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1. INTRODUCTION
Game theory has become the central language for the

analysis of multi-agent systems. Moreover, the central game-
theoretic solution concept, the Nash equilibrium, has be-
come a standard tool for that analysis. A game is a general
way for representation of interactions among agents: each
agent has strategies he can choose from, and each tuple of
strategies, one for each agent, determines a payoff for each
of the agents. A Nash equilibrium is a strategy profile, such
that unilateral deviations from it are not beneficial. How-
ever, this concept does not provide a solution to what we
believe to be the major challenges of game theory and the
theory of multi-agent systems:

1. Given a game, how should the agent choose his action?

2. Given a game, how can a mediator/adminstrator, who
can not enforce behavior, lead the agents to adopt a
desired behavior?

The literature about point (1) is almost empty; the cele-
brated Nash equilibrium can be considered as a partial so-
lution to point (2); however, the guarantees offered by Nash
equilibrium are very weak, which leaves that problem with-
out a satisfactory answer. The reason for the lack of work on
these subjects is not an accident; the task of coming up with
game-theoretic recommendations is an extremely challenging
one; one may be even tempted to say that addressing these
fundamental issues is hopeless. In this abstract we provide
some pointers to some of our work in the recent years that
provides some progress in this uphill battle. The aim of this
short abstract is to report briefly about this progress; the
interested reader should consult the corresponding papers
in order to obtain further understanding.

2. COMPETITIVE SAFETY ANALYSIS
One of the central challenges of game theory is that of

providing a decision maker with an advice about how he
should choose his action in a given multi-agent encounter.
This challenge, which falls under the so-called prescriptive
agenda, has been left without a real answer. For exam-
ple, the celebrated Nash equilibrium (NE), which is the ba-

sis for most game-theoretic analysis, suggests that a multi-
agent behavior would be considered “rational” if no decision-
maker would prefer to deviate from it, assuming the other
decision-makers stick to it. However, while this is a very
useful concept from a descriptive point of view, it does not
address the question of how should a particular agent choose
his action in a given game. A NE strategy can only be jus-
tified by assuming that the other agents are committed to
a specific action profile, which is an unreasonably strong
assumption regarding their rationality.

Only very few suggestions have been made in order to ad-
dress the above challenge. One approach is to suggest to
the agent a strategy which will be useful against an oppo-
nent taken from a particular class (see e.g. [23]). A related
idea is to try and learn the opponent model in a repeated
interaction in order to optimize behavior against it [9], and
the optimization of behavior against stationary opponents
[12]. However, what is common to the above approaches is
that there are no guarantees to our agent, unless we severely
restrict the opponent he may face. In [34] we have suggested
an alternative approach, which is referred to as competitive
safety analysis, motivated by observation made by Aumann
in [6]. This approach deals with guarantees the agent can
be provided with, as discussed below.

It is well known that in a purely competitive setting,
employing a safety level strategy, one that maximizes the
agent’s expected utility in the worst case, is the only rea-
sonable mode of behavior. For partially cooperative set-
tings, in [34] we justified the use of safety-level strategy by
introducing the notion of C-competitive safety strategy – a
strategy that guarantees a payoff which is not less than a
factor C of what is obtained in equilibrium. If there exists
a C-competitive strategy for small C, then this strategy is a
reasonable suggestion for the decision maker! However, the
main challenge is whether for interesting contexts, we do
have such competitive safety strategies. Surprisingly, our
work has shown the usefulness of this approach in two cen-
tral settings: congestion settings, and ad auctions.

We show that in an extended decentralized load balancing
setting a 9/8-competitive safety strategy exists. This implies
that if an agent has to choose among a fast service provider
and a slow service provider, where service is split equally
among agents who use a service provider, one can either rely
on rationality assumptions leading to Nash equilibrium, or
use an algorithm that guarantees 8/9 of the corresponding
value without relying on rationality assumptions. We also
discuss extensions of this result to more general settings. In
particular, we deal with the cases of arbitrary number of
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service providers, and arbitrary different speeds of service.
We show that a ratio of 4/3 can be obtained when we allow
arbitrary speeds for two service providers. We also consider
the notion of a k-regular network, where k is the ratio be-
tween the average speed of service and the lowest speed of
service (by a given set of service providers), and show that
a k-competitive safety strategy exists for general k-regular
networks.

In [17] we applied competitive safety analysis to the model
of ad auctions, which are mechanisms for assigning online
advertisement space to agents according to their (proclaimed)
utility from using it. The formal model that we use is based
on [36] (with minor changes). Needless to say that if useful
C-competitive safety strategies exist (i.e. ones that guaran-
tee a relatively small constant factor C) in the ad auction
setting, then they may provide useful means for bidders in
such auctions.

The basic model of position auctions assumes that bid-
ders’ valuations for ad slots are common knowledge. In a
more realistic model, each agent knows only his own valua-
tion, while the valuations of all agents are assumed to be se-
lected from some known distribution. We provide an analy-
sis of competitive safety strategies for both the complete and
the incomplete information settings. Interestingly, we ob-
tain sharp difference between the usefulness of the approach
in the complete and the incomplete information settings.
While in the complete information setting, it turns out that
no useful competitive safety strategy exists, such strategies
exist in the (more realistic) incomplete information setting!
Namely, we show that in the complete information setting,
assuming N bidders, the value is O(N) with N being al-
most a tight bound. On the other hand, we show positive
results in the incomplete information setting. We consider
valuations which are taken from the uniform distribution,
and consider two classical types of click-rate functions: the
exponential and he linear click-rate functions. We show the
existence of an e-competitive strategy for the case of expo-
nential click-rate functions, and a 2 · N

N−1
-competitive safety

strategies for linear click-rate functions.

3. ACTION PREDICTION IN ENSEMBLES
OF GAMES

While competitive safety analysis is a general approach
which perform well in guaranteeing relatively high payoff in
some interesting cases, it does not always apply. A gen-
eral solution in this case may be: try to predict the other
agents’ behavior and best respond to that. While this may
sound naive at first, in a line of research initiated in [1] we
show that this approach can indeed lead to highly useful re-
sults, by considering game ensembles. The idea is that an
agent may predict an opponent behavior in a given game
in a very effective manner, based on his actions in other
games, as well other agents’ behaviors in other games and
the game under consideration. In a sense, what we offer is to
try and learn association rules among games, ones that will
allow to improve upon prediction of an agent’s action in a
given game. One of our main contributions is by suggesting
this learning approach, and proving its surprising feasibility
using real data obtained in experiments involving human
subjects. This is done by comparing to existing approaches
in the experimental economics and cognitive psychology lit-
erature.

The economics literature refers to population learning[33].
In population learning we aim at predicting an agent’s action
based on statistics on how the population played a game in
the past. Population learning is considered a good predictor
for an agent’s behavior in a game, and therefore will be used
as a benchmark.

We chose two leading lines of research to serve as represen-
tatives of the modelling approach. The first line of research
models agents according to levels of reasoning. The model
was proposed by Stahl [31] and Wilson [32]. This approach
classifies players into types, based on the number of reason-
ing steps they appear to do. In a simple variant of this model
“level 0” players choose uniformly among the game’s strate-
gies, and “level k” players choose the best response to “level
(k − 1)” choices. The roots of the thinking steps approach
can be found in Harsanyi’s “tracing procedure” [14].

The specific model we compare to, from the above line
of research is more sophisticated; it was published in [8]
— a Poisson cognitive hierarchy. The cognitive hierarchy
theory assumes that players use different numbers of steps
of strategic thinking when playing a new one-shot game.
To make the theory’s predictions precise, players who do
k steps of thinking believe others are doing fewer steps,
and they guess accurately the relative proportions of less-
sophisticated players. This creates a clean model that can
be solved inductively: First figure out what 0-step players
do, then what 1-step players do (anticipating what 0-step
players do), etc. The frequency of k-step thinkers is assumed
to be Poisson.

The second central line of research in agent modelling we
compare to, characterizes players according to behavioral
decision rules [10]. Namely, in this approach Costa Gomes et
al. consider two classes of decision rules: strategic and non-
strategic, and assign probabilities to each of these decision
rules based on empirical data.

The above are strong representatives of the agent mod-
elling approach. In our work we exploit a simple machine
learning technique in order to offer an approach for address-
ing the challenge of action prediction in ensembles of games.
In a sense, our work is related to the relatively recent work
on case-based decision making[13]. In case-based decision
making, the idea of case-based reasoning, which is a clas-
sical topic in AI, is exploited to introduce an alternative
approach to decision making in strategic contexts. This
approach is based on similarity measures between different
decision problems. Our work suggests to learn such sim-
ilarity/association between decision problems, in order to
improve upon opponent prediction in games, ultimately im-
proving payoffs. We show that this machine learning ap-
proach is highly useful for that context. We have also ex-
perimented with other machine learning techniques (such as
ID3 and KNN), but they were found to be less efficient for
our objectives.

In order to evaluate the different methods meaningful
scoring rules should be used as evaluation criteria. Scor-
ing rules provide summary measures for the evaluation of
probabilistic forecasts. Two evaluation criteria were taken
from Camerer and Costa-Gomes’ work - MSE (mean square
error) and MLE (maximum likelihood estimator). In addi-
tion, we suggest two additional evaluation criteria - absolute
prediction and best response. The absolute prediction score
is a special case of a zero-one scoring rule. It rewards a
probabilistic forecast if the mode of the predictive distri-



bution materializes. In case of multiple modes, the reward
is reduced proportionally. This score captures the number
of times our prediction was ’right’, and is popular among
machine learning researchers. The ”best response” criterion
measures the payoffs one gets by choosing best-response to
the corresponding prediction. This is perhaps the criterion
which has the highest economic value since it quantifies how
much can an agent gain from having the prediction rule at
hand.

In our work we gathered data from the founders of the
existing modelling techniques, as well as conducted our own
experiments with close to 100 human subjects. We show
that the newly proposed machine learning technique out-
performs the other approaches on all data sets and under
all criteria. This gives great hope to the applicability of this
technique in equipping an agent with an advice about how
to choose its action.

4. MEDIATORS
One of the most basic questions of game theory is: given

a game in strategic form, what is the solution of the game?
Basically, by a “solution” we mean a stable strategy profile
which can be proposed to all agents, and no rational agent
would want to deviate from it. Many solution concepts for
games have been studied, differing mainly by the assump-
tions that a rational agent would have to make about the
rationality of other agents. The best known solution concept
for games is the Nash equilibrium. In order to understand
some of the issues let us consider the following formalism.

Let N be the set of players in the game, Ai be the set of
actions (strategies) available to player i, A the set of action
profiles, and let ui be player i’s utility function, a profile of
actions a ∈ A is a Nash equilibrium (NE) if

∀i ∈ N ai ∈ bri(a−i)

Here, bri(a−i) for i ∈ N , a−i ∈ A−i denotes

arg max
ai∈Ai

{ui(ai, a−i)}

(the set of best responses of i to a−i).
There are two basic problems with the Nash equilibrium

as a solution concept for games:
Problem 1: A NE guarantees absence of profitable deviations
to a player only in the case that all the other players play ac-
cording to the suggested profile; in the case where even one
of the other players deviates, we have no such guarantees.
So, the assumption that this concept requires about the ra-
tionality of other players is: all the other players will stick
to their prescribed strategies. But why should a rational
player make that assumption?

The following stability concept takes this problem into
account: A profile of actions a ∈ A is an equilibrium in
weakly dominant strategies if

∀i ∈ N, b−i ∈ A−i ai ∈ bri(b−i)

The above definition strengthens the concept of NE by
taking care of the aforementioned problem: no unilateral
deviation can ever be beneficial, no matter what other play-
ers do; in other words, it requires no assumptions on the
rationality of other players.
Problem 2: A NE does not take into account joint deviations
by coalitions of players. We usually assume that an individ-
ual will deviate from a profile if she has an available strategy

that strictly increases her income. In some settings it would
be natural to assume also that a group of individuals will
deviate if they have an available joint strategy that strictly
increases the income of each group member. For example,
consider the famous Prisoner’s Dilemma game:

C D
C 4,4 0,6
D 6,0 1,1

The strategy profile (D, D) is a NE and even an equi-
librium in weakly dominant strategies; however, it is not
stable in the sense that if both players deviate to (C, C),
the income of each one of them will increase. The following
stability concept by [5] deals with this problem:

A profile of actions a ∈ A is a strong equilibrium (SE) if

∀S ⊆ N aS ∈ brS(a−S)

Here, the concept of best response strategy is extended to
multiple players as follows: for S ⊆ N and a−S ∈ A−S ,
brS(a−S) denotes the set of best responses of S to a−S :
brS(a−S) =
{aS ∈ AS |∀bS ∈ AS ∃i ∈ S ui(bS , a−S) ≤ ui(aS , a−S)}

A major problem with the above proposed solutions is
that they rarely exist. In order to overcome this problem we
suggest the study of mediators, as tools for leading agents
to desired behaviors. A mediator can not design new games,
or enforce behaviors by the agents, but he can make reliable
offers. In particular, consider the following type of mediator
introduced in the study titled k-implementation [20]. The
mediator here is reliable party which has only one source of
power: his reliability. He can commit to payments to the
different agents, when certain observable outcomes will be
reached, and the agents can be sure that they will be paid
appropriately. However, he can not punish agents or enforce
behaviors. As it turns out these mediators can be extremely
useful.

Consider the following simple congestion setting.1 As-
sume that there are two agents, 1 and 2, that have to select
among two service providers (e.g., machines, communica-
tion lines, etc.) One of the service providers, f , is a fast
one, while the other, s, is a slower one. We capture this by
having an agent obtaining a payoff of 6 when he is the only
one that uses f , and a payoff of 4 when he is the only one
who uses s. If both agents select the same service provider
then its speed of operation decreases by a factor of 2, leading
to half the payoff. That is, if both agents use f then each
one of them obtains a payoff of 3, while if both agents use
s then each one of them obtains 2. In a matrix form, this
game is described by the following bimatrix:

1Congestion in the context of self-motivated parties is a cen-
tral topic in the recent CS literature [16, 27, 28], as well as in
the game theory literature [26, 19]. This example is used for
purposes of illustration only; however, the technique used in
this example can be extended to arbitrary complex games,
as we will later show.
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Assume that our mediator wish to prevent the agents
from using the same service provider (leading to low pay-
offs for both), while relying only on the idea that agents will
use dominant strategies. Then it can do as follows: it can
promise to pay agent 1 a value of 10 if both agents will use
f , and promise to pay agent 2 a value of 10 if both agents
will use s. These promises transform M to the following
game:
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Notice that in M ′, strategy f is dominant for agent 1, and
strategy s is dominant for agent 2. As a result the only ra-
tional strategy profile is the one in which agent 1 chooses f
and agent 2 chooses s. Hence, the mediator implements one
of the desired outcomes. Moreover, given that the strategy
profile (f, s) is selected the mediator will have to pay noth-
ing. It has just implemented, in dominant strategies,
a desired behavior (obtained in one of the Nash equilib-
ria) with zero cost, relying only on its creditability, without
modifying the rules of interactions or enforcing any type of
behavior! In this case we say that the desired behavior has
a 0-implementation. More generally, an outcome has a k-
implementation if one can make it obtained using dominant
strategies with a cost of k.

It can be shown: an outcome is 0-implementable iff it is
a Nash equilibrium.

As we can see the idea of k-implementation is extremely
useful in handling problem 1, where we wish to implement
desired behaviors in dominant strategies.

Another type of mediators has been introduced in order
to deal with stability against group deviations [21]. These
mediators are action mediators; such a mediator is a reli-
able entity that can interact with the players and perform

on their behalf actions in a given game. However, a medi-
ator can not enforce behavior. Indeed, an agent is free to
participate in the game without the help of the mediator.
This notion is highly natural in a setting in which there ex-
ists some form of reliable party or administrator in place.
Indeed, many markets employ very powerful forms of me-
diators, like brokers or routers in communication networks.
In order to illustrate the power of a reliable (action) medi-
ator, consider the prisoners dilemma described above. The
unique equilibrium is inefficient; indeed, if both agents de-
viate from defection to cooperation then both of them will
improve their payoffs. Formally, mutual defection is not a
strong equilibrium. Consider a reliable mediator who offers
the agents the following protocol: if both agents agree to
use the mediator services then he will perform cooperate on
behalf of both agents. However, if only one agent agrees
to use his services then he will perform defect on behalf of
that agent. Notice that when accepting the mediator’s of-
fer the agent is committed to actual behavior as determined
by the above protocol. However, there is no way to enforce
the agents to accept the suggested protocol, and each agent
is free to cooperate or defect without using the mediator’s
services. Hence, the mediator’s protocol generates the fol-
lowing mediated game:

Defect Cooperate Mediator

1,16,04,4Mediator

0,64,40,6Cooperate 

1,16,01,1Defect 

The mediated game has a most desirable property: in
this game there is a strong equilibrium; that is, equilibrium
which is stable against deviations by coalitions. In this equi-
librium both agents will use the mediator services, which will
lead them to a payoff of 4 each! We call a strong equilibrium
in a mediated game: a strong mediated equilibrium.

Given the general concept of a mediator, it can be proved
that mediators can indeed significantly increase the set of
economic interactions in which desired outcomes, which are
stable against deviations by coalitions, can be obtained. For
example, every balanced symmetric game possesses a strong
mediated equilibrium, which also leads to optimal surplus,
where a game in strategic form is called balanced if its asso-
ciated core (see [37]) is non-empty. Another positive result
is with regard to deviations of coalitions of size at most k:
any symmetric game with n agents, if k! divides n then there
exists a k-strong mediated equilibrium, leading to optimal
surplus.2. However, if k! does not divide n, then it is shown

2As an anecdote, the Parlament in Israel contains 120 = 5!
members. Hence, every anonymous game played by this
Parlament possesses an optimal surplus symmetric 5-strong
mediated equilibrium. While no Parlament member is able
to give the right of voting to a mediator, this right of voting



that the game may or may not possess a k-strong mediated
equilibrium.

At this point one may see that k-implementation and ac-
tion mediators have been really useful in overcoming central
problems, and implementing desired behaviors as dominant
strategies and strong equilibrium, respectively. However,
one may wish to go even further and address simultane-
ously both issues. This brings us to the stability introduced
in [29]: a profile of actions a ∈ A is an equilibrium in group
(weakly) dominant strategies (GDS) if

∀S ⊆ N, b−S ∈ A−S aS ∈ brS(b−S)

Existence of a GDS implies, for each player, that no mat-
ter what the other players choose, and no matter with whom
can she unite in making her decision, they will not find a
joint strategy that will be better to all of them than the
proposed one. And thus, if a GDS exists in a given game,
we can safely declare it to be the solution of the game. How-
ever, a GDS does not exist in any game that has ever been
a subject of interest. This is not surprising, since the con-
cept is so strong that its mere existence renders any game
not interesting. For this reason, the concept was never a
subject of exploration in complete information games. In
incomplete information games the concept is known under
the name of group strategy proofness and is widely studied,
because in some cases such solutions can be indeed imple-
mented by mechanism design. However, the whole approach
of mechanism design is not applicable to complete informa-
tion games – although we would indeed want to assume the
existence of an interested party, we don’t want to give it the
power to design the game. Recent work [29] showed that
by using mediators GDS can be implemented in a very gen-
eral and natural class of games. The mediators combine the
capabilities of k-implementation and an extended version of
the action mediators (termed routing mediators [30]).

5. TRUST-BASED RECOMMENDATION SYS-
TEMS

The previous sections offered surprisingly powerful solu-
tions to the issues raised in the introduction. However,
game-theoretic recommendations are not restricted only to
non-cooperative games; in particular, they are desired also
in settings derived from the fundamental setting of social
choice, and its adaptation to handling
ranking/trust/reputation in multi-agent systems.

In the classical theory of social choice, a theory devel-
oped by game-theorists and theoretical economists, we con-
sider a set of agents (voters) and a set of alternatives. Each
agent ranks the alternatives, and the major aim is to find
a good way to aggregate the individual preferences into a
social preference. The major tool offered in this theory is
the axiomatic approach: study properties (termed axioms)
that characterize particular aggregation rules, and analyze
whether particular desired properties can be simultaneously
satisfied. In a ranking system [2] the set of voters and the
set of alternatives coincide, e.g. they are both the pages
in the web; in this case the links among pages are inter-
preted as votes: pages that page p links to are preferable
by page p to pages it does not link to; the problem of pref-
erence aggregation becomes the problem of page ranking.

may be replaced in real life by a commitment to follow the
mediator’s algorithm

Trust systems are personalized ranking systems [3] where
the ranking is done for (and from the perspective of) each
individual agent. Here the idea is to see how to rank agents
from the perspective of a particular agent/user, based on the
trust network generated by the votes. In a trust-based rec-
ommendation system the agents also express opinions about
external topics, and a user who has not expressed an opinion
should be recommended one based on the opinions of others
and the trust network [4]. Hence, we get a sequence of very
interesting settings, extending upon classical social choice,
where the axiomatic approach can be used.

On the practical side, ranking, reputation, recommenda-
tion, and trust systems have become essential ingredients
of web-based multi-agent systems (e.g. [15, 25, 7, 35, 11]).
These systems aggregate agents’ reviews of products and ser-
vices, and of each other, into valuable information. Notable
commercial examples include Amazon and E-Bay’s recom-
mendation and reputation systems (e.g. [24]), Google’s page
ranking system [22], and the Epinions web of trust/reputation
system (e.g. [18]). Our work shows that an extremely pow-
erful way for the study and design of such systems is the
axiomatic approach, extending upon the classical theory of
social choice [35, 2, 3]. Below we discuss some of the details
of that work.

Consider a setting where there is a single item of interest
(e.g., a product, service, or political candidate). A subset
of the agents have prior opinions about this item. Any of
the remaining agents might desire to estimate whether or not
they would like the item, based on the opinions of others. In
the off-line world, a person might first consult her friends for
their recommendations. In turn, the friends, if they do not
have opinions of their own, may consult their friends, and
so on. Based on the cumulative feedback the initial consul-
ter receives, she might form her own subjective opinion. An
automated trust-based recommendation system aims to pro-
vide a similar process to produce high-quality personalized
recommendations for agents.

In [4] we model this setting as an annotated directed graph
in which some of the nodes are labelled by votes of + and
−. Here a node represents an agent, and an edge directed
from a to b represents the fact that agent a trusts agent b.
A subset of the nodes are labelled by + or − votes, indi-
cating that these nodes have already formed opinions about
the item under question. Based on this input, a recommen-
dation system must output a recommendation for each un-
labelled node. We call such an abstraction a voting network
because it models a variety of two-candidate voting systems,
where the candidates are + and −. For an example, con-
sider a directed star graph where a single root node points
to n agents with labels, which models a committee making a
recommendation to the root node. In that setting, majority
and consensus are two common voting rules. For another
example, the U.S. presidential voting system can be mod-
elled as a more complicated digraph, where the root points
to nodes representing the members of the electoral college,
and the electoral college nodes point to nodes representing
the voters in the state or congressional district that they
represent.

A multitude of recommendation systems have been pro-
posed and implemented, and many fit into the network-
based framework described above. This raises the question
of how to determine the relative merits of alternative ap-
proaches to providing trust-based recommendations. The



task of comparing recommendation systems is complicated
by the difficulty of producing an objective measure of rec-
ommendation quality.

In our work we import the axiomatic approach from the
theory of social choice, and use it to compare and contrast
recommendation systems. We consider two styles of ax-
iomatic analysis: the descriptive approach, where we aim
to find a set of axioms that characterizes a given system;
and the normative approach, where we first come up with
a set of axioms, and then determine which recommendation
systems will satisfy all or some of the axioms in the set.

We begin with an impossibility theorem: for a small, natu-
ral set of axioms, there is no recommendation system simul-
taneously consistent with all axioms in the set. However, for
any proper subset of the axioms there exists a recommen-
dation system that satisfies all axioms in the subset. We
consider two ways past this negative result, both by replac-
ing the transitivity axiom (defined in our work). We prove
that there are recommendation systems consistent with both
new sets of axioms. We also show that when one of these
new sets is augmented with an additional axiom, the result-
ing set of axioms is uniquely satisfied by a recommendation
system based on random walks.

We also consider the descriptive approach, in which we
characterize existing (acyclic) systems, like simple commit-
tees and the U.S. presidential elections, by a simple major-
ity axiom. We generalize this to an axiom that leads to a
unique “minimum cut” system on general undirected (pos-
sibly cyclic) graphs.

We define a notion of incentive compatibility for recom-
mendation systems. This is important when designing sys-
tems for deployment in monetized settings, because, as ex-
perience has shown, self-interested agents will not respect
the rules of the system when there is money to be made by
doing otherwise. We find that all of the recommendation
systems for which we provide a characterizing set of axioms
turn out to be incentive compatible, including the random
walk system, majority of majorities system, and minimum
cut system. In contrast, the personalized PageRank system
and various other natural systems are not incentive compat-
ible.

6. CONCLUSIONS
Our work considers two highly challenging problems in

the foundations of game theory and its application to multi-
agent systems. Namely, we consider the question of how
should an agent choose its action in a given game, and the
task of leading agents to adopt desired behaviors in a given
game. In the recent years we provided some useful attacks
on these fundamental problems. Our studies of compet-
itive safety analysis and the study of learning in ensem-
bles of games, provide surprisingly useful tools in addressing
the first challenge. Our theory of mediators provides pow-
erful tools in addressing the second challenge. These ap-
proaches refer to non-cooperative games; in the context of
social choice, we provide a complementary work by propos-
ing the axiomatic approach to
ranking/reputation/trust/recommendation systems; in par-
ticular, our work on trust-based recommendation systems
introduce several basic results in the characterization of de-
sired recommendation techniques in that context.
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