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ABSTRACT

Mechanism design (MD) has recently become a very popular
approach in the design of distributed systems of autonomous
agents. A key assumption required for the application of MD
is that agents behave rationally in the mechanism or game,
since this provides the predictability of agent behavior re-
quired for optimal design of the mechanism. In many cases,
however, we are confronted with the intractability both of
establishing rational equilibrium behavior, as well as of de-
signing optimal mechanisms even if rational agent behavior
can be assumed.

In this paper, we study both sides of the problem simul-
taneously by designing and analyzing a ‘meta-game’ involv-
ing both the designer of the mechanism (game, multi-agent
system) and the agents interacting in the system. We use
coupled replicator dynamics to investigate equilibrium out-
comes in this game. In addition, we present an algorithm
for determining the expected payoffs required for our anal-
ysis, thus sidestepping the need for extensive simulations
as in previous work. Our results show the validity of the
algorithm, some interesting conclusions about multi-period
auction design, and the general feasibility of our approach.
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1. INTRODUCTION

Mechanism Design has recently grown to become a very
popular approach in the design of distributed systems of
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autonomous agents. Also sometimes called ‘inverse game
theory’ [10], MD is concerned with designing the games or
systems in which agents interact, and to do this in such a
way that rational agent behavior leads to certain desirable
properties for the system as a whole.

This undertaking depends crucially on the standard game
theoretic assumption of agent rationality, since such ratio-
nality provides the predictability of agents’ behavior required
for optimizing the mechanism’s design. In many practi-
cal circumstances, however, agents don’t behave rationally.
They may lack necessary information about the game or
about other agents’ beliefs, or the problem of optimizing
their behavior may be too hard. Typically, therefore, the
mechanism designer will want to implement the mechanism
in dominant strategies, giving the agents a strategy which is
optimal irrespective of the other agents’ strategic choices.
Making the agents’ desired behavior dominant, however,
may be very costly indeed.

An alternative is to implement a mechanism in Nash equi-
libria, but this requires the agents to find Nash equilibrium
behavior in the game set up by the mechanism designer.
Unfortunately, in general, not only finding Nash equilibria
(in games of 2 or more players) [2], but also designing a
mechanism implemented in Nash equilibria is computation-
ally infeasible [4].

Because of these negative results, many have resorted to
heuristic approaches to these two problems. For example,
evolutionary methods are quite popular, for evolving both
games as well as strategies, or even both [3| [14]. Here, we
propose studying the interaction between the mechanism de-
signer and the game participants as a higher level, meta-
game. The designer chooses among alternative mechanism
designs, while the agents choose among alternative strate-
gies. We solve this game ‘heuristically’ using evolutionary
game theory techniques, specifically, the replicator dynamics
|6]. To illustrate, we adopt the multi-period auction scenario
developed by Pardoe and Stone (henceforth PS) [11].

2. PARDOE AND STONE’S SCENARIO

Pardoe and Stone [11] studied a setting in which a seller
wants to sell a large number of identical goods, and chooses
to do so by repeatedly auctioning off batches of 60 items in a
sequence of uniform-price sealed-bid auctions. In each auc-
tion (of 60 goods), all winning bidders pay the price of the
highest losing bid. Bidders are not assumed to bid strictly
rationally, but to probabilistically choose one of a limited
set of ‘heuristic’ bidding strategies. Given such bidders, the



seller in turn, is unsure whether it is most profitable to auc-
tion off all 60 items at once, or to distribute them evenly
over 2,3, or 4 ‘periods,’ thereby revealing the winning price
in between periods, and allowing the remaining bidders to
update their bids.

There are 120 bidders for each auction, and each receives a
‘signal,” indicating the value of each of the (identical) goods,
drawn uniformly at random from [0,1]. Each bidder may
use any one of 5 different heuristic bidding strategies, as
considered by PS:

equilibrium (EQ) (see [7| sec. 15.2]) This strategy bids
the bidder’s valuation (signal) times the fraction

numberBidders — numberltems
numberBidders — itemsSold

where itemsSold is the number of items sold up to and
including the current period.

overestimate (OE) This strategy bids the same fraction
as EQ, but overestimates numberBidders by 40.

underestimate (UE) This strategy similarly bids like EQ,
but underestimates numberBidders by 40.

dropout (DO) These bidders use EQ, but leave the auc-
tion after each period with a probability of 0.15.

affiliated values (AV) These bidders bid  of their sig-
nal in period 1, and thereafter value the item at the
previous period’s winning price, using EQ for bidding.

In what they call Adaptive Mechanism Design [12], PS
study whether the seller can learn to adaptively optimize
her auction’s design (choice of number of periods), in the
face of an unknown bidder population. They equip the seller
with an e-greedy reinforcement learning (RL) algorithm [17],
and find that the seller can indeed approximate optimal rev-
enue with a static bidding strategy distribution. Even in
the case of a dynamically changing distribution (following a
random walk), the average revenue obtained by the adap-
tive approach is higher than the revenue from sticking to a
particular fixed number of periods.

3. EVOLUTIONARY DYNAMICS

We study this game in more detail, as a ‘meta game’ in
which the seller chooses among alternative mechanism de-
signs, while the agents choose among alternative strategies.
We approximate the seller’s stochastic RL algorithm used
by PS, by a deterministic evolutionary process, the replica-
tor dynamics (RD) [6], which turns out to be equivalent to
RL under certain conditions [1, 15| |16, [18]. Also, instead of
following a random walk, we assume new bidders to adopt
heuristic strategies with probabilities proportional to their
success in earlier auctions. This also leads to an RD, giving
rise to connected replicator equations |8} [15] [16]. Our contri-
bution lies not exactly in the knowledge this yields about de-
signing multi-period auctions given the set of strategies used
by Pardoe and Stone (also see our conclusions), but rather
in the perspective on and analysis of designing mechanisms
as a higher level game involving the mechanism designer and
the agents participating in the game.

Various previous studies have investigated buyer-side evo-
lution using RD, mainly in the context of the Continuous
Double Auction (CDA) [13] |19]. This typically follows the
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Figure 1: Our expected payoffs algorithm.

approach proposed by Walsh et al. [20], who suggest that
in the case of heuristic strategies, (evolutionary) game theo-
retic analysis can proceed on the basis of a ‘heuristic payoff
matrix’ for an N-person game. The entries of this matrix
specify the payoffs to anyone employing a particular strat-
egy when certain numbers of other players employ the other
strategies. Assuming such symmetry reduces the size of the
payoff matrix dramatically, but huge amounts of simulated
games are typically still necessary to estimate all entries, and
those are then valid only for the given numbers of players.

3.1 Expected Payoffs

We now present an efficient algorithm to determine (1) ex-
pected utilities for bidders using different strategies and (2)
expected revenues for the seller choosing different numbers
of periods, thus sidestepping the need for extensive com-
puter simulations as in previous work [21]. Our algoritm
is based on proportions of bidders using different strategies,
which means we can handle arbitrary numbers of bidders.
The method proposed by Walsh et al. [20] also works with
probabilities of heuristic strategies being adopted, but their
heuristic payoff matrix is given for specific number of bidders
using each strategy, and quickly becomes too large, having
(Atf*l) entries for A agents and S strategies.

The operation of the algorithm is illustrated in Figure []
for two periods and an initially uniform distribution over
the bidding strategies. The width of each graph is 100% (of
the remaining bidders), with the width of each bar indicat-
ing the proportion of each strategy in the population: for
example, with a uniform distribution in the first period (left
figure), each bar is equally wide. Vertically, each bar repre-
sents the range of the uniformly distributed bids placed by
the bidders using each of the strategies. This range is given
by the fractions in Sec. [2| applied to the range of valuations
(signals). For example, in period 1, bidders using the strate-
gies EQ and DO bid (120 — 60)/(120 — 30) = 60/90 = 2/3
times their valuation (uniform in [0, 1]), leading to uniformly
distributed bids in [0, 2]. Similarly, bidders using the AV
strategy generate bids uniformly distributed in [0, .25].

In the first of the 2 periods in this example, the 30 high-
est bidders win an item, and pay the 31st highest bidding
agent’s price. As percentages of the remaining number of
bidders (120 in the first period), the lowest 75% of the bid
densities determines who lose, while the lowest 74.16% de-
termines the winning price. We draw horizontal lines cutting
through the total (shaded) area covered by the bid ranges,
while leaving the required percentages below them. For the
first period, this yields a winning price of 0.398, and an ex-



Table 1: Example heuristic payoff table.
number  seller average utility per strategy
periods revenue EQ OE UE DO AV

1 21.875 0.202 0.202 0.202 0.202 0.0
2 23.897  0.181 0.181 0.181 0.178 0.0
3 24.348 0.174 0.166 0.190 0.162 0.0
4 24.130 0.176 0.163 0.197 0.157 0.0

pected revenue of 30 - 0.398 = 11.94.

After each period, we update the range of valuations re-
maining per strategy, after winning bidders (the ones with
the highest valuations) have been removed. We also up-
date the remaining proportions of the DO (—15%) as well
as the other strategies. For example, none of the UE bidders
are expected to have won in the first period, so 20% of the
original population, i.e. approximately 20%/75% = 26.67%
of the second period population remains (actually 27.33%
because of the dropout bidders), their valuations still dis-
tributed uniformly in [0, 1]. On the other hand, the highest
valuing (.667 — .407)/.667 = 39% of the EQ bidders are ex-
pected to have won, leaving [0 : .61] as the remaining range
of valuations. In the second period (on the right), the algo-
rithm works the same, so for example, the UE bidders now
bid ((120 — 40) — 60)/((120 — 40) — 60) = 1 times their val-
uation, yielding uniformly distributed (valuations and) bids
in the range [0,1]. Bidders using the AV strategy all have
exactly the same valuation of 0.398—the previous period’s
winning price—and therefore also the same bid. The hori-
zontal line (not a rectangle!) in the AV column thus com-
pletely captures its remaining proportion (also 27.33%), and
in this case it is also the cutoff for both the losing bidders
and the winning price, again giving an expected revenue of
11.94, yielding a total of 23.88 for 2 periods.

Expected revenues for all numbers of periods can thus ef-
ficiently be calculated for any distribution of bidding strate-
gies. The corresponding expected utility for each bidding
strategy can similarly be determined by subtracting the win-
ning price from the mean of the range of winning bidders’
valuations and renormalizing. Overall, we obtain the pay-
off matrix in Table [I| for a uniform distribution of bidding
strategies. We immediately notice that the AV strategy gen-
erates no utility, and this happens in most if not all distri-
butions. Also, the various strategies only generate different
utilities for higher numbers of periods.

3.2 Replicator Dynamics

The RD are a popular and intuitive way of modeling de-
terministic evolutionary dynamics in games [6], highlight-
ing the role of selection rather than mutation. With RD,
the state of a population is represented as an n-dimensional
vector = (z1,...,Zn) of relative frequencies z;.

In each of a sequence of generations, the state of the pop-
ulation is evolved using the replicator equation:

dl‘i
dt

where e; is pure (heuristic) strategy i, u(e;,x) is the ex-
pected payoff of strategy i when the population is in state
z, and u(z, x) is the expected payoff to an individual drawn
at random from the population: u(z,z) = >_7_ | zsu(es, ).
Applications of the replicator dynamics have often focused
on settings involving 3 pure strategies, probably because this

= (u(ei, ) — u(z, x))x;,
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Figure 2: Coupled replicator dynamics.
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Figure 3: Vectors after RD.

enables one to visualize the dynamics’ direction fields on the
2-simplex (a triangle) graphically in 2 dimensions. Popular
candidate games are Rock-Paper-Scissors (RPS) [6,[16], and
the continuous double auction (CDA) [13| [19} |20], with 3
strategies selected from a set of published high-level heuris-
tic strategies (e.g., ZIP, GD, Kaplan, Truth-Telling, RE, or
PvT). Having borrowed the scenario from PS, however, we
now have a meta game with 5 strategies for the bidders and
4 for the seller, which we analyze using coupled replicator
equations.

4. EXPERIMENTS

We performed experiments in which the bidding strategy
distribution is evolved using RD based on the expected aver-
age utility generated by each bidding strategy, weighted by
the seller’s probabilities of choosing each number of periods.
At the same time, another, connected replicator equation
evolves a probability distribution over the range of choices
for the number of periods of the auction, based on differ-
ent choices’ expected revenues (as in Table . The seller’s
initial probability distribution is always uniform.

Figure shows an example where the initial bidding strat-
egy distribution is drawn from the 4-simplex uniformly at
random, see [5]: draw 5 samples y; ~ U|0, 1], set y; «— —Iny;
and renormalize. We ran experiments using 10,000 such
randomly generated strategy distributions. In Figure [3} we
show the period- and strategy-distribution vectors resulting
after 1,000 generations of replication in the first 100 sam-
ples. Each of the 100 samples shows 4 (5) values in the graph
on the left (right), one for each choice, with the values for
each sample adding to 1. The tendency for the number of
periods (left) is clear: 1 period results as the most potent
value, defeating higher values in most evolutionary circum-
stances. As we have seen (cf. Table [I), this often leaves
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Figure 4: Vectors after RD.

little difference between the first 4 bidding strategies’ aver-
age utilities. This means the bidding strategy-RD has trou-
ble differentiating among those strategies (right), although
the AV strategy is always eradicated quickly, and the EQ
strategy is most often the best.

In Figure [4| (left) we plot the number of samples in which
each of the numbers of periods maximizes revenue—before
and after RD. Choosing 1 or 2 periods generates the highest
performance in 82% of all randomly generated distributions
(before RD). After RD, choosing 1 period is optimal vir-
tually always: 2 (4) periods is optimal in only 19 (21) out
of 10,000 samples. The graph on the right shows the aver-
age strategy distributions occuring in those cases, showing a
high prominence of the EQ bidding strategy, although when
1 period is optimal, the high standard deviation (errorbar)
suggests maybe we’re averaging over several qualitatively
distinct attractors. Further research is in order here.

S. CONCLUSIONS AND FUTURE WORK

Notwithstanding the obvious generality of our approach,
the usefulness in the PS scenario is limited by our work-
ing with the original set of bidding strategies, which have
their problems, as described above. Of course, the efforts
of PS were not focused on the bidder side of the game,
but rather on the seller’s adaptive design, and their method
clearly works for the selected set of bidding strategies. On
the other hand, our method shows one can go further, and
even without costly learning.

The choice of 3 heuristic strategies in much previous work
not only provides an aesthetically pleasing way of present-
ing results (by plotting the dynamics’ direction fields in the
2-simplex, and shading the simplex’ interior with the mag-
nitude of the #;’s), but this also gives one a convenient way
of finding starting points for the search for Nash equilib-
ria in these games (by the Folk theorem of Evolutionary
Game Theory, see [6]). Working in the 3- and 4-simplices,
we have less insight in where the Nash equilibria might be
located. Still, in future work, we would like to investigate
this further—though probably in a game involving a dif-
ferent set of more ‘interesting’ bidding strategies than the
current ones we borrowed from PS—for example by using
the amoeba algorithm (see [20]) for finding equilibria. The
multi-period auction set up by PS is not so widely stud-
ied in the literature. If auctions have multiple rounds, then
these usually serve to allow bidders to update their (stand-
ing) bids based on newly available information, for example
in iterative combinatorial auctions [9].
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