
A new approach to cooperative pathfinding

(Short Paper)

Renee Jansen
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

maaike@cs.ualberta.ca

Nathan Sturtevant
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

nathanst@cs.ualberta.ca

ABSTRACT
In the multi-agent pathfinding problem, groups of agents need to
plan paths between their respective start and goal locations in a
given environment, usually a two-dimensional map. Existing ap-
proaches to this problem include using static or dynamic informa-
tion to help coordination. However, the resulting behaviour is not
always desirable, in that too much information is hand-coded into
the problem, agents take paths which look unintelligent, orbecause
the agents collide and must re-plan frequently. We present adis-
tributed approach in which agents share information about the di-
rection in which they traveled when passing through each location.
This information is then used to encourage agents passing through
the same location to travel in the same direction as previousagents.
In addition to this new approach, we present performance metrics
for multi-agent path planning as well as experimental results for the
new approach. These results indicate that the number of collisions
between agents is reduced and that the visual fidelity is improved.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms

Keywords
Cooperative path planning, Emergent behaviour

1. INTRODUCTION AND BACKGROUND
Consider a group of agents in a video game which try to tra-

verse a game map. Many of them may be involved in repetitive
tasks, such as patrolling between locations, or ferrying gold back
and forth from a gold mine. Other agents may be traversing themap
as well. Ideally these agents are able to coordinate their movements
to avoid collisions. This is an example of cooperative pathfinding.

In the single-agent pathfinding problem, an agent is given a start
and goal location and must find a path between them. The world
is often assumed to be static, so that plans are guaranteed success.
Most traditional algorithms, like A* and IDA*, assume this type of
environment. In some cases it may be possible to use these assump-

Cite as: A new approach to cooperative pathfinding (Short Paper), Renee
Jansen and Nathan Sturtevant,Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,
Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp.1401-
1404..
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tions in a world with multiple agents. If the world is sufficiently
large, the costs of making this assumption will not be large.

When the world is sufficiently constrained, cooperative pathfind-
ing is needed. In this case, multiple agents need to find pathsbe-
tween their respective start and goal locations. This problem is
significantly harder, because the agents need to plan aroundboth
static and dynamic obstacles. It is not feasible to compute an op-
timal solution to the cooperative pathfinding problem. If there are
u agents and each one can makeb moves, the joint action space at
each step is alreadyO(bu).

There are three common approaches to this problem. The easiest
approach is to consider other agents as static obstacles andto use
individual solutions to the single-agent problem as a solution to the
multi-agent problem. A second approach is to do cooperativeplan-
ning over a limited window of search, and use a non-cooperative
solution beyond that window. A third approach is to use flocking
rules to modify the behaviour of agents to be more cooperative. We
will describe these approaches more in the next section.

Cooperative and flocking approaches are promising, although
they can be computationally expensive. They require that agents
are able to share information about their location or movement di-
rection. Considering other agents as static obstacles, on the other
hand, does not seem promising, as agents will almost certainly
move by the time a collision might occur. However, this approach
is desirable in that each agent can plan and act individually.

One idea which motivates this paper is agent-centered search [4].
This is a paradigm where agents do not have access to global in-
formation about the world, but just some local window or radius
around each agent. Constraining knowledge of the environment to
a local window leads to the main idea of this research, although
the ideas are not limited to this paradigm. Assume that the map is
known, but the locations of all other agents are not known. Ifan
agent’s view of the world is overly restricted, most cooperative ap-
proaches break down. For example, cooperative planning will not
work well if agents can only cooperate with adjacent agents.

The key insight for this paper is that agents should attempt to
share dynamic information about the environment, as the static ap-
proach does not work well. Knowing that a tile is blocked is not
interesting, because in a dynamic world this changes too quickly.
We propose a new data structure, adirection map, which stores the
direction an agent last moved at each location. This not onlycap-
tures some of the dynamics of the world but can also be used during
planning and results in emergent cooperative behaviour without ex-
plicit communication of plans between agents.

1.1 Related Work
A number of techniques have been used for cooperative behaviour.

The first set of approaches is based on the idea that cooperative
planning is not just planning in two dimensions, but planning in

2211 11 11ti me yx
Figure 1: An example reservation table.

three dimensions, through both space and time. After agentsplan,
they mark a space-time data structure with their future locations.
We illustrate this in Figure 1. Agent 1 is planning to move along
thex-axis to the location where Agent 2 currently stands. Depend-
ing on the order of planning, Agent 2 either has already planned to
move, or moves to get out of the way of Agent 1.

Dresner and Stone use this idea for a traffic management appli-
cation [3]. In their domain, they are guiding traffic througha 4-way
intersection. They show that this approach allows vehiclesto move
through the intersection faster than with stop signs or traffic lights,
while collisions are avoided. This approach works well herebe-
cause traffic is already organized into lanes, and thereforethere is
only a small area where cooperative planning is needed.

The same ideas have been adapted in the Windowed Hierarchical
Cooperative A* (WHCA*) [6] and Cooperative Partial-Refinement
A* (CPRA*) [7] algorithms. In these approaches agents are not
restricted to traffic lanes, but freely travel around the environment.
The drawback to this approach is that agents’ cooperation iswin-
dowed, which can lead to a horizon effect, where agents plan just
enough to push congestion past the windowed horizon. In thiscase,
agents behaviour can appear to be quite bizarre.

A second common approach to cooperative behaviour is flocking
[5]. In a flocking simulation, agents have three objectives.First, to
avoid collisions with nearby members of the flock, second to match
their velocity with that of nearby members of the flocks, and third,
to stay close to their flock. The behaviour of this approach, when
properly tuned, can be quite impressive. Similarly to reservation
methods, a reasonably sized window of information about other
agents must be maintained for this approach to work.

Cooperative behaviour can also be obtained by using ant-inspired
approaches. An example is Ant System, which was developed by
Dorigo et al.[2]. This approach uses virtual feromones to do opti-
mization, for example in the traveling salesman problem. Similar
to our approach, agents leave a piece of information behind when
they pass through a state in order to do path planning. However,
the goal of the approaches is different. In Ant System, the goal
is to find an optimal path between a single start and goal location,
whereas we consider the case where the agents have their own start
and goal positions.

2. DIRECTION MAPS
The novel idea of this paper is adirection map(DM) which

stores information about the direction that agents have traveled in
each portion of a map. Agents then use this information during
planning; moves which run counter to thedirection mapincur ad-
ditional penalties so that agents are encouraged to move more uni-
formly across the environment. If the agents are able to formsome-
thing akin to lanes (which were manually constructed for traffic
management in [3]), the cohesiveness of their behaviour will in-
crease.

UpdateDirectionVector(α, currentLocation, moveDirection)
1 v1← GetV ector(currentLocation)
2 v2← GetDirectionV ector(moveDirection)
3 directioncurrentLocation←

α · v1 + (1− α) · v2

Figure 2: Pseudocode for updating the direction of a location

ComputeEdgeCost(weight, eab)

1 vm ← GetDirectionV ector(eab)
2 va ← GetV ector(a)
3 vb ← GetV ector(b)

4 weighta ←
1−(vm·va)

2

5 weightb ←
1−(vm·vb)

2
6 returncost(eab) + weight · (1

2
weighta + 1

2
weightb)

Figure 3: Pseudocode for computing weighted edge costs

First, consider how this can be done from a global perspective.
Associated with each location in the world is adirection vector
(DV). The first time a location is visited by an agent, the direction
from which the agent moved into the location is stored as the DV
for that location. Then, each successive time an agent enters or
exits the location, the DV is updated to be a weighted averageof
the previous DV and the DV formed by the angle from which the
agent moving through the location. After each update, the DVis
normalized. This is demonstrated in Figure 2. A learning rate α is
used to determine how fast the DV changes as agents traverse the
environment.

These stored directions are then used to guide the agents during
planning. The cost of traversing an edgee between locationsa
andb is the cost of the edge plus some function of the DVs for the
locations that are being entered and left. This function cantake
many different forms. Intuitively there should be some penalty if
we are leaving locationa in a direction which is different from the
DV, and similarly when entering locationb. A simple approach,
demonstrated in Figure 3, is to compute the vector an agent will
be traveling betweena andb, and then to take the dot-products of
that vector with the DVs for botha andb. We normalize each dot-
product to be between 0 and 1, where a value of 0 means the agent
is following the direction that is stored in the node, and 1 means the
agent is moving in the opposite direction. We take the average of
the two normalized dot-products and multiply it by a weight which
determines the actual cost of going in the ‘wrong’ direction. This
weight is varied in our experimental results.

An example is given in Figure 4. Imagine that one agent, indi-
cated byA1, has previously moved from location C1 to location
C5. The arrows in Figure 4(a) indicate the directions for each
location that were generated by this. Now, consider agentA2,
who wants to move from its start position D3 to its goal location
B3. It plans the route D3 - C3 - B3, so its first move is ‘up’.
This move changes the DVs stored in both D3 and in C3. Since
no DV was stored in D3 yet, the DV is set to be the same as
the direction in which the agent left, which is ‘up’, represented
by the vector[0, 1]T . For C3, the DV becomes a weighted aver-
age of the previous DV,[1, 0]T , and the movement vector,[0, 1]T .
For this example, we assume that the two vectors are weighted
evenly,i.e.α = 0.5, which gives us0.5 · [1, 0]T + 0.5 · [0, 1]T =
[0.5, 0]T + [0, 0.5]T = [0.5, 0.5]T . The last step before the vector
is stored is to normalize the DV, which gives[

√
2/2,

√
2/2]T . This

is the DV that is shown in location C3 in Figure 4(b).
The last step taken by agent A2 is from C3 to B3. The ‘up’-

A

D

E

B

C

1 42 3 5

S1

S2
A2

G2

G1

A1

(a) Step 1

A

D

E

B

C

1 42 3 5

A2

G2

S1
A1

S2

G1

(b) Step 2

A

D

E

B

C

1 42 3 5

A1

G1

A2

S1

S2

G2

(c) Step 3

Figure 4: Example

direction the agent moves in again corresponds to the vector[0, 1]T .
The DV currently stored in C3 is[

√
2/2,

√
2/2]T , and the two vec-

tors are combined as above to give0.5 · [
√

2/2,
√

2/2]T + 0.5 ·
[0, 1]T = [

√
2/4,

√
2/4]T + [0, 1/2]T = [

√
2/4, (

√
2 + 2)/4]T .

The DV is again normalized and stored.
As currently described, agents share a global direction mapDM),

which is counter to the notion of agent-centered search. However,
it is simple to update this idea to be agent-centric. To do this, each
agent maintains its own DM, according to what has been expe-
rienced when moving around the world. At each step, an agent
updates its DM within a local radius. The observed DM is used
for future planning, although it may become out-of-date after time
passes. We assume that agents can store both the world map anda
copy of their own DM.

3. PERFORMANCE METRICS
One difficulty with measuring the performance of a cooperative

pathfinding approach is designing suitable metrics for the task. Al-
though approaches which provide high visual fidelity are preferred,
it is difficult to quantify this from a human perspective. We consid-
ered several different metrics, including the number of collisions
during simulation, the number of turns made by each agent, the
distance traveled, and the time taken to complete a task. Of these
metrics, the one which could best distinguish different approaches
was the number of collisions during simulation. The distance trav-
eled and the time taken was similar for all approaches we used.

A new metric which arises from our approach is the coherence
of the DM during simulation. For each location and directionvec-
tor in the DM, we can measure the dot product of the DV with the
DV at location at which an agent would arrive if it traveled inthe
direction of the DV. In simple terms, this measures whether adja-
cent vectors in the location map point in the same direction,which
is an indication of how coordinated the movement of the agents is.
This, too, proved to be a useful metric into the performance of the
cooperative pathfinding.

4. EXPERIMENTAL RESULTS
In this section we evaluate the performance of DMs. All ex-

periments were performed in the Hierarchical Open Graph (HOG)
testbed, which is publicly available [1]. We used a number ofdif-
ferent maps for our experiments, two of which are shown in figure
5. The map shown in Figure 5(a) is a 32 x 32 grid, and the map in
figure 5(b) is a 64 x 64 grid. The experiments consisted of a number
of agents which patrol back and forth between two locations (cho-
sen at random from the dark areas) on the map, with the number
of patrols predefined. Each agent is assigned one patrol location in
the left-hand side, and one on the right-hand side of the map.

We present a subset of our experimental results, although exper-
iments with different parameters did not differ significantly from
what we present here. For all experiments, agents must complete

(a) (b)

Figure 5: Examples of maps. Dark areas indicate possible start
and goal locations for the agents.

(a) Weighted environment (b) Non-weighted environ-
ment

Figure 6: The arrows generated in the weighted and non-
weighted environments

10 patrol loops between their start and goal locations, and the α
parameter from Figure 2 is set to 0.8. The weight parameter from
Figure 3 was either set to 5 or 10. Agents are able to see other
agents within a small radius (4-5 steps), and A* is used for all ex-
periments. We compare the agents using DMs to agents which just
use static information about other agents during planning.

Figure 6 shows two DMs. Figure 6(a) is from agents that use
weights from the DM to modify their search and demonstrates that
the agents form clear lanes of travel. Figure 6(b) is from agents
that update the DM, but do not use weights from the DM to modify
their search. This DM shows more chaotic movement. Cooperative
algorithms like WHCA* will not improve this behaviour, as the
goal is to avoid bumping into other agents, not to move in a visually
cohesive manner.

Our first experiment measures DM coherence. We measured the
average coherence of the direction map during 50 different scenar-
ios for agents that used the DM during search and those that did not.
Agents could see other agents within radius 5, and the cost oftrav-
eling against the direction map was given weight 5. For agents not
using the direction map for planning, we still updated the direction
map to measure how they traveled across the environment.

In both cases, the DM coherence is high at the beginning, be-
cause a DM is fully coherent when it is empty. After an initialsta-
bilization phase, the agents using the DM formed gradually more
coherent paths. Agents which did not use the DM had much less
coherence, although the coherence of their travel increases as the
scenario draws to a close. This is because some agents finish their
travel earlier than others, so the remaining agents are ableto form
more coherent paths.

Next we compare the number of failed moves between agents.
Figure 8 shows the results, averaged over 50 trials. The weight
on the cost of traveling against the DM was set to 10. This figure

0 200 400 600 800 1000 1200
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Simulation time

A
ng

le
 c

oo
rd

in
at

io
n

Weighted
Non−weighted

Figure 7: Angle coordination

2 3 4 5 6 7 8 9 10
0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9
3

Lookahead radius

F
ai

le
d

m
ov

es
 p

er
 lo

op
 p

er
 a

ge
nt

Weighted

Non−weighted

Figure 8: Failed moves per loop, per agent, for varying looka-
head radius.

shows that the number of failed moves per agent per patrol loop
is significantly larger for agents which do not use the DM thanfor
those that do. Agents using the DM naturally avoid agents moving
in the opposite direction.

Note that each failed move requires a re-planning step. Depend-
ing on the algorithm used, this re-planning can be expensive. But,
it is also more expensive to plan using the weights from the direc-
tion map. Our experimental results showed that these costs offset
each other, so both approaches expanded roughly the same number
of nodes. We are investigating ways to reduce the nodes expanded
when planning with the DM.

Finally, we compare the performance of agents that us a global
DM to agent-centric DMs, maintained by each agent. We again
report the average results over 50 scenarios. While agents could
see other agents within a radius of 5, they only updated theirlocal
direction map with a radius of two.

Figure 4 compares the number of failed moves for the agent-
centric DM case to the case with a global DM as well as the case
with no DM. The figure shows that the local view increases the
number of failed moves, which is to be expected because the agents’
information about the world is incomplete. Although the number
of failed moves with an agent-centric DM is higher than in thecase
with a global DM, it is better than using no DM.

5. CONCLUSIONS AND FUTURE WORK
This paper presents the idea of direction maps, which results in

5 10 20 40
1

2

3

4

5

6

7

Weight

F
ai

le
d

m
ov

es
 p

er
 lo

op
 p

er
 a

ge
nt

Unweighted

Local weight map

Global weight map, weighted

Figure 9: Failed moves per loop, per agent, for no weight maps,
global weight maps, and local weight maps.

emergent cooperative behaviour without agents having to explicitly
communicate their plans. As this is a preliminary study, there are
many directions in which this research can be taken.

Direction maps work particularly well in an agent-centric envi-
ronment, when agents have a very limited horizon of communi-
cation, as other approaches degenerate in this model. Whileit is
clear that algorithms like WHCA* will degrade when the coop-
eration window is too small, we need to run larger tests to show
this effect in practice. Another important question is whattypes of
environments are best suited to each of the existing approaches for
cooperative behaviour. We are also interested in understanding how
direction maps might aid performance ina priori unknown worlds.

Finally, there are a number of enhancements and experiments
which could be added to direction maps. For instance, the DM
approach will fail when an agent is blocking a doorway and an-
other agent needs to get through this doorway to get to its goal.
This could possibly be solved by using direction maps along with
WHCA*, since this algorithm allows for an agent to move out of
another agent’s way. There are a variety of different updaterules
that could be used as agents move through the environment, includ-
ing a time decay on weights and update rules applied over a broader
radius. This work is just a first step in exploring the possible uses
of direction maps for inducing cooperative behaviour.

6. REFERENCES
[1] http://www.cs.ualberta.ca/ nathanst/hog.html.
[2] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System:

Optimization by a colony of cooperating agents.IEEE
Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics, 26(1):29–41, 1996.

[3] K. Dresner and P. Stone. Multiagent traffic management: A
reservation-based intersection control mechanism. InThe
Third International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 530–537, July 2004.

[4] S. Koenig. Agent-centered search.Artificial Intelligence
Magazine, 22(4):109–131, 2001.

[5] C. W. Reynolds. Flocks, herds, and schools: A distributed
behavioral model.Computer Graphics, 21(4):25–34, 1987.

[6] D. Silver. Cooperative pathfinding. InAIIDE, pages 117–122,
2005.

[7] N. Sturtevant and M. Buro. Improving collaborative
pathfinding using map abstraction. InAIIDE, pages 80–85,
2006.

