hour) and at a lower level 830 sec-
tors (handling 10-40 flights per hour). The flow control prob-
lem has to address the integration of policies across these
sectors and centers, account for the complexity of the sys-
tem (e.g., over 5200 public use airports and 16,000 air traf-
fic controllers) and handle changes to the policies caused by
weather patterns. Two of the fundamental issues in address-
ing the flow problem are: (i) modeling and simulating such
a large complex system as the fidelity required to provide re-
liable results is difficult to achieve; and (ii) establishing the
method by which the flow management is evaluated. In the
following sections we address both issues: we describe the
air traffic simulator FACET, and present our system eval-
uation function based on both system congestion and total
traffic delay.

2.2 FACET Simulator
FACET (Future ATM Concepts Evaluation Tool), is a

modeling tool that accurately models the complex air traffic
flow problem over the US airspace [4]. It is based on prop-
agating the trajectories of proposed flights forward in time.
FACET can be used to either simulate and display air traffic
(a 24 hour slice with 60,000 flights takes 15 minutes to sim-

ulate on a 3 GHz, 1 GB RAM computer) or provide rapid
statistics on recorded data (4D trajectories for 10,000 flights
including sectors, airports, and fix statistics in 10 seconds on
the same computer) [1]. FACET is extensively used by the
FAA, NASA and industry (over 40 organizations and 5000
users) [1].

Figure 1: FACET screenshot displaying traffic
routes and air flow statistics.

FACET simulates air traffic based on flight plans and
through a graphical user interface it allows the user to ana-
lyze congestion patterns of different sectors and centers (Fig-
ure 1). FACET also allows the user to change the flow pat-
terns of the aircraft through a number of mechanisms. The
user can then observe the effects of these changes to con-
gestion. In this paper, agents use FACET directly through
“batch mode”, where agents send scripts to FACET ask-
ing it to simulate air traffic based on metering, ground de-
lay or rerouting orders imposed by the agents. The agents
then produce their rewards based on received feedback from
FACET about the impact of these actions.

2.3 Evaluating Congestion and Delay
In air traffic management there are many different types of

delays and congestions along with many ways of evaluating
them. The best measure is very subjective and depends
on the goals of the evaluator. In this paper we focus on a
system-metric based both on the congestion in a particular
set of sectors and on the measured air traffic delay. The
linear combination of these two terms gives the full system
evaluation function, G(z), as a function of the full system
state z. More precisely, we have:

G(z) = −((1− α)B(z) + αC(z)) , (1)

where B(z) is the total delay penalty for all aircraft in the
system, and C(z) is the total congestion penalty.

The total delay, B, is a sum of delays over a set of sectors
S and is given by:

B(z) =
X
s∈S

Bs(z) . (2)

where Bs(z) is the delay for sector s which is evaluated dif-
ferently depending on how air traffic is being manipulated.
When air traffic is not being rerouted around a delay the
following measure is used:

Bs(z) =
X

t

t(kt,s − kb
t,s) , (3)
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where ks,t is the count of the number of aircraft in sector s at
time t and kb

t,s the count for the baseline case where there are
no agent controls. For methods that reroute aircraft around
congestions instead of delaying their arrival at a congestion,
we have a different penalty:

Brr
s (z) = p

X
t

(kb
t,s − kt,s) , (4)

where p is a fixed penalty for the reroute.
Similarly, the total congestion penalty is a sum over the

congestion penalties over the sectors of observation, S:

C(z) =
X
s∈S

Cs(z) (5)

where

Cs(z) = a
X

t

Θ(ks,t − cs)eb(ks,t−cs) , (6)

where Θ(x) = 1 when x > 0 and 0 otherwise, a and b are
normalizing constants, and cs is the capacity of sector s as
set by the FAA. Intuitively, Cs(z) penalizes a system state
where the number of aircraft in a sector exceeds the FAA’s
official sector capacity. Each sector capacity is computed
using metrics which include the number of air traffic con-
trollers available. The exponential penalty is intended to
provide strong feedback to return the number of aircraft in
a sector to below the FAA mandated capacities.

3. AGENTS IN COUPLED AIR TRAFFIC
In this paper we present a distributed multi-agent solution

to air traffic flow where adaptive agents take actions inde-
pendently, but are coupled through their common system
evaluation function discussed above. The definition of the
“agents”, determining the agent actions, selecting the agent
learning algorithms, and selecting the agent reward struc-
tures are critical design decisions [16]. In this section we
summarize our choices for each of these decisions.

3.1 Agent Selection and Action Space
There are many complex tradeoffs in selecting agents in

the air traffic flow domain as discussed in [16]. In this work
we assign agents to individual ground locations throughout
the airspace called “fixes.” Each agent is then responsible for
any aircraft going through its fix. Fixes offer many advan-
tages as agents:

1. Their number can vary depending on need. The sys-
tem can have as many agents as required for a given sit-
uation(e.g., agents coming “live” around an area with
developing weather conditions).

2. Because fixes are stationary, collecting data and match-
ing behavior to reward is easier.

3. Because aircraft flight plans consist of fixes, agent will
have the ability to affect traffic flow patterns.

4. They can be deployed within the current air traffic
routing procedures, and can be used as tools to help air
traffic controllers rather than compete with or replace
them.

Based on this definition of an agent, we explore three
methods for the agent based fixes to control the flow. Al-
lowing agents to have the flexibility to control aircraft in

multiple ways is essential to their ability to be integrated
into existing systems. Even if all the methods work rela-
tively well, an organization or a sector controller may only be
comfortable with a particular form of flow control. Agents
that are not flexible enough to conform to these needs will
not be used. The methods used in this paper are as follows:

1. Miles in Trail (MIT): Agents control the distance
aircraft have to keep from each other wile approaching
a fix. With a higher MIT value, fewer aircraft will be
able to go through a particular fix during congested
periods, because aircraft will be slowing down to keep
their spacing. Therefore setting high MIT values can
be used to reduce congestion downstream of a fix.

2. Ground Delays: An agent controls how long aircraft
that will eventually go through a fix should wait on the
ground. Imposing a ground delay will cause aircraft to
arrive at a fix later. With this action congestion can
be reduced if some agents choose ground delays and
others do not, as this will spread out the congestion.
However, note that if all the agents choose the same
ground delay, then the congestion will simply happen
at a later moment in time.

3. Rerouting: An agent controls the routes of aircraft
going through its fix, by diverting them to take other
routes that will (in principle) avoid the congestion.

Note that all of these control methods can result in some
degree of coupling between agents when aircraft go through
fixes associated with multiple agents. For instance if one
agent enforces an MIT, the impact of agents down stream
setting MITs may be reduced. Ground delays can be cou-
pled if multiple agents are ordering the same aircraft to be
delayed. Finally agents performing reroutes can be highly
coupled if a series of reroutes create a new congestion.

3.2 Agent Learning
The objective of each agent is to select the action that

leads to the best system performance, G (given in Equa-
tion 1). Each agent will have its own reward function and
will aim to maximize that reward using a reinforcement
learning algorithm [14] (though alternatives such as evolving
neuro-controllers are also effective [2]). For delayed-reward
problems, sophisticated reinforcement learning systems such
as temporal difference may have to be used. However, due to
our agent selection and agent action set, the air traffic con-
gestion domain modeled in this paper only needs to utilize
immediate rewards. As a consequence, a simple table-based
immediate reward reinforcement learning is used. Our re-
inforcement learner is equivalent to an ε-greedy Q-learner
with a discounting parameter of 0 [14]. At every episode an
agent takes an action and then receives a reward evaluating
that action. After taking action a and receiving reward R
an agent updates its Q table (which contains its estimate of
the value for taking that action [14]) as follows:

Q′(a) = (1− λ)Q(a) + (λ)R, (7)

where λ is the learning rate. At every time step, the agent
chooses the action with the highest table value with prob-
ability 1 − ε and chooses a random action with probability
ε. In the experiments described in this paper, λ is equal
to 0.5 and ε is equal to 0.25. The parameters were chosen
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experimentally, though system performance was not overly
sensitive to these parameters.

3.3 Difference Rewards
The first and most direct approach to evaluating agent

performance is to let each agent receive the system perfor-
mance as its reward. However, in many domains such a
reward leads to agents learning slowly at best, and at worst,
not learning at all. We will therefore also set up a second set
of rewards based on the impact of an agent on system per-
formance. Ultimately, we desire agents aiming to optimize
their own rewards to also optimize a system performance cri-
teria. In this work we focus on difference rewards which
aim to provide a reward that is both sensitive to that agent’s
actions and aligned with the overall system reward [3, 17]:

Di ≡ G(z)−G(z − zi + ci) , (8)

where zi is the action of agent i. All the components of
z that are affected by agent i are replaced with the fixed
constant ci

2.
In many situations it is possible to use a ci that is equiv-

alent to taking agent i out of the system. Intuitively this
causes the second term of the difference reward to evaluate
the performance of the system without agent i and therefore
D evaluates the agent’s contribution to the system perfor-
mance. There are two advantages to using D: First, because
the second term removes a significant portion of the impact
of other agents in the system, it provides an agent with a
“cleaner” signal than G. Second, it remains aligned with G.

3.4 Estimated Difference Rewards
Though providing a good compromise between aiming

for system performance and removing the impact of other
agents from an agent’s reward, one issue that may plague D
is computational cost. Because it relies on the computation
of the counterfactual term G(z − zi + ci) (i.e., the system
performance without agent i) it may be difficult or impos-
sible to compute, particularly when the exact mathematical
form of G is not known. Let us focus on G functions in the
following form:

G(z) = Gf (f(z)), (9)

where Gf () is non-linear with a known functional form and,

f(z) =
X

i

fi(zi) , (10)

where each fi is an unknown non-linear function. We assume
that we can sample values from f(z), enabling us to compute
G, but that we cannot sample from each fi(zi). In addition,
we assume that Gf is much easier to compute than f(z), or
that we may not be able to even compute f(z) directly and
must sample it from a “black box” computation.

Previously it has been shown that given this form of G
that D can be computed as follows [16]:

Dind−est
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z)|ci)) ,

where E(f(z)|zi) is the expectation of f(z) leaving the value
of zi intact, and E(f(z)|ci) is the expectation of f(z) given

2This notation uses zero padding and vector addition rather
than concatenation to form full state vectors from partial
state vectors. The vector “zi” in our notation would be ziei

in standard vector notation, where ei is a vector with a value
of 1 in the ith component and is zero everywhere else.

that the value of zi is changed to ci. We are now left with the
task of estimating the values of E(f(z)|zi) and E(f(z)|ci)).
These estimates can be computed by keeping a table of av-
erages where we average the values of the observed f(z) for
each value of zi that we have seen. This estimate improves
as the number of samples increases [16].

3.5 Pre-Computed Difference Rewards
In addition to the estimates to the difference rewards, it is

possible to pre-compute certain values that can be later used
by the agents. In particular, −E(f(z)|zi) + E(f(z)|ci) can
be computed exactly if the function f can be interrogated
for certain values of z:

−E(f(z)|zi) + E(f(z)|ci)
= −E(f−i(z−i))− E(fi(zi)|zi)

+E(f−i(z−i)) + E(fi(zi)|ci)
= −E(fi(zi)|zi) + E(fi(zi)|ci)
= −fi(zi) + fi(ci)

= −f−i(k−i)− fi(zi) + f−i(k−i) + fi(ci)

= −f(k−i + zi) + f(k−i + ci) ,

where k−i is a constant set of actions for all the agents other
than i and f−i is equal to

P
j 6=i fj(zj) . Then by precom-

puting f(k−i+zi) for each action for each agent, the value of
D can be computed exactly. With n agents and m possible
actions this requires

Npre = 1 +m ∗ n (11)

computations of f . We refer to this reward as: Dind
i . This

approach provides a computationally expensive option for
the case where forming estimates to computeD may not pro-
vide accurate results (e.g., some assumptions do not hold).

3.6 Coupled Group Difference Rewards
Unfortunately the above estimation for D is not valid if

the values of fi(zi) are coupled. However this problem can
be resolved if the agents can be decomposed into a set dis-
joint groups that are uncoupled with respect to each other.
We do this by replacing the vector z with a vector x where
each component xj represents the possible actions from the
set of agents in group j. Here the number of possible values
of xj grows combinatorialy with the number of agents in the
group and the number of actions each agent can take. With
l agents in a group and m possible actions for each agent
the number of possible values for xj is ml. With the space
x, the same analysis that was performed in Sections 3.4 and
3.5 can be repeated with:

f(z) = h(x) =
X

j

hj(xj) ,

where the function h performs similar computations as f
except that it is a function of group actions instead of agent
actions. Then D can be estimated as:

Dgroup−est
i = (12)

Gf (h(x))−Gf (h(x)− E(h(x)|xj) + E(h(z)|ci,j)) ,

where ci,j is the group action xj with the value of zi changed
to ci with all the other members of the group held constant.
Note again that the estimate can be made exact by pre-
computing certain values of h. However, in this case the

538



number of possible actions for each group action xj may be
quite large. We refer to this reward as: Dgroup

i .

3.7 Reward Analysis and Summary
The air traffic domain matches well with the coupled group

model, in that the assumptions that lead to the computation
of the group difference rewards are generally accurate. In
this domain agents along the same jet route tend to be cou-
pled, while agents along different jet routes tend not to be.
Therefore agents tend to naturally form groups where agents
are coupled within the group, but where the groups are un-
coupled with each other. Each group affects the number
of aircraft in a sector, which can be represented as hj(xj).
However, we just know the total aircraft count for a sector,
which is a sum of the independent paths that go through
a sector: h(x). In addition once we know the counts for a
sector we can compute the congestion reward Gf which is
of known form given the airplane counts.

In summary, we will investigate the performance of the
following four rewards:

1. The estimated difference reward Dind−est
i (z), assum-

ing no coupling between agents.

2. The difference rewardDind
i (z) using precomputed coun-

terfactuals, assuming no coupling between agents.

3. The estimated group difference reward Dgroup−est
i (x),

where agents estimate the group counterfactual using
E(f(x)|xj) and E(f(x)|ci,j).

4. The group difference reward Dgroup
i (x) using precom-

puted counterfactuals, assuming agents within a group
are coupled.

Note that we show the first two rewards as a function of
agent actions z and the next two as a function of group ac-
tions x for clarity, even though there is a one-to-one mapping
between the two representations.

4. SIMULATION RESULTS
In this paper we test the performance of our agent based

air traffic optimization method on a series of simulations
using the FACET air traffic simulator. In all experiments
we test the performance of six different methods. The first
method is Monte Carlo estimation, where random policies
are created, with the best policy being chosen. The second
method is agents directly using the system reward, G, as de-
fined in Equation 1. The next four methods use the different
formulations/estimates of the difference reward summarized
above in Section 3.7.

Agents using these rewards are tested using the following
actions:

1. Miles in Trail: Agents maintain separation distance
between aircraft going through their fix.

2. Ground Delay: Agents delay aircraft on the ground
that will go through their fix.

3. Rerouting: Agents reroute aircraft going through their
fix.

We test all six methods and the three actions in a sce-
nario that consists of two independent congestions with a
total of 300 aircraft over the course of five hours of flight

time. The first congestion is relatively light and has a total
of 75 aircraft. The main goal of agents in this congestion
is to minimize delay. The second congestion is heavy and
has a total of 225 aircraft. Here agents have to make firm
actions to minimize the congestion. In this scenario, the
agents are mostly in pairwise couplings, as most aircraft
travel through two fixes before they enter a congested area.
In addition to this scenario, agents using rerouting as their
action are tested in two more congestion scenarios designed
to test heavy coupling, as described later.

In all experiments the parameter for the tradeoff between
congestion and lateness is set to α = 0.5 and the normal-
izing constants for the congestion term are set to a = 50
and b = 0.3. For rerouting problems the reroute penalty p
is set to one hour. These parameters are setup so that con-
gestion and lateness have approximately the same impact.
Note that the absolute performance between experiments
with different actions is not comparable because of the dif-
ferent methods used to evaluate the penalties. All results
are based on 30 runs and though they are plotted, the er-
ror bars are in most cases smaller than the symbols used to
distinguish the rewards.
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Figure 2: Performance for agents controlling miles
in trail on dual independent congestion problem.
300 Aircraft, 40 Agents.

4.1 Controlling Miles in Trail
In our first set of experiments, agents control Miles in

Trail (MIT): the distance aircraft have to separate them-
selves from each other when approaching a fix. Here agents
choose between the three actions of setting the MIT to 0, 25
and 50 miles. Setting the MIT to 0 produces no effect, while
setting it to high values forces the aircraft to slow down to
keep their separation distance. Therefore setting high MIT
values upstream of a congestion can alleviate a congestion,
at the cost the increased delay.

The results shown in Figure 2 illustrate the benefit of us-
ing difference rewards. While agents directly optimizing G
perform better than a Monte Carlo system, agents using
any of the difference rewards perform considerable better.
In addition agents using Dgroup perform the best, as they
are able to best handle the coupling in the system. While
performing well, agents using the independent D rewards do
not account for the coupling are not able to converge to as
good of solution since their computation of D is inexact and
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not fully aligned with G.
Interestingly while agents using Dgroup−est

i (x) start out
learning more slowly, they reach high performance in the
end. These rewards are trying to estimate D taking coupling
into account, by estimating “E(h(x)|xj) +E(h(z)|ci,j)” and
keeping a table entry for each possible group action xj . In
contrast Dind−est

i (z) only keeps table values for each agent’s
possible individual action zi. With two agents per group,
there are three individual agent actions and nine group ac-
tions. Agents taking groups into account therefore have to
fill in a larger table, which makes them need more samples
to produce an accurate estimate. While this causes them to
learn more slowly, ultimately they can perform better since
they are taking coupling into account.

4.2 Controlling Ground Delays
In the second set of experiments, agents control aircraft

through ground delays. Here an agent can order aircraft
that are scheduled to go through its fix to be delayed on
the ground. In this scenario agents choose between one of
three actions: no delay, 2 hour delay and 4 hour delay. Note
that the dynamics of ground delays are quite different than
with MITs since if all the agents choose the same ground
delay, the congestion will still happen, just at a later time.
Instead agents have to form the correct pattern of ground
delays. Also in this system, agents are inherently coupled
since more than one agent can order the ground delay of the
same aircraft. In this situation we have the aircraft choose
the smallest delay. Here coupling needs to be accounted for
since even if an agen’s action is subsumed by an action of
another agent, it still forms a mapping from its own action
(which was disregarded) and the reward it received.
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Figure 3: Performance for agents controlling ground
delays on dual independent congestion problem. 300
Aircraft, 40 Agents.

The results show (Figure 3) that the different rewards’
performance is qualitatively similar to the case where agents
control MITs. Agents using the group difference reward per-
form the best, while agents using any variety of difference
reward perform well. Note however, that agents using G
or Monte Carlo estimation perform particularly poorly in
this problem. This can be attributed to the problem being
more difficult, since the action-reward mapping is more de-
pendent on the actions of other agents. In essence, there is
more “noise” in this system, and agent rewards that do not

deal well with noise perform poorly.

4.3 Controlling Reroutes
In this experiment agents alleviate congestions by rerout-

ing aircraft around congestions. Here an agent’s action is to
set the probability that it will reroute an aircraft that goes
through it’s associated fix. In this experiment agents choose
between one of three probabilities: 0%, 50% and 100%. As
before, the results show that using a reward that can handle
the coupling is important in obtaining high performance.
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Figure 4: Performance for agents controlling rerout-
ing on dual independent congestion problem. 300
Aircraft, 40 Agents.
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Figure 5: Performance for agents controlling
reroutes on cascading congestion problem. 100 Air-
craft, 40 Agents.

4.3.1 Coupled Cascading Congestions
In previous experiments the coupling between agents af-

fects the how aircraft flow through congestion points that
they are trying relieve. In this experiment (displayed in
Figure 1) each aircraft goes through two congestions and is
associated with two agents, each of which can reroute the
aircraft around the congestion. This scenario is complicated
by the fact that if too many aircraft are rerouted, they can
create a new third point of congestion. This causes a pair-
wise coupling between agents. To isolate the effect of the
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coupling, we explore the case where desired capacity of a
congested sector is set to zero (e.g., when background traffic
has already filled sectors to capacity and the agent’s job is
to prevent any new traffic from entering congested areas).
This situation strongly encourages each agent to reroute all
aircraft around its congestion, meaning that unless good
rerouting decisions are made, it is likely that the reroutes
will cause a new congestion.

The results of this experiment (Figure 5) show that keep-
ing track of coupling between agents is critical in this do-
main. As a consequence the agents using the group reward
Dgroup

i (x), perform significantly better than agents that do
not account for the coupling. However note that agents us-
ing the estimate Dgroup−est

i (x) do not perform better than
the agents ignoring the coupling. This disparity can be at-
tributed to the difficulty of estimating the rewards in this
complex problem. In essence, because the estimates of the
coupled group reward are inaccurate, the agents trade off
one problem (not accounting for coupling) for another (poor
estimates).

Sector

With

Possible 

Congestion

AgentAgentAgent

AgentAgentAgent

AgentAgentAgent (Reroutes)

Figure 6: Aircraft going through multiple fixes.

4.3.2 Larger Coupled Groups
The results above demonstrate the need to account for the

coupling among the agents. To continue this analysis we run
a set of experiments where we explore how well agents per-
form when the size of the coupled groups changes. Due to
the complexity of the large amount of couplings, these ex-
periments are conducted on a relatively simple scenario with
one congestion and one hundred aircraft. In this experiment
each aircraft traveling through the point of congestion first
goes through l fixes associated with l agents (Figure 6). Here
the sets of l fixes are disjoint, so aircraft going through a fix
in one set will never go through a fix in another set. This
scenario leads to groups of coupled agents of size l.

Here agents take one of two actions: reroute no aircraft, or
reroute 50% of aircraft going through their fix (chosen ran-
domly). All agents within a group have the potential to or-
der reroutes on the same aircraft. When one agent reroutes
an aircraft, a second agent ordering the same aircraft to be
rerouted will have little effect. This creates a coupling be-
tween agents in a group, since the actions of other agents
affect the impact of an agent’s action.

When agents are not coupled (group size 1), the perfor-
mance of all the difference rewards is nearly identical, all per-
forming better than agents directly maximizing G or agents
using Monte Carlo estimation (Figure 7). This is expected
because the formulations for the coupled rewards reduces
to the rewards for the uncoupled cases for a group size of
1. In contrast when agents are coupled in group sizes of 4,
the performance of the two rewards that take coupling into
account perform considerably better (Figure 8). The issue
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Figure 7: Performance for agents controlling
reroutes for single congestion problem. 100 Aircraft,
40 Agents, Group Size 1.
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Figure 8: Performance for agents controlling
reroutes for single congestion problem. 100 Aircraft,
40 Agents, Group Size 4.

here is that with a group size of 4, assuming independence
is problematic. For instance take the case where an agent
sees all three other agents in its group take the action of
rerouting 50% of the aircraft. Assuming independence, this
agent would assume that if it ordered a reroute of 50%, then
it would impact 50% of the aircraft that go through its fix.
However, in reality 86% (in probability) of the other aircraft
have already been rerouted by the other agents so its impact
would only be 7%.

Figure 9 summarizes this result. Here we show the per-
formance of the agents with group sizes varying from 1 to
5 and scale the results by the value of achieved by Monte
Carlo estimation to normalize to the relative difficulty of
each problem. As expected, as the size of the coupled groups
grows, the relative benefit of using rewards that account for
the coupling increases.

5. DISCUSSION
In this paper we show how distributed coupled agents can

efficiently use a high-fidelity air traffic flow simulator to form
a powerful solution to the air traffic flow problem. In ad-
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Figure 9: Relative performance for agents control-
ling reroutes for single congestion problem. 100 Air-
craft, 40 Agents, Variable Group Size.

dition the agent solution is flexible in that agents can be
turned on and off when needed, and they can be used to
control air flow with a wide variety of methods. Both these
capabilities are critical in the eventual use of agents in real
domains where they need to interact and be trusted by hu-
man operators that can remain “in the loop.”

The agent based solution presented in this paper extends
existing agent-based control methods by allowing them to
work in more coupled situations. While previous solutions
allowed for coupling between agents to occur in the penalty
function, they assumed the actions of agents affect the counts
of aircraft within a sector independently. By allowing cou-
pling between agents with respect to these counts, this paper
allows multi-agent systems to be extended to a much larger
variety problems, with only a small increase in complexity.
Note that the coupling method in this paper is effective with
only coupled groups with few agents due to the exponen-
tial nature of the encoding. However, we believe that this
is applicable to many air traffic problems because typically
an aircraft only goes through a few fix locations therefore
only couples a few agents together. However, if large cou-
pled groups exist, general purpose function approximation
algorithms may be able to help in computing difference re-
wards, or in estimating aircraft counts affected by the cou-
pled groups.
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