
The Design of a Generic Framework for Integrating
ECA Components

Hung-Hsuan Huang,
Toyoaki Nishida
Graduate School of

Informatics, Kyoto University,
Japan

huang@ii.ist.i.kyoto-
u.ac.jp,

nishida@i.kyoto-u.ac.jp

Aleksandra Cerekovic,
Igor S. Pandzic

Faculty of Electrical
Engineering and Computing,
University of Zagreb, Croatia
{aleksandra.cerekovic,
Igor.Pandzic}@fer.hr

Yukiko Nakano
Department of Computer,

Information and
Communication Sciences,

Tokyo University of Agriculture
& Technology, Japan

nakano@cc.tuat.ac.jp

ABSTRACT
Embodied Conversational Agents (ECAs) are life-like com-
puter generated characters that interact with human users
in face-to-face multi-modal conversations. ECA systems
are generally complex and difficult for individual research
groups to develop. Therefore, if there was a common frame-
work for connecting ECA functioning blocks seamlessly to an
integrated system, redundant effort can be saved. This pa-
per discusses the issues emerged in developing such a frame-
work and introduces the design and preliminary results of
our ongoing project, Generic ECA Framework.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors; I.2.0 [Ar-
tificial Intelligence]: General

General Terms
Design, Human Factors

Keywords
Embodied Conversational Agent, Blackboard, Application
Framework

1. INTRODUCTION
Embodied Conversational Agents (ECAs) are life-like com-

puter generated characters that interact with human users
in face-to-face multi-modal conversations. Without the lim-
itations due to the clumsy physical bodies built by today’s
technologies, they can provide richer facial expressions and
larger degree of freedom in their bodies with higher precision
than contemporary humanoid robots. They thus allow the
researchers to concentrate on building advanced virtual hu-
mans with the capability to perform complex high-level com-
municational functions, such as turn taking via subtle eye
contacts or realistic facial expressions for expressing emo-
tional states.

Cite as: The Design of a Generic Framework for Integrating ECA
Components, H.-H. Huang, A. Cerekovic, I. S. Pandzic, Y. Nakano and
T. Nishida, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons(eds.),May,12-16.,2008,Estoril,Portugal,pp. 128-135.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ECAs are ideal for simulations in psychology experiments,
training or education applications, and entertainment pur-
poses. They also provide more nature and richer interface
rather than widely used speech-only ones of the systems de-
signed for public users who are not to familiar with the op-
eration of computers. ECAs have been proven to be power-
ful tools for engaging human users in computer-interaction,
augment their involvement and reduce their workload [2].
Because the variety of potential applications, ECAs attract
great interests from various fields.

However, to realize a believable ECA capable to take out
natural multi-modal face-to-face conversations with humans
is not an easy task. In addition to the prosody proper-
ties of verbal channel, precise control on non-verbal chan-
nels like gazing, raising of eyebrows, nod, hand gestures or
postures are required. These features are used to perform
communicative functions like directing the flow of conver-
sations or supplements of verbal utterances while appropri-
ately reflecting the agent’s internal emotional states, per-
sonality and social status in responding to the recognized
attentions from human users by sensory devices. And then,
those behaviors are output with realistically rendered char-
acters, virtual environment as well as fluent speech synthesis.
To achieve these functionalities, knowledge and techniques
on signal processing, natural language processing, gesture
recognition, artificial intelligence, dialog management, per-
sonality and emotion modeling, natural language generation,
gesture generation, CG character animation and so on are
required.

ECA development involves so many research disciplines
that it is difficult for individual research teams to develop
from the scratch. The usual way to build ECA systems is
thus by utilizing software tools developed by other institutes.
However, software tools developed by different institutes are
usually neither meant to cooperate with each other nor de-
signed for the same application domain, it is usually labori-
ous or even impossible to make them work with each other.
Moreover, due to the common purposes, redundant effort
and similar approaches are repeated by the researchers.

To relief these problems, if there was a common framework
that absorbs the heterogeneities and connects diverse ECA
software tools and drives the connected components as an
integral ECA system, redundant effort and resource uses can
be saved, the sharing of research results can be facilitated
and the development of ECA systems can become easier.

128

This paper discusses the issues emerged in developing such
framework and introduces the design and preliminary results
of our ongoing project, Generic ECA Framework.

2. ECA COMPONENT INTEGRATION
ISSUES

Like typical modeling of autonomous agent systems, ECAs
need to posses the following capabilities:

• Acquire verbal and nonverbal inputs from the human
user and the environment

• Interpret the meaning of the inputs and deliberate the
responding verbal and nonverbal behaviors

• Render those behaviors with computer graphics char-
acter animations as outputs

To realize these capabilities, various functionalities like sen-
sor data acquiring, speech recognition, gesture recognition,
natural language understanding, believe-desire-intention plan-
ning, speech synthesis, CG animation renderer and so on
are required. ECA developers then need to implement these
functionalities by their own or by utilizing available soft-
ware tools and then integrate them to work as an ECA in
certain architectures. Here, we call the modules that han-
dle each individual functionality as the Components of the
system. ECA component integration involves various issues,
and some of them are already mentioned in [4]. To achieve a
common ECA component integration framework for general
purposes, several requirements need to be fulfilled:

Modularity and reusability. This should be the heart
of any integration approach. Component reusability can be
maximized by cleanly divided functionalities of components
and clearly defined interface between each other. Simpler
functionalities handled by each component and lower inter-
dependency improve modularity.

Distributed architecture and OS/programming lan-
guage independence. Components may be developed by
various programming languages and run on various operat-
ing systems. The ability of the integration framework to
provide supports for major operating systems and program-
ing languages allows the connected components to run on
multiple machines is a necessity.

Support of various natural languages. With the
advance of transportation, the world becomes smaller and
smaller and cross-culture issues have been emerging much
more importance than before. However, due to the fact that
western countries dominate the development in the field of
computer science, the support and issues related to Asian
languages or others are often ignored. To achieve generality
of the common framework, the flexibility to handle various
languages and cultures need to be maintained.

Two-way communication among components. The
ECA components do not only ”pull” data from the others,
but some of them such as sensor data processing components
a”push” data to the others. A mechanism which supports
such two-way data passing is required.

Fusion of multi-modal inputs. In multi-modal inter-
active ECA systems, the relationship between user inputs
coming from speech channel or other sensor channels needs
to be identified correctly and is used to trigger appropriate
agent responses.

Virtual environment control. Not only the virtual
character themselves but also the virtual environment where
they are in need to be altered corresponding to the interac-
tions between the agent and the human user, e.g. scene
change or camerawork.

Real-time performance and timing control. Real-
time response of the agent to user’s inputs is one of the
basic requirements of ECA systems. The latency of each
part of the system needs to be kept as minimum while on-
time execution of actions need to be guaranteed. Therefore,
a strict temporal model is necessary.

Synchronization between prerecorded tracks and
run-time generated behaviors in outputs. Fixed length
prerecorded tracks including voice, music, or motion cap-
tured animation sequences need to be synchronized with
each other and run-time generated actions.

Synchronization between verbal and nonverbal be-
haviors in outputs. Verbal and nonverbal behaviors are
interrelated, supple each other and need to be synchronized.

Ease the efforts to adopt legacy systems. Libraries
or tools need to be provided to ease the effort to develop
wrappers for legacy systems to be connected to the frame-
work.

User interruption. Provide the flexibility that allows
smarter system to modify its current behaviors on-line in-
stead of simply stopping them and then launch the new ones.

Capability to support subtle spontaneous reactive
behaviors. The support of spontaneous and subtle reac-
tive feedback behaviors like gaze, nods or back-channel ut-
terances can improve the believability of the agent.

Consistency. All of the output modalities need to be
consistent with the agent’s internal state, for example, if
the agent is in happy mood, it is not supposed to speak in
a angry tone or has a sad facial expression.

3. THE DESIGN OF GENERIC ECA
FRAMEWORK

The Generic Embodied Conversational Agent (GECA)
Framework has three parts, the integration backbone GECA
Platform, communication libraries GECA Plugs, and a high
level protocol GECA Protocol. Figure 1 shows the diagram
of the GECA Framework’s basic concepts.

3.1 The Basic Architecture of the GECA
Framework

ECA is not a new research area, and there are many excel-
lent individual ECA systems, and various integration archi-
tectures have been proposed. However, contemporary ECA
architectures are usually designed for specific applications,
and their architectures like REA [3] typically feature fixed
processing pipelines of functional components and thus can
not be easily adapted to other applications. On the other
hand, blackboard model is a methodology widely used in
distributed and large-scale expert systems. Its basic idea
is the use of a public shared memory where all knowledge
sources read and write information. The interdependency
among the knowledge sources can be minimized, and thus it
is suitable for integrating heterogeneous knowledge sources.
Considering black board’s convenience and generality in in-
tegrating various components, we adopted it as the basic
architecture of GECA Platform.

In GECA, multiple blackboards are allowed. Components

129

API Calls

Naming
Service

Data
Acquisition

Acceleration
Sensor CAST

Wrapper
Scenario

Japanese
S.R.

MS SAPI
Wrapper

GECA Server

Data
Acquisition

Data
Glove

Data
Acquisition

Motion
Capture

English
S.R.

JSAPI
Wrapper

C# GECA Plug

Croatian
S.R.

JSAPI
Wrapper

Japanese Natural
Language Procession

CG Animation
Player

Wrapper

Animation
Database

Croatian
Voice Tracks

Eng. Jap.
TTSs

GECAP

Java GECA Plug

OpenAIR

GECA Components

Blackboard
Manager 1

Blackboard
Manager 2

Subscription
Service

Motion
Sensor

Stereo
Camera

C++ GECA Plug

Head
Tracking

Database 2Database 1GECA Platform

API Calls

Naming
Service

Data
Acquisition

Acceleration
Sensor CAST

Wrapper

CAST

Wrapper
Scenario

Japanese
S.R.

MS SAPI
Wrapper

Japanese
S.R.

MS SAPI
Wrapper

GECA Server

Data
Acquisition

Data
Glove

Data
Acquisition

Motion
Capture

Data
Acquisition

Motion
Capture

English
S.R.

JSAPI
Wrapper

English
S.R.

JSAPI
Wrapper

C# GECA Plug

Croatian
S.R.

JSAPI
Wrapper

Croatian
S.R.

JSAPI
Wrapper

Japanese Natural
Language Procession

CG Animation
Player

Wrapper

Animation
Database

Croatian
Voice Tracks

Eng. Jap.
TTSs

CG Animation
Player

Wrapper

CG Animation
Player

Wrapper

Animation
Database

Croatian
Voice Tracks

Eng. Jap.
TTSs

GECAP

Java GECA Plug

OpenAIR

GECA Components

Blackboard
Manager 1

Blackboard
Manager 2

Subscription
Service

Motion
Sensor

Stereo
Camera

C++ GECA Plug

Head
Tracking

Database 2Database 1GECA Platform

Figure 1: The conceptual diagram of GECA Framework and the configuration of a multimodal tour guide
agent. The pink square indicates the communication backbone

connecting to those blackboards share data in subscribe-
publish message passing mechanism. Every message has
a message type, when a specific message is published to a
blackboard, it is forwarded to the components which sub-
scribed the corresponding message type. Those components
then process the received message and publishes the results
as their contribution to the blackboard. To reduce the over-
head of message forwarding, direct communication between
components is allowed. Every blackboard has its own man-
ager, and there is a server that provides message subscription
and naming services for the whole system.

There are many available technologies for implementing
distributed systems, but most of them suffers from certain
drawbacks and are not appropriate in the ECA context. For
example, KQML does not provide explicit temporal control,
CORBA, Web Service and remote procedure invocation do
not support two-way data passing. Therefore, a simple and
light weight protocol, OpenAIR1 was chosen as the low-level
routing protocol for the communication among components,
the server and blackboards.

OpenAIR is a specification of XML message passing for
distributed systems in a TCP/IP network. We considered
that it is suitable for real-time interactive system because
its very simple message format and specific features for real-
time systems such as the explicit timestamps. A Java refer-
ence implementation of its library called Plug is freely pub-
lished. The second part in the GECA Framework is thus
called GECA Plug libraries. They are extended OpenAIR
Plug with GECA’s original classes and functions. Currently,
C#, C++ versions have been developed while the Java ver-
sion is modified from the reference implementation. The
purpose of the GECA Plugs is to absorb the differences
caused by operation systems and programming languages,
and to make system development easier. By utilizing GECA
Plugs, an ECA developers only need to implement a small
wrapper for an existing software tool then it can be plugged
into the framework and cooperates with the others.

The third part of the GECA Framework is the GECA
Protocol, it is a specification of available message types and
high-level XML message formats that are transferred on the
GECA Platform. The detailed introduction of this protocol

1http://www.mindmakers.org/openair/airpage.jsp

is left to section 3.2.
Comparing to previous architectures, GECA Framework

is expected to have the following advantages:

• Components developed with different programming lan-
guages and running on different OS’s can be integrated
easily

• Components which require heavy computation can be
distributed to multiple computers to improve the over-
all system performance

• The single-layer component hierarchy shortens deci-
sion making path and eases the support of reactive
behaviors

• Explicit temporal information and synchronization spec-
ifiers ensures that components are synchronized

• ECA systems with various features can be configured
easily with different component topologies

• The weak inter-dependency among the components al-
lows on-line switching and upgrading of components

• Direct component communication multiple blackboards
can lower message transmission load

3.2 GECA Protocol
Based on the low-level communication platform of GECA

Framework, GECA Protocol (GECAP) is an XML based
high-level communication protocol among the components.
In GECAP, every message has a type, for example,
”input.action.speech” represents a speech recognition re-
sult,
”output.action.speech” represents a text string to be syn-
thesized by a Text-To-Speech (TTS) engine, etc. Each mes-
sage type has a specified set of elements and attributes, for
example, ”Intensity”, ”Duration”, ”Delay”, etc. All data
is represented as plain text and transferred in OpenAIR on
the GECA platform. GECAP is a specification of message
format style and a set of core message types, the syntax is
not fixed and can be easily extended to meet the demands
of individual applications.

130

CGECAP message types can be divided into three cat-
egories: input phase, output phase, and system messages.
Input and output messages can be further categorized into
three layers, raw parameter, primitive action, and semantic
interpretation in the sense of abstractness.

GECAP Message Types in Input Phase. The task of
the components which generate input message types is to ac-
quire and to interpret human users’ inputs from multi-modal
channels. The followings are some examples of defined input
message types where ”input.action.*” types transfer prim-
itive actions and ”input.raw.*” types transfer raw parame-
ters. ”input.action.speech” for speech recognition result,
”input.action.head” for head movements such as nodding
and shaking that can be detected by an acceleration sensor,
”input.action.gaze” for gaze direction that can be approx-
imated by a head tracker, ”input.raw.hand”for hand shapes
acquired by data glove devices, ”input.raw.arm” for the an-
gles of the arm joints that can be approximated by three
motion capture sensors attached on each arm,
”input.action.gesture” for predefined hand gestures that
is recognized by motion capturing devices,
”input.action.point” for pointing gestures which can be
detected by a motion capturer or even a mouse.

The following is an example of an ”input.action.speech”
type message. This message type also utilizes the language
attribute of content slot of OpenAIR to store the recognized
natural language with values like ”English.”

<Perception Begin="1175083369171"

Duration="500" Weight="1.0">

<Hypothesis Confidence="0.9" >

<Speech>what is this</Speech>

</Hypothesis>

<Hypothesis Confidence="0.1" >

<Speech>what is these</Speech>

</Hypothesis>

</Perception>

The recognized result is stored in the Speech element.
Programs like speech recognizer or gesture recognizer usu-
ally have ambiguity in recognizing the data from sensors.
The Hypothesis element presents a list of hypotheses of
the recognition result wintin a single input event with con-
fidence ratings in values from 0 to 1. Begin attribute stores
when this input event begins with the absolute time repre-
sented in milliseconds while Duration attribute stores how
long the input event lasted. The following is an example
of an ”input.action.point” type message that represents
a position on the 2D screen where the user is pointing by
performing a pointing gesture or by using a pointing device:

<Perception Begin="1175079954578"

Duration="2000" Weight="0.5">

<Hypothesis Confidence="1.0">

<Point X="0.2" Y="0.3"/>

</Hypothesis>

</Perception>

GECAP Message Types in Output Phase. The only
actuator of software based ECAs is the character animation
player. This player plays text strings as voice with TTS and
drives the CG character to move in the virtual environment
when a command message arrives in real-time. Although

current prototype of GECA player is implemented with a
commercial software, Visage|SDK2, the design of GECA’s
output message format is not bound to Visage and should
be able to be ported to other animation systems. All parts
of the full 3D anthropomorphic character like the limbs, fin-
gers, eyes, mouth can be animated to perform arbitrary ac-
tions that are possible for a real human. The animation
player also provides the support of MS SAPI compatible
TTS engines for the character’s speech. To simplify the
problem and also because a picture looks more realistic than
a full 3D environment which lacks enough details, the vir-
tual environment for the agent’s activities is currently rep-
resented by switching 2D background images.

The following multi-modal utterance is an example of the
content of the ”output.action.multimodal”message that is
accepted by the animation player. A well implemented TTS
engine adjusts its intonation output in the unit of sentences
rather than just speak out words. In order to take advantage
of this feature, the agent’s utterances are broken into sen-
tences according to the punctuation marks. Sentences are
then enclosed with Sentence and Utterance elements before
they are sent to the player or the other components. Sen-
tences are expected to be the basic unit that will be executed
by the animation player. The ECA’s non-verbal behaviours
are described in the Action elements, and their timing in-
formation is encoded by the containing relationship with the
verbal Speech elements. TTS engines’ prosody information
specifying tags are not a part of GECAP but they are al-
lowed to be inserted into the Utterance element. GECA
component will ignore them and pass them to be processed
by the TTS. The detailed introduction of the Action element
is left to section 3.3.

<Utterance>

<Sentence><Speech>Hello.</Speech>

</Sentence>

<Sentence><Action Type="expression"

SubType="smile" Duration="2300"

Intensity="0">

<Action Type="bow" Duration="1700"

Intensity="1"

Trajectory="sinusoidal"/>

<Speech>My name is Dubravka and I

will</Speech>

<Action Type="beat" SubType="d"

Duration="600"/>

<Speech>be your tour guide agent of

Dubrovnik city.</Speech></Action>

</Sentence>

</Utterance>

Since the character’s body model and animations are pre-
sented in MPEG-4 standard, raw data parameters for the
reference Visage player are MPEG-4 Face and Body anima-
tion parameters (FBAs). Message type ”output.raw.FBAP”
is defined to carry the used parameters’ numeric value and
drive the character in real-time. Figure 2 shows an exam-
ple system where the user avatar and the computer con-
trolled agents are driven in real-time by ”input.raw.arm”
and ”output.raw.FBAP” messages.

2http://www.visagetechnologies.com

131

Wireless Magnetic Motion Capturer

User Avatar

Computer Controlled Agents

Wireless Magnetic Motion Capturer

User Avatar

Computer Controlled Agents

Figure 2: A culture difference experiencing applica-
tion with 1 user avatar and 10 computer controlled
agents driven by raw parameters to raw parameters

System Message Types. There are system controlling
message types such as ”system.status.player” or
”system.control.player” to query the status of the ECA
character (e.g. whether the character is speaking something)
or make the character to stop speaking and playing any an-
imation, etc.

3.3 GECA Scenario Mark-up Language
Considering the complexity and the fact that current tech-

nology is still impossible to drive an ECA to behave like a
human in an indistinguishable level, instead of a block of
complex deliberate process, we have defined a script lan-
guage, GECA Scenario Mark-up Language (GSML) that de-
fines the user-agent interactions. A script definable ECA is
less general than a deliberative process, but it will be much
easier to create contents and should be useful enough for
simpler ECA interface applications.

GSML is inspired by AIML3 that is a popular script lan-
guage for defining text based chatbots on the Web. An
AIML script represents an agent’s knowledge that is com-
posed by a set of Category elements. One Category con-
tains a pair of Pattern and Template that describes one of
the possible conversations between a chatbot and a human
user. When a user’s utterance comes into the interpreter, it
is matched with all defined patterns to find a corresponding
Template which describes agent’s responses to the utterance.
However, AIML can not be applied to the ECA context due
to the following reasons: it supports English only, unex-
pected template may be triggered because the same patterns
can not be distinguished in different circumstances, it can
not describe non-verbal behaviors of neither human user nor
agent, there is no way to specify objects in the virtual world,
agent behaviors need to be triggered from the human side.

GSML extends AIML’s syntax to cover more complex sit-
uations in ECA-human conversations. Extending to AIML’s
one-layer categories, GSML represents human-ECA conver-
sations as conversational states and the transitions among
them. Figure 3 shows the additional three layers of the hier-
archy of GSML categories. In GSML, one Scenario defines
an interactive scenario between the ECA and the human
user. A scenario can contain one or more Scene elements
while each Scene means a physical location in the virtual
world and has an ID specifying its settings. In current player
implementation, this ID is coupled with a background image.

3http://www.alicebot.org

In an individual, there may be one or more State elements.
Each State contains one or more Category elements. The
states are linked by Transition specifications described in
Template elements. Templates can be triggered right away
when conversational state transition occurs even without
user inputs. The Scenario-Scene-State-Category hierarchy
narrows the range of possible categories into a conversa-
tional state and prevents the problem that templates may
be triggered unexpectedly in AIML agent which practically
has only one conversational state. Besides, the Language

attribute in states allows a multi-lingual ECA to be defined
in a single GSML script.

GSML’s patterns and templates do not only present verbal
utterance of the agent but are also extended to describe non-
verbal behaviors of the agent and the human user. Action

tags that specify face or body animations can be inserted
into the utterances of the agent, the timing information is
specified by the position of the Action tags in the utterance
texts. The action tags (Speech, Point, etc) can be inserted
inside the Pattern tags then the corresponding template will
be triggered if the user does that non-verbal behavior. Fur-
ther, particular areas of the background image can be named
by Object elements and can be referred (e.g. pointed at or
gazed at) by the user during the multi-modal conversation.

By observing usual face-to-face communications between
humans, we can find non-verbal behaviors are the indispens-
able counterpart of verbal utterances. For example, the ver-
bal utterance ”What is this?” with a pointing gesture is a
very typical example. Without the pointing gesture, which
object that this ”this” is mentioning becomes ambiguous.
On the other hand, a pointing gesture can not fully convey
the user’s intention, either. Generally, the order, combina-
tion, and occurrence of multi-modal perceptions and their
relationship are difficult to be described and identified. Al-
though the conversation structure of GSML is similar to
classic transition network approaches like [5], it additionally
incorporated the features dedicated to multi-modal human-
agent interactions. As the discussion in the specification of
W3C’s multi-modal interface description language for Web
browsing, EMMA4, it is not appropriate to propose a gen-
eral algorithm for multi-modality fusion. In GSML and its
interpreter (the scenario component), we adopted a simpli-
fied description for multi-modal perception of the ECA and
a relatively simple mechanism to solve reference ambiguities.
Since EMMA is designed for similar purpose as GECAP’s
input phase and GSML, some of the element names that we
are using are inspired from some element names in EMMA,
however, what do they mean and how they are used are very
different to their counterparts in EMMA.
Set element means a non-ordered set of multiple verbal or

non-verbal perceptions and every one of them must be ful-
filled. OneOf element means at least one of the multi-modal
perceptions needs to be fulfilled. Sequence means the multi-
modal perceptions need to be performed by the human in the
specified order. The three specifiers can be further nested
with each other. Whether two multi-modal perceptions oc-
cur concurrently is judged by the period coverage of involved
perceptions according to the Begin and Duration attributes
in the message sent from the sensor data acquiring compo-
nents. The scenario component keeps a current status of
the multi-modal perceptions and triggers the corresponding

4http://www.w3.org/tr/emma

132

Scenario (InitialScene)

Scene (ID, InitialState) State (ID, Language)

Maps to a background image

Category

Transition to a scene

Transition to a state

Scenario (InitialScene)

Scene (ID, InitialState) State (ID, Language)

Maps to a background image

Category

Transition to a scene

Transition to a state

Figure 3: The diagram showing the relationship betweenScenario, Scene, State, andCategory elements in GSML

Template if any one of the available patterns defined in the
current conversational state can be exactly matched. This
matching is calculated every time when a new input mes-
sage arrives. The combination which has highest value of
the sum of the product of confidence and component weight
is chosen in the matching. The following is an example code
segment describing the interaction between the human user
and a tour guide agent at the entrance of the Dubrovnik old
town.

<Scene ID="Entrance" InitialState="Greet"

X="1250" Y="937">

<Objects><Object ID="Fountain" X="900"

Y="0" Width="350" Height="937"/>

<Object ID="Monastery" X="0" Y="0"

Width="377" Height="937"/>

</Objects>

<State ID="Greet" Language="English">

<Category><Pattern>

<Speech>hello</Speech></Pattern>

<Template>Hello, my name is

Dubrovka, and I am the guide here.

Where do you want to go at first?

<Action Type="pointing"

Duration="1000" Direction="right">

The fountain</Action>or<Action

Type="pointing" Duration="1000"

Direction="left">the monastery?

</Action></Template></Category>

<Category>

<Pattern>

<OneOf>

<Speech>fountain</Speech>

<Set><Speech>I want to go there

</Speech>

<Point Object="Fountain"/>

</Set>

</OneOf>

</Pattern>

<Template>Please follow me here.

<Transition Scene="Fountain">

</Template>

</Category>......

The fore part of this code specifies the scene with an ID,
”Entrance.” The Object elements specify two areas of the
background image, ”Fountain” and ”Monastery.” These ar-
eas are used to in the matching of the coordinates sent from
some pointing component with the Object specifiers in sec-
ond Category. According to the description of perception
specifiers, when either one of the two conditions is fulfilled,
a conversational state transition to the initial state of the
scene, ”Fountain” will be triggered. When the human user
says ”fountain”, or when the user says, ”I want to go there”
while performing a pointing gesture on the screen where the
position is recognized as an X value from 0.72 to 1.0 and a
Y value from 0 to 1.0 at the same time.

The Action elements are the specifiers of non-verbal ani-
mations of the ECA character. The timing to start to play
the specified animation is determined by the position of the
opening tag relative to the verbal utterance. In the case
when the agent does not say anything, a Delay attribute is
used to specify when the animation will be played relative
to the beginning of the template. This attribute can also be
used to play the overlapping actions which can not be di-
rectly represented by tag position and coverage relationship.
The playing of this animation will end when the agent speaks
to the closing tag of Action element or meets the time spec-
ified by the Duration attribute. Subtype specifies another
action in the same category if available. Intensity specifies
the strength of an action if it is specifiable. X, Y, and Z specify
a position in the virtual world if the action has a destination,
e.g. walking, pointing, gazing actions. Direction specifies
a direction of the action if available. Trajectory specifies
the temporal function to change parameter values in play-
ing the animation, ”Linear”, ”Sinusoidal” and ”Oscillation”
are currently available values. Sync attribute specifies the
temporal relationship between the actions in an utterance.
There are three possible values: ”WithNext”, ”BeforeNext”,
and ”PauseSpeaking”stand for do not wait for this action, to
wait for this action to end, and to pause TTS while execut-
ing this action respectively. A template is transferred as an
Utterance element in GECAP, the contents of it is broken
into text chunks and sentences as described in section 3.2.

Since there is no reasonable boundary for possible actions
that can be done by a human or an ECA character, we
are not going to specify a full set of the actions but only
defined the syntax to specify the animations and a set of

133

animations that are supposed to be most frequently used.
The set of available animations should be application de-
pendent. A special action type created is the PlayTrack

action, this action plays a background music track, voice
track, or a pre-defined animation track. It can be used to
implement an ECA system in a language which has no avail-
able TTS engines. For example, an agent speaking Croatian
can be implemented with pre-recorded human voice tracks
and synchronized lip animations. The Delay attribute can
be utilized in this case to synchronize the tracks with each
other. GSML (and output phase of GECAP) provides the
distinguishing features include word-level precisely aligned
non-verbal behaviors to speech channel and multi-language
support. However, the non-verbal actions are intentionally
kept in high-level, just a name and a set of run-time config-
uration parameters for maximum compatibility with various
animators.

4. IMPLEMENTATION AND USES
The first development of the GECA server has been im-

plemented in Java and the backboard is implemented on reg-
ular relational databases (MySQL5). New components run-
ning on multiple computers are added and connected to the
GECA server through C#, C++ or Java GECA Plugs. So
far, we have also implemented several different ECA appli-
cations, in which we have introduced standard GECA com-
ponents such as Japanese spontaneous gesture generator [7],
head tracker [8], hand shape recognizer, head pose recog-
nizer, scenario interpreter, speech recognizer and the CG
animator.

An application for experiencing cross-culture ges-
ture differences. The avatar replays the user’s hand ges-
tures such as beckoning while ten computer controlled agents
react to those gestures pretending that they are Japanese or
British. The user’s actions are captured by a magnetic mo-
tion capturing device and interpreted to low-level joint an-
gles to drive the avatar character in real-time. The computer
controlled agents are driven by individual reactive control-
ling components and a common animation catalog compo-
nent. They are driven by low-level MPEG-4 BAPs in real-
time, too. Figure 2 is a screen shot of this application.

A Dubrovnik city tour guide agent who interacts
with a human User in multiple modalities. Most
part of this system is developed as a student project dur-
ing the four-week period of an international workshop, eN-
TERFACE’066. Its improved version is currently running in
three language modes, English, Japanese and Croatian. Due
to the absence of reliable Croatian synthesis and recogni-
tion engines, Croatian speech output is achieved with prere-
corded voice files and lip animation tracks; Croatian speech
recognition is done by English speech recognizer customized
with a grammar rule set covering a limited range of Croat-
ian vocabularies. The hardware configuration and data flow
of this system is shown in Figure 4 and Figure 5 respec-
tively. In the tour guide system, the user can use natu-
ral language speaking, pointing gesture, gazing and nod-
ding/shaking of head to interact with the agent to navigate
scenes in Dubrovnik city where the whole old town is an
UNESCO world cultural heritage. This tour guide agent
shows the framework’s capability to seamlessly deal with

5http://www.mysql.com
6http://enterface.tel.fer.hr

IR Camera

Data Glove

Microphone

Acceleration Sensor

IR Reflexive Strap

Head Tracker

Magnetic Motion Capturer

IR Camera

Data Glove

Microphone

Acceleration Sensor

IR Reflexive Strap

Head Tracker

Magnetic Motion Capturer

Figure 4: The multi-modal tour guide agent. Point-
ing position can be detected by an optical motion
capturer or a magnetic motion capturer

Motion
Capture

Acceleration
Sensor

Speech
Recognition

Utterance

Head movements

Pointing positions

Scenario

CAST
(Spontaneous

Gesture Generator)

Visage (CG Player)

Animation
Category

Juman
(Morphology
Analyzer)

KNP
(Syntax
Analyzer)

English or Japanese Scripts

Japanese Scripts
Annotated
Japanese Scripts

Data
Glove

The shapes of the right hand

TTSs Voice
Tracks

Head
Tracker

Gaze directions

Croatian voice track IDs

Character CG Animator

Motion
Capture

Acceleration
Sensor

Speech
Recognition

Utterance

Head movements

Pointing positions

Scenario

CAST
(Spontaneous

Gesture Generator)

Visage (CG Player)

Animation
Category

Juman
(Morphology
Analyzer)

KNP
(Syntax
Analyzer)

English or Japanese Scripts

Japanese Scripts
Annotated
Japanese Scripts

Data
Glove

The shapes of the right hand

TTSs Voice
Tracks

Head
Tracker

Gaze directions

Croatian voice track IDs

Character CG Animator

Figure 5: The data flow and component configura-
tion of the multimodal tour guide agent. The pro-
grams, CAST, Juman and KNP communicates with
each other in their original protocols

multi-modal inputs and sufficient performance for real-time
conversations.

A quiz game kiosk about the knowledge of food
science. This is a joint project with the National Food
Research Institute (NFRI) of Japan. The expression of the
agent issuing quizzes in the kiosk and the background music
are controlled by an emotion component based on [1]. For
example, the agent may smile when the visitor pressed a
correct answer and show a bored face if there is no input
for a long period. Since this system is targeted for public
visitors of the showroom so that the user interface is limited
to a touch panel to prevent unexpected operations. This quiz
kiosk have been displayed in two open lab events of NFRI
in 2007 and was the first real world use of GECA agents. In
these two events, there were nearly 400 visitors played with
the kiosk and initiated more than 100 game sessions in total.
The kiosk was so successful in gathering visitors’ attention
that a constant setup of this kiosk in the showroom of NFRI
is being considered.

5. CONCLUSIONS AND FUTURE WORKS
This paper represented the Generic Embodied Conversa-

tional Agent (GECA) Framework that covers the informa-
tion process from the detection of the human users to the
behavior outputs of the ECA. A script language (GSML)
that specifies an ECA’s behavior is introduced. Three exam-
ple systems for preliminary evaluations are also introduced.
The ultimate goal of this project is to make the framework

134

publicly available with a reference ECA toolkit which can
be used to build ECA systems in an instant and can be
extended easily.

A joint research work called SAIBA7 has been launched
to develop common framework of ECA outputs eliminate
the redundant works of the researchers. The use of two lan-
guages, FML (Function Markup Language) describing agent
intentions and BML (Behavior Markup Language) [6][9] de-
scribing CG character animations are being specified. Their
general goal is similar to our one in output phase, but GECA
additionally concerns on the implementation and integration
problem and tries to cover the whole process of human-agent
interaction starts from human user inputs. The initiation of
BML is strong and we hope its specification can be more con-
crete and really become a common standard in near future.
We are currently considering how to propose an integration
of BML in the GECA architecture, for example, since the
output phase messages in GECA use a higher level repre-
sentation, it is possible to develop a compiler to transfer
Action tags’ positions of GECA to be presented by BML’s
synchronization points. On the other hand, the concept and
specification of FML is not clear yet, and we will watch its
progress.

To develop a thoroughly generic ECA framework is ex-
tremely difficult and perhaps is an impossible task. In this
paper, we do not stress that we have implemented a generic
ECA framework but described our approach toward this ul-
timate goal. If the integration framework must be generic,
what kind of problems will occur and how we try to solve
them, etc. Also, an overall evaluation of such a framework is
difficult and impractical, for example, how can we define an
objective benchmark on how generic it is or how much effort
that it can save comparing to an implementation without the
framework. This may be an interesting issue, but instead of
that, we would like to have a brief discussion on the pros and
the cons at this time point. The obvious benefit is reusabil-
ity, as described in section 4, standard components such as
scenario interpreter or animation player are reused across
the three very different applications. On the other hand, to
maximize generality and reusability, developers should di-
vide system features to small and simple components, but
this will cause redundant communication among the com-
ponents and may lower the system performance comparing
to strait-forward an dedicated implementations.

Besides, we found the following problems in developing
this framework. The description on the multi-modal in-
put from the user is still quite trivial and can only cap-
ture simple actions done by the human user. We would like
to strengthen this part to capture more complex conversa-
tional circumstances in the future. It was difficult to develop
general purpose components for various applications, for ex-
ample, to show subtext in the animator. Sometimes, there
was problem in timing because we can not get direct control
inside a model, for example, the TTS engine starts slowly in
first run trial. The available action set is still small and can
only be used with limited applications. Although GSML
is meant to be used by system developers, writing GSML
script may be tedious and error-prone, an authoring tool is
desirable.

The ultimate goal of ECA and AI research is to develop
a system with a high level of intelligence which can not be

7http://www.mindmakers.org/projects/SAIBA

distinguished from a real human being. We would like to
extend the framework to support the development of more
complex deliberate process in the future.

6. ACKNOWLEDGMENTS
This research is partially supported by the Ministry of Ed-

ucation, Science, Sports and Culture of Japan, Grant-in-Aid
for Scientific Research (S), 19100001, 2007, ”Studies on Con-
struction and Utilization of a Common Platform for Embod-
ied Conversational Agent Research” and the Ministry of Sci-
ence Education and Sports of the Republic of Croatia, grant
nr. 036-0362027-2028 ”Embodied Conversational Agents for
Services in Networked and Mobile Environments.”

7. REFERENCES
[1] C. Becker, S. Kopp, and I. Wachsmuth. Simulating the

emotion dynamics of a multimodal conversational
agent. In Proceedings on Tutorial and Research
Workshop on Affective Dialogue Systems (ADS-04),
2004.

[2] J. Blom and A. Monk. One-to-one e-commerce: who’s
the one? In the Proceedings of CHI 2001, pages
341–342, 2001.

[3] J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell,
K. Chang, H. Vilhjlmsson, and H. Yan. Embodiment in
conversational interfaces: Rea. In The Proceedings of
CHI99, 1999.

[4] J. Gratch, J. Rickel, E. Andre, J. Cassell, E. Petajan,
and N. Badler. Creating interactive virtual humans:
Some assembly required. IEEE Intelligent Systems,
17(4):54–63, 2002.

[5] M. Klesen, M. Kipp, P. Gebhard, and T. Rist. Staging
exhibitions: methods and tools for modelling narrative
structure to produce interactive performances with
virtual actors. Virtual Reality, 7(1):17–29, December
2003.

[6] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall,
C. Pelachaud, H. Pirker, K. R. Thorisson, and
H. Vilhjalmsson. Towards a common framework for
multimodal generation: The behavior markup
language. In The Proceedings of the 6th International
Conference in Itelligent Virtual Agents (IVA2006),
pages 205–217, 2006.

[7] Y. Nakano, M. Okamoto, D. Kawahara, Q. Li, and
T. Nishida. Converting text into agent animations:
Assigning gestures to text. In Proceedings of The
Human Language Technology Conference
(HLT-NAACL04), 2004.

[8] K. Oka and Y. Sato. Real-time modeling of a face
deformation for 3d head pose estimation. In Proc.
IEEE International Workshop on Analysis and
Modeling of Faces and Gestures (AMFG2005), 2005.

[9] H. Vilhjálmsson, N. Cantelmo, J. Cassell, N. E. Chafai,
M. Kipp, S. Kopp, M. Mancini, S. Marsella, A. N.
Marshall, C. Pelachaud, Z. Ruttkay, K. R. Thórisson,
H. van Welbergen, and R. J. van der Werf. The
behavior markup language: Recent developments and
challenges. In Proceedings of the 7th International
Conference on Intelligent Virtual Agents (IVA2007),
volume 4722 of LNAI, pages 99–111. Springer, 2007.

135

