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ABSTRACT

The multiply sectioned Bayesian network (MSBN) frame-
work is the most studied approach for distributed Bayesian
Network inference in an MAS setting. This paper describes
a new framework that supports efficient approximate MAS-
based sensor interpretation, more autonomy and asynchrony
among the agents, and more focused, situation-specific com-
munication patterns. Its use can lead to significant improve-
ments in agent utilization and time-to-solution.
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1. INTRODUCTION

Distributed problem solving (DPS) is the subfield of multi-
agent systems that is concerned with solving large-scale, of-
ten inherently distributed problems, using systems of dis-
tributed intelligent agents. An important DPS application
is sensor interpretation (SI) in sensor networks. SI domains
can frequently be modeled with Bayesian networks (BNs)
so data interpretation is basically via BN inference. Dis-
tributed, multi-agent SI can be modeled with distributed
Bayesian networks (DBNs). In a DBN, sub-networks of the
global BN are distributed to different agents, and some BN
inferences will require communication among the agents.

The multiply sectioned Bayesian network (MSBN) frame-
work, e.g., [4, 2, 3], is the most studied approach for us-
ing DBNs in an MAS setting. However, we do not believe
the MSBN framework is well suited for MAS-based SI in
large-scale sensor networks. In large-scale applications, ex-
act interpretation will be impractical, it will be critical to
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take advantage of the parallel computational capabilities of
the agents, and agent coordination strategies may need to
be flexible and able to dynamically adapt to the situation.
Among the key problems we see with the MSBN are: it
supports only exact inference, its global propagation proce-
dure reduces agents’ ability to work in parallel, agent auton-
omy and asynchrony is limited, and communication patterns
among the agents are severely restricted.

This paper describes the elements of a new framework we
have developed for inference in DBNs, which has been de-
signed specifically to support efficient and flexible, approxi-
mate MAS-based SI. Compared to the MSBN approach, our
framework supports more autonomy and parallelism among
the agents, and more dynamic, situation-specific communi-
cation patterns. To compare the two approaches, we will
present some mathematical analyses of the time required
to produce interpretations using the MSBN and our frame-
work. The analyses show that in at least some sensor net-
work domains, it is likely that our framework could be used
to produce acceptably high quality solutions at substantially
lower cost than with the MSBN.

2. BACKGROUND

The goal of sensor interpretation is to identify the set of
events in the environment that are responsible for produc-
ing the sensor data, termed an interpretation of the data.
The most commonly used exact probabilistic standard for
selecting the best interpretation is the mazimum a poste-
riori interpretation or MAPI. Ideally, an SI system would
report the MAPI of all of the globally available data as its
solution (the “global MAPI”), but this is generally imprac-
tical, as computing the MAPI is NP-hard.

A typical MAS-based approach to SI in a sensor network
will have the sensors partitioned among the agents and each
agent would be charged with identifying whether a certain
subset of the possible events had occurred (i.e., this would
be the agent’s subproblem). Each agent will end up with
direct access to only a subset of the globally available sen-
sor data, termed its local data. Agents will generally have
to communicate and exchange results and/or data to solve
their subproblems, because their subproblems will not be
independent. Because communication will always be over-
head relative to the system goal of processing data, it must
be limited and focused (particularly since communication is
inherently much slower than computation and can require
considerable energy resources in wireless sensor networks).
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Figure 1: A simple SI BN, the MSBN subnetworks, and the MSBN communication graph.

Figure 1 shows a very simple BN that has the most basic
general form necessary to define an SI domain. The network
has two levels: one for the events (E1 and F2) and one for
the data (D: through D4). The BN is multiply connected,
and a standard technique for doing exact inference in such
networks is to convert the BN to a join tree, operate on that
structure, and compute probabilities as needed. An excel-
lent presentation can be found in [1]. Each node in a join
tree is a cluster: a set of (random) variables. Each edge is
labeled with a sepset: the intersection of the variables in the
two connected clusters. Every cluster and every sepset has
an associated belief potential, which is effectively an unnor-
malized probability distribution over its variables. Inference
in a join tree involves a global propagation procedure that
consists of a sequence of message passes. Upon completion,
the join tree is said to be consistent, with the probability dis-
tribution having been propagated to all clusters and sepsets.
A joint of interest can then be computed by marginalizing
over any potential containing the joint variables:

In the multiply sectioned Bayesian network (MSBN) frame-
work, a (large) BN is broken up into subnetworks such that
the resulting structure is effectively a join tree, in the sense
that each subnetwork can be viewed as a cluster, and the
connections between these subnetwork clusters can be viewed
as sepsets. This structure is referred to as the communica-
tion graph, since each subnetwork would be distributed to
a different agent and inference would require communica-
tion (in which case the sepsets are termed linkages). The
messages that would be communicated between the subnet-
works/agents in the MSBN are basically the same as the
sepset messages that would be passed in a join tree with the
subnetworks as the clusters.

An example MSBN is shown in Figure 1, based on the sim-
ple SI BN. Here, the original BN has been divided into two
Bayesian subnetworks. This could correspond to a situation
in which each agent has direct access to half the sensors.
The agents can exchange and pool the effects of their data
by processing their data to update their respective Ei-FE>
potentials, and then communicating messages based on the
Eh-E5 potentials. A BN cannot be arbitrarily decomposed
into an MSBN: (1) the communication graph must have a
tree structure; and (2) subnetworks must be d-separated by
the sepsets/linkages.

The MSBN approach was originally developed for large
centralized BNs. Its extension to MAS provides few adap-
tations for dealing with the differences between centralized
and multi-agent frameworks. We see at least six significant
drawbacks in applying the MSBN framework to MAS-based
SI: (1) global consistency is forced on the system if any data
evidence is to be shared; (2) agents are idled during signif-
icant portions of the global propagation process; (3) agent
autonomy and asynchrony are reduced; (4) few techniques
for approximate SI are supported; (5) agent communication
patterns are constrained; and (6) it is unclear how the MAS
determines when to initiate the global propagation process.

Communication takes places only via a global propagation
procedure analogous to that in a join tree. This involves the
entire network of agents communicating the effects of all
data processed by all agents to all agents. To a large ex-
tent this offsets the advantages of having different agents
responsible for different events. Global propagation severely
limits the ability to exploit the parallelism inherent in an
MAS, as agents must sit idle during period of the global
propagation process ([2] terms this “off-line time”). Agents
have little autonomy. Once the propagation procedure be-
gins, an agent’s activities will be outside of its control; they
must must process all messages they receive, whether the
contents are useful for their subproblem or not. Because the
MSBN requires that the communication graph have a tree
structure, some agents will be able to communicate only by
passing messages via other agents, delaying the receipt of
potentially critical evidence and using additional computa-
tional resources (in the intermediate agent(s)).

3. ANEW FRAMEWORK

Because of the limitations of the MSBN approach, we have
developed an alternative framework for probabilistic infer-
ence in DBNSs, specialized for MAS-based SI. This frame-
work has been designed to support better utilization of the
concurrent computational capabilities of the agents, more
flexible and focused communication patterns, increased agent
autonomy and asynchrony, and a variety of approximation
techniques for SI. The two main approximations that we
wish to support are: (1) having each event value determined
by a single agent; and (2) allowing agents to base their so-
lutions on different subsets of the data.

The first element of our approach involves the structure of
each agent’s local BN. For SI there is typically no need for
global propagation procedures that produce correct proba-
bilities throughout the BN. Instead, we care about produc-
ing he correct potential only for a single cluster containing
all the events of interest to the agent. It can be shown then
that a using “central cluster” join tree model is more effi-
cient than any other join tree topology. A system of such
agents are linked into a distributed BN by passing appro-
priate messages between agents’ events central clusters, via
“virtual sepsets.” To communicate results from its process-
ing to another agent, an agent sends the other agent a mes-
sage containing what we term an events likelihood vector
(ELV), which is derived from its central cluster events po-
tential. When an agent processes local data or a received
ELV, its central cluster events potential will be updated so
that it reflects a revised conditional probability distribution.

The first key difference between our approach and the
MSBN approach is that each of our agents maintains its own
“virtual sepset” data structure for each connection to another
agent (so there are two sepsets associated with each link).
The MSBN uses a single, shared sepset for each linkage. Not
only do we want to support agents that can maintain incon-



sistent interpretation potentials (i.e., based on different sets
of data), we want agents to be able to operate autonomously
and asynchronously. Just because one agent has sent a mes-
sage to a second agent, the second agent should not be forced
to process it. Only the receiving agent can reliably deter-
mine what communicated evidence it has processed and thus
must be “divided out” from any messages that it sends back
to the other agent. Maintaining two sepsets allows each of
two directly connected agents to make independent decisions
about what evidence sent by the other will be processed and
integrated, and when.

Communicating sensor data evidence to another agent
means sending a message with an events likelihood vector
that is an appropriately modified version of the joint events
potential in its central cluster. We impose two constraints
on the ELVs that are communicated: (1) they must not
reflect data evidence that originated with the target agent
(to avoid “double counting” this evidence); and (2) succes-
sive messages must reflect both previous and additional lo-
cal data (not just additional data). These constraints allow
the agents to make autonomous and asynchronous decisions
about when to send and process messages, while still allow-
ing them to pool their processed data. In our basic commu-
nication scheme, an agent’s virtual sepset for a connection
is used in two ways: (1) When an agent is going to send
an ELV to another agent, it uses its sepset associated with
the link to that other agent to remove the effects of any
previously communicated and processed evidence from the
other agent (by “dividing it out”). (2) When the agent de-
cides to process an ELV from the other agent, it first uses its
sepset associated with the link to the other agent to remove
the effect of any evidence it has previously processed from
the other agent, and then updates its potential to reflect all
processed evidence from the other agent.

The second key difference between our approach and the
MSBN approach is that we do not require that agents be
linked in only a tree structure (for communication). Instead,
we allow any pair of agents to be linked and directly commu-
nicate. This potentially introduces one or more loops into
the agent communication graph, resulting in multiple propa-
gation paths for the same data evidence, and the possibility
for data evidence to be “counted” multiple times. [3] contains
a discussion of the effect of loops in the MSBN communi-
cation graph. It points out that what it terms “degenerate
loops” (loops where the sepsets all share some variables) can
be dealt with by arbitrarily breaking the loop, and the loops
that would occur in SI DBNs would often be of this type.
However, while randomly breaking a loop is appropriate for
the MSBN’s global propagation procedure, prohibiting all
communications between certain pairs of agents is not ideal
as it slows communication between some agents and forces
intermediate agents to do work that may be of no value in
solving their own subproblems.

Instead, we have developed two variations on our basic
communication scheme that allow us to limit what data
evidence is communicated between certain agents, without
having to prohibit all communications between these agents.
In the first variation, we take advantage of our dual sepset
per link mechanism to allow an agent to limit the evidence
that it passes on. Just as an agent can use its linkage vir-
tual sepset to avoid sending evidence back to the agent it
received it from, the fact that it has comparable informa-
tion for each link to another agent means that it can divide

out (remove) evidence from any combination of connected
agents before it sends out an ELV. This effectively allows
for arbitrary communication patterns to be statically deter-
mined and supported by the agents. The main cost for this
capability is the additional sepset computations (divisions)
that must be done to remove evidence (it is actually a bit
more complicated than this due to the priors). If there are
agents that receive evidence from a large number of agents,
but must then send only their own local data evidence, the
scheme we just proposed could become inefficient. The al-
ternative scheme that we would then propose is for such
an agent to maintain a second joint events potential that
will always reflect only its local data. When a batch of lo-
cal data is processed, this local events potential would be
updated first, and then it would periodically be used to up-
date the central cluster (which would as before reflect both
local data and data evidence received and processed from
other agents). An agent can then decide to use whichever of
the its two events potentials are appropriate to construct an
ELV message for a particular agent, depending on whether
it wants to communicate only its local data evidence to that
agent or whether it wants to pass on data from one or more
agents in addition.

The schemes we have just outlined allow agents to limit
what evidence they pass on to other agents, allowing an
MAS designer more flexibility in specifying communication
patterns than the MSBN'’s tree topology. However, the com-
munication patterns must be statically determined. Ideally,
we would like agents to be able to dynamically adjust their
communication patterns. To do this, an agent would have to
be able to determine what evidence needed to be eliminated
from each ELV, and have the ability to eliminate it. This
requires that an agent understand what data has been inte-
grated into its current events potential as well as what data
has been incorporated into the target agent’s events poten-
tial. We propose that this be accomplished by having agents
maintain a global dataset “bit vector” along with their joint
events potential and along with every virtual sepset, and
that agents send this information in their evidence messages
along with the ELVs. The dataset bit vector would identify
what data is contained in an ELV, and so allow agents to
avoid double counting evidence. If an agent still receives an
ELV that cannot be integrated because it contains data ev-
idence it has already processed, it can avoid invalidating its
potential, and send a request to the source agent to eliminate
the offending evidence and resend the evidence.

4. PERFORMANCE ANALYSIS

In this section, we will present some analyses that compare
the time-to-solution performance when using the MSBN frame-
work and approaches based on our framework, for exact and
approximate SI. This will allow us to assess the trade-offs.
We will use the following notation in the analyses:

e — number of events;

a — number of agents;

C« — time per floating point multiplication;

Cy — fixed time per communication;

C'y — time to transmit one floating point number

P =2°.(C. — time to process one ELV;

M = Cy+2°-C, — total time to send one ELV message;

Consider how to derive parametrized expressions for the
time cost of the MSBN global propagation procedure. The



cost will depend on the topology of the communication graph
and on assumptions about the ability of agents to commu-
nicate “in parallel.” The MSBN requires that the commu-
nication graph be a tree structure. Suppose this is a “star
structure,” where all agents (a — 1) are directly linked to a
single central/root agent, and let us assume here that all
agents can communicate in parallel to the central agent.
Each agent must first spend time P doing computation to
prepare its ELV, but can do this in parallel. They then send
a message containing the ELV to the central agent, in par-
allel, in time M. The central agent receives a — 1 messages
at (essentially) the same time, and must then process them
to update its events potential, requiring time (a — 1)P. The
MSBN global propagation procedure then propagates the
combined results back to all the agents, and this takes ex-
actly the same amount of time as the inward propagation
and time P for each receiving agent to integrate the mes-
sage. Thus, the total time is: 2M + 2aP.

Now consider a more general tree structure, where the
uniform depth of the tree is d, the uniform branching factor
isb,soa = bdbtlfl. Again assume all agents communicating
with a single agent can do so in parallel. Under these as-
sumptions, we can express the time required for the global
propagation procedure as: 2dM + 2d(b + 1)P. Comparing
this to “star configuration,” we see that the time due to local
data processing has been reduced ((a@ — 1)P vs. d(b+ 1)P,
where generally db << a). However, this comes at the cost
of increased communication time (M vs. dM). In most sen-
sor networks, M is greater than P (often by orders of mag-
nitude), so this is rarely going to be an effective trade-off
(even ignoring energy usage).

Consider now a situation in which the agents receive and
process data incrementally, and all agents need to be up-
dated after each batch of data has been processed. Suppose
each agent receives its m pieces of data in two batches of
size m/2. The MSBN approaches will entail significant of-
fline time. Effectively, the agents will process half their data,
do the global propagation, then process the other half, then
do the global propagation again. There will be no useful par-
allelism between the data processing and the propagation.
For the star configuration this means a time of: £ P+2(M +
aP)+ 3 P+2(M +aP) or 4M + (m + 4a)P. For the more
general tree structure, it will be: 4dM + (m + 4d(b+ 1)) P.

Let us now consider the time cost of our approach. Ob-
viously, this can vary significantly depending upon the the
particular combination of our schemes that are employed.
As a first baseline, let us consider updating all agents with
all data evidence, in a fully connected communication graph
with parallel communication capabilities. Using our basic
scheme (but not doing anything special by assuming no pre-
vious communication among the agents), each agent must
process its potential via its virtual sepset for each linked
agent and then send the resulting ELV. The processing must
be done sequentially, but since we are assume communica-
tion can occur in parallel (partially), the last agent receives
the ELV at (a — 1)P + M. Each agent must process the
received message through its local sepset and use the result
to update its potential, requiring 2(a — 1) P time. However,
because an agent can begin processing the first received mes-
sages while other messages are still being transmitted, the
additional time required can be as low as ((a — 1) + 1)P or
aP. Thus, each agent has its potential updated after a time
as low as M + (2a — 1) P, which is less than the MSBN. The

advantage comes from our ability to better support MAS
parallelism and avoid agents sitting idle. If we again consider
updating all agents with all data, but factor in the incremen-
tal processing of the m data per agent, we get the following
time bound for our approach (assuming FP > M > P):
M+ (m+4(a—1)+2)P or M + (m+4a—2)P. Again, our
approach will produce an interpretation faster, even though
it does more computation, because the communication time
plays a very small role due to parallelism. In fact, if ad-
ditional data were continuously being received, communica-
tion time would become insignificant.

The above scenarios do not represent the intended usage of
our approach, with limited, focused communication among
agents, for approximate SI. Furthermore, if all data must be
processed and used in interpreting every event, then large-
scale SI will simply be impractical. Instead we would hope
that events can be determined reliably enough based on only
a reasonable fraction of the global data. When this is the
case, it is likely that different subsets of the data would pro-
vide the most reliable support for each of the events. If we
build our system so that each agent is responsible for only a
subset of the global events (e.g., one agent responsible for de-
termining whether F; is true or not, another agent whether
E; is true or not, etc.), then we want different agents to base
their answers on different subsets of the global data. This is
exactly what our framework was designed to support.

The time and solution quality performance of such strate-
gies will obviously depend on the specifics of each SI domain,
and determining cost expressions for this type of strategy
can be difficult. However, if we assume that all agents both
receive and send data from the fraction f of other agents,
the time for this strategy is approximately: M+ (m+4fa)P.
If f is on the order of 0.25, the time cost becomes approxi-
mately M + (m+a)P, while even if f is 0.5 (50% of the data
is required) the time cost is M +(m+2a)P. Comparing these
formulas to those above, we can see that this is much faster
than would be possible with the MSBN (since M is much
larger than P typically). So in appropriate domains, our
framework could be used to implement much more efficient
strategies than would be possible with the MSBN approach,
while still providing acceptably high quality solutions.
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