Tree Adaptive A*

Carlos Hernandez

Departamento de
Ingenieria Informética
Universidad Catdlica
de la Ssma. Concepcién

Caupolican 491, Concepcién, Chile

chernan@ucsc.cl

ABSTRACT

Incremental heuristic search algorithms can solve sequences of
similar search problems potentially faster than heuristic search
algorithms that solve each search problem from scratch. So far,
there existed incremental heuristic search algorithms (such as
Adaptive A*) that make the h-values of the current A* search
more informed, which can speed up future A* searches, and incre-
mental heuristic search algorithms (such as D* Lite) that change
the search tree of the current A* search to the search tree of the
next A* search, which can be faster than constructing it from
scratch. In this paper, we present Tree Adaptive A* which ap-
plies to goal-directed navigation in unknown terrain and builds on
Adaptive A* but combines both classes of incremental heuristic
search algorithms in a novel way. We demonstrate experimentally
that it can run faster than Adaptive A* Path Adaptive A* and
D* Lite, the top incremental heuristic search algorithms in the
context of goal-directed navigation in unknown grids.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:

[Graph and tree search strategies]

General Terms

Algorithms, Experimentation

Keywords

Agent Reasoning::Planning (single and multi-agent), Robot
Reasoning::Planning, Path Planning

*This material is based upon work supported by NSF (while
Sven Koenig was serving at NSF). It is also based upon
work supported by Fondecyt-Chile under contract/grant number
11080063, ARL/ARO under contract/grant number W911NF-08-
1-0468, ONR in form of a MURI under contract/grant number
N00014-09-1-1031, DOT under contract/grant number DTFH61-
11-C-00010 and the Spanish Ministry of Science and Innovation
under grant number TIN2009-13591-C02-02. The views and con-
clusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, ei-
ther expressed or implied, of the sponsoring organizations, agen-
cies or the U.S. government.

Cite as: Tree Adaptive A*, Carlos Herndndez, Xiaoxun Sun, Sven
Koenig and Pedro Meseguer, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2-6, 2011, Taipei, Tai-
wan, pp. 123-130.

Copyright (C) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Xiaoxun Sun Sven Koenig
Computer Science
Department
University of
Southern California
Los Angeles, CA 90089, USA

{xiaoxuns,skoenig}@usc.edu pedro@iiia.csic.es

123

Pedro Meseguer

Institut d’Investigacié en
Intel.ligéncia Artificial

IITA-CSIC
Campus UAB
08193 Bellaterra, Spain

1. INTRODUCTION

Agents, such as robots and game characters, have to be
able to navigate from their current location to a given desti-
nation [4]. However, they might not know a map of the ter-
rain initially, and their sensors can typically sense the terrain
only near their current location. They can use path plan-
ning with the freespace assumption to navigate from their
current location to their destination, which is a popular ap-
proach in robotics [13]: The agents plan a minimum-cost
path from their current location to their destination under
the assumption that the terrain is traversable except for the
obstacles that they have already sensed. As they move along
the planned path, they sense additional obstacles and add
them to their map. When they detect obstacles on the path,
they replan a minimum-cost path from their current loca-
tion to their destination and repeat the process until they
reach their destination or can no longer find a path to their
destination (in which case the destination is unreachable).

Path planning with the freespace assumption thus inter-
leaves path planning with movement and requires repeated
searches. These searches need to be fast since agents have to
move smoothly and without delay. For example, the com-
puter game company Bioware imposes a time limit of 1-3ms
on each search [2]. However, even A* searches [6] can be
time consuming if the terrain is large or many agents per-
form simultaneous searches. Incremental heuristic search
algorithms use information from the current and previous
searches to solve future similar search problems potentially
faster than heuristic search algorithms that solve each search
problem from scratch [12]. They have been used to speed
up A* searches in the context of both symbolic planning [9]
and path planning [12]. There are two classes of incremental
heuristic search algorithms:

e Incremental heuristic search algorithms of the first class
make the h-values of the current search more informed,
which can speed up future searches by making them more
focused. Examples include Adaptive A* [11], Generalized
Adaptive A* [19] and Multi-target Adaptive A* [16].

e Incremental heuristic search algorithms of the second class
change the search tree of the current search to the search
tree of the next search, which can be faster than con-
structing it from scratch. Examples include D* [18] and
D* Lite [10], which can speed up A* searches by more than
one order of magnitude [10] and are typically faster than
Adaptive A* and Generalized Adaptive A* in the context
of goal-directed navigation in unknown terrain [11]. Ver-
sions of them have been used as part of path planners in

- = S O = »
- = S O = »

- = C O =& »

x| Hmaz(z) | Hpn(x) | Paths(x) z | Hpae(z) | Hppn(xz) | Paths(z) z | Hpmag(z) | Hppp(x) | Paths(z)
T 1 0 12,47 T 0 12,4} T 4 12,4}
2 4 1 0 2 4 1 0 2 4 1 0
3 2 0 0 3 2 0 0 3 2 0 (1)
4 5 2 {5} 4 3 2 0 4 3 2 {6}
5 6 4 0 5 4 4 0 5 4 4 ?

6 5 3 ?

Figure 1: Illustration of Reusable Trees

a wide range of fielded robotics systems [14, 5, 15], in-
cluding the winning DARPA Urban Challenge entry from
Carnegie Mellon University.

We present Tree Adaptive A* (Tree-AA*) in this paper, an
incremental heuristic search algorithm that applies to path-
planning with the freespace assumption for goal-directed
navigation in unknown terrain or, more generally, repeat-
edly following a minimum-cost path from the current loca-
tion to a destination where the movement costs can increase
(but not decrease). Tree-AA* generalizes Path Adaptive A*
(Path-AA*) [7]. Path-AA* applies to path planning with
the freespace assumption and generalizes Adaptive A* to
reuse a suffix of the minimum-cost path of the current A*
search (= reusable path) to allow the next A* search to ter-
minate earlier. Tree-AA* also applies to path planning with
the freespace assumption but generalizes Adaptive A* to
reuse suffixes of the minimum-cost paths of the current and
all previous A* searches (= reusable tree). Thus, Tree-AA*
combines incremental heuristic search algorithms of the two
above classes in a novel way. The reusable tree of Tree-AA*
is similar to the search tree of incremental heuristic search
algorithms (such as D* Lite) that change the search tree
of the current A* search to the search tree of the next A*
search since they perform backward A* searches to guaran-
tee that the root of the search tree does not change. How-
ever, Tree-AA* changes the reusable tree via forward A*
searches, which is a novel way of maintaining the search tree.
We demonstrate experimentally that it can run faster than
Path-AA*, Adaptive A* and D* Lite, the top incremental
heuristic search algorithms in the context of goal-directed
navigation in unknown grids.

2. NOTATION

We use the following notation: S is the finite set of states,
which correspond to the locations. Su.« € S is the current
state of the agent, which corresponds to its current loca-
tion. s,w € S is the goal state, which corresponds to its
destination. Succ(s) C S is the set of successor states of
state s € S. c(s,s’) > 0 is the cost of moving from state
s € S to its successor state s’ € Succ(s). The goal cost of a
state is the cost of a minimum-cost path from the state to
the goal state. The h-value h(s) (= heuristic) of state s € S
is a consistent approximation of the goal cost of the state,
that is, one that satisfies the triangle inequality [17].

124

3. BACKGROUND

We provide a brief introduction to Adaptive A* and Path-
AA* since Tree-AA* uses their principles. Both incremen-
tal heuristic search algorithms apply to path planning with
the freespace assumption and use A* searches to find a
minimum-cost path from the current state of the agent to
the goal state. They perform A* searches from the current
state of the agent to the goal state (= forward search), which
is the most efficient search direction for Adaptive A* [10]
and the only possible search direction for Path-AA*. As the
agent follows the planned path, it senses additional obsta-
cles, which increase the costs of moving from some states to
their successor states (often to infinity). When one or more
edges with increased costs are on the planned path between
the current state of the agent and the goal state, Path-AA*
replans a minimum-cost path from the current state of the
agent to the goal state and then repeats the process until it
reaches the goal state or it can no longer find a path to the
goal state.

3.1 Adaptive A*

Adaptive A* [11] is based on the following “update prin-
ciple,” which was first described in [8] in the context of hi-
erarchical A* search: If the h-value of every state expanded
by an A* search with consistent h-values is set to the f-value
of the goal state minus the g-value of the state, then the
resulting h-values are again consistent and weakly dominate
the original h-values. Thus, an A* search with the resulting
h-values expands no more states than an A* search with the
original h-values (and the same tie-breaking strategy). The
goal state has to remain unchanged from A* search to A*
search but the start state can change and some movement
costs can increase (but not decrease). Thus, Adaptive A*
can be used for path planning with the freespace assump-
tion, which typically makes the A* searches more focused
and thus speeds them up. The properties of Adaptive A*
are explained in more detail in [11]. We make extensive use
of the property that Adaptive A* sets the h-values of all
states on the minimum-cost path to their goal costs.

3.2 Path Adaptive A* (Path-AA¥)

Path Adaptive A* (Path-AA*) [7] is based on the follow-
ing “termination principle” and extends the “path-caching
strategy,” which was first described in [8] in the context of
hierarchical A* search: If one knows a minimum-cost path

from some state to the goal state (= reusable path) and the
h-values of all states on the reusable path are equal to their
goal costs, then a forward A* can terminate when it is about
to expand a state on the reusable path (including the goal
state). Thus, a Path-AA* search can terminate earlier than
aregular A* search, that terminates only when it is about to
expand the goal state. The (minimum-cost) path from the
current state of the agent to the state on the reusable path
and the (minimum-cost) path from the state on the reusable
path to the goal state along the reusable path then form a
minimum-cost path from the current state of the agent to
the goal state. The properties of Path-AA* are explained in
more detail in [7].

4. TREE ADAPTIVE A* (TREE-AA¥)

Path-A A* was the first search algorithm to combine incre-
mental heuristic search algorithms of the two above classes
in a novel way. It is often faster than D* Lite, an alternative
state-of-the-art incremental heuristic search algorithm [7],
but has an important limitation: Path-AA* reuses only one
path for the next A* search, namely a suffix of the minimum-
cost path of the current A* search (= reusable path). In
complex terrain, including terrain with large obstacles, the
next A* search is unlikely to expand a state on that path
far away from the goal state and thus unlikely to terminate
much earlier than a regular A* search. We introduce Tree
Adaptive A* (Tree-AA*) to address this limitation. Tree-
AA* generalizes Path-AA* to reuse suffixes of the minimum-
cost paths of the current and all previous A* searches (=
reusable tree). It maintains minimum-cost paths from sev-
eral states to the goal state organized in form of a tree rooted
in the goal state. If one knows minimum-cost paths from
several states to the goal state (= reusable tree) and the
h-values of all states in the reusable tree are equal to their
goal costs, then a forward A* search can terminate when it
is about to expand a state in the reusable tree (including the
goal state), for the same reasons as in the context of Path-
AA*. Tree-AA* needs to support two operations, namely
adding a path to the reusable tree and removing paths from
the reusable tree:

e Adding a Path to the Reusable Tree: When an A*
search of Tree-AA* terminates because it is about to ex-
pand a state in the reusable tree (including the goal state),
then Tree-AA* adds the path from the current state of
the agent to the state in the reusable tree to the reusable
tree. It does this because the (minimum-cost) path from
the current state of the agent to the state in the reusable
tree and the (minimum-cost) path from the state in the
reusable tree to the goal state along the branch of the
reusable tree form a minimum-cost path from the current
state of the agent to the goal state (since Adaptive A*
finds minimum-cost paths) and the h-values of all states
on the path are equal to their goal costs (since Adaptive
A* updates the h-values this way).

¢ Removing Paths from the Reusable Tree: When
the costs of edges in the reusable tree increase, then Tree-
AA* uses the largest prefix of the reusable tree that does
not contain edges with increased costs. (By prefix of a
tree we mean the top part of the tree that includes its
root.) It does this because all branches of the resulting
tree are minimum-cost paths from some state to the goal
state and the h-values of all states in the resulting tree are

125

still equal to their goal costs. When the cost of an edge
from state s to state s’ increases, then Tree-AA* finds the
largest prefix of the reusable tree by removing both the
edge and the subtree rooted in state s from the reusable
tree.

4.1 Implementation of the Reusable Tree

Tree-AA* implements the above two operations efficiently
by maintaining two variables for every state and three vari-
ables for every path x = s ... s, in the reusable tree, where
so is the state at the start of the path and s, is the state
at the end of the path that an A* search was about to ex-
pand when it terminated. We say that the states so...sn—1
belong to path . Every path in the reusable tree is identi-
fied with a unique integer that corresponds to the number
of the A* search after which it was added to the reusable
tree (starting with one). Every path in the reusable tree
is the prefix of a minimum-cost path from some state to
the goal state. The h-values of all states on the path are
equal to their goal costs and thus are strictly monotonically
decreasing along the path. The variables are as follows:

e [d(s) is the path in the reusable tree which state s belongs
to. These values are initialized to zero, which means that
state s is either the goal state or not in the reusable tree.

e Reusabletree(s) is the parent of state s in the reusable tree
if state s is a non-goal state in the reusable tree.

e H,.(z) is the largest h-value of any state s¢ ... sn, that
is, Hoyu(z) = h(s0). Hue(0) = —1, as explained below.

e H,..(x) is the smallest h-value of any state s ... sn, that
is, Hpin(z) = h(sn).

e Paths(zx) is the set of all paths in the reusable tree that
connect to one of the states s¢...sn—1. These paths “feed
into” path x.

Figure 1(a) shows a fictitious example of a reusable tree.
The terrain is discretized into cells that are either blocked
or unblocked, a common practice in the context of real-time
computer games [1]. We assume for simplicity that the agent
can move in the four main compass directions with cost one
and thus operates on undirected four-neighbor grids. Values
are shown only for cells that are in the reusable tree. A
cell is black if it is blocked and this fact is known to the
agent. The Id-value of a cell is shown in its upper left corner.
The h-value of a cell is shown in its upper right corner.
The Reusabletree-pointer of a cell is shown as an arrow.
The arrows thus show the reusable tree, that consists of five
paths. Path 1 is D2 D3 D4 D5 D6, path 2 is E3 E4 E5 D5,
path 3 is B6 C6 D6, path 4 is C2 C3 C4 D4, and path 5 is
B2 B3 C3. The table shows the variables of all paths.

4.2 Implementation of the Operations

The goal state is always in the reusable tree. Tree-AA*
could check whether 7d(s) > 0 when it needs to check whether
a non-goal state s is in the reusable tree. However, this
would require it to set Id(s) to zero when it removes a
non-goal state from the reusable tree, which is expensive
since Tree-AA* often needs to remove whole paths from
the reusable tree. Thus, Tree-AA* checks whether h(s) <
H,...(Id(s)) when it needs to check whether a non-goal state
s is in the reusable tree. (The goal state fails this test.)

Tree-AA* can now remove a path x from the reusable tree
by setting Hw.(x) to H,.m(x) without having to set Id(s) to
zero for all states s that belong to path x. Thus, Id(s) =0
is not necessarily true for states s not in the reusable tree.
There are two subtleties here. Non-goal states s that have
not yet been part of the reusable tree correctly fail the test
since H,oo(1d(s)) = Hna(0) —1. Non-goal states s that
were part of the reusable search tree but have subsequently
been removed correctly fail the test since they have an h-
value larger than H,,..(Id(s)). Tree-AA* adds a path to the
reusable tree and removes paths from the reusable tree as
follows:

e Adding a Path to the Reusable Tree: Tree-AA* adds
a path x = sp...s, to the reusable tree as follows. It
equates z with the number of the current A* search (as
given by the variable Counter) to identify the path with
a unique integer. It inserts z into the set Paths(Id(sn»))
if s,, is a non-goal state since path x feeds into the path
that state s, belongs to [Lines 9-10]. (The line numbers
refer to the pseudo code of Tree-AA* in Figure 2). It sets
H,.i,(z) to h(sy) [Line 11] and H.,..(z) to h(so) [Line 12]
since the h-values are strictly monotonically decreasing
along the path. It sets Paths(z) to the empty set [Line
13] since no paths feed into path z yet. It sets Id(s) to
x and Reusabletree(s) to the successor of state s on path
z for all states sg...sp—1 [Lines 14-18] since the states
S0 ...Sn—1 belong to path x. The runtime of adding a
path to the reusable tree is thus basically proportional to
the number of states on the path.

e Removing Paths from the Reusable Tree: When
the cost of an edge from state s to state s’ increases, then
Tree-AA* removes paths from the reusable tree as fol-
lows. If Reusabletree(s) = s’ then the edge might be in
the reusable tree [Lines 69-70], namely on path x := Id(s)
[Line 20]. In this case, Tree-AA* sets H,..(x) to h(s") (if
it was larger) to shorten path z [Lines 21-22]. It also re-
moves all paths ' € Paths(z) with H,w(z) < Hm(z)
from the set Paths(z) and schedules them for removal
from the reusable tree [Lines 24-27]. For each path z
scheduled for removal with H,..(z) > Huu(z), it sets
H,...(z) to H,.(x), removes all paths ' € Paths(x) from
the set Paths(x) and schedules them recursively for re-
moval [Lines 28-34]. The runtime of removing paths from
the reusable tree when the cost of one edge increases is
thus basically proportional to the number of paths in the
reusable tree, which is bounded by the number of A*
searches performed so far.

Figure 1(b) continues the fictitious example from Figure
1(a) by showing the reusable tree after Tree-AA* removed
paths from the reusable tree after C3 became blocked. Tree-
AA* shortened path 4 to C4 D4 and removed path 5. Figure
1(c) shows the reusable tree after Tree-AA* added B3 B4 C4
D4 to the reusable tree after an A* search.

4.3 Pseudocode

We now put all of our insights together. The pseudo code
of Tree-AA* in Figure 3 proceeds as follows:* It sets Id(s) to

!Tree-AA* maintains the following variables for its regular A*
searches: Counter is the number of the current A* search. OPEN
is the open list of the current A* search. CLOSED is the closed
list of the current A* search. Generated(s) is the number of the

126

01 procedure InitializeState(s)

02 if (Generated(s) = 0)

03 g(s):=o0;

04 h(s) := H(s);

05 else if (Generated(s) # Counter)
06 g(s) := oo;

07 Generated(s) := Counter;

08 procedure AddPath(s)

09 if (s # 5gou1)

10 insert Counter into Paths(Id(s));
11 Hpin(Counter) := h(s);

12 Hpoo(Counter) := h(Sgart);

13 Paths(Counter) := 0;

14 while (s # Sstart)

15 Squz 1= S;

16 s := Searchtree(s);

17 Id(s) := Counter;

18 Reusabletree(s) := Squq;

19 procedure RemovePaths(s)

20 z := Id(s);

21 if (Hmae(x) > h(Reusabletree(s)))
22 Hpe(z) := h(Reusabletree(s));
23 QUEUE := 0;

24 for all 2’ € Paths(z)

25 if (Hpao(z) < Hmm(x,))

26 add 2’ to the end of QUEUE;
27 remove z’ from Paths(z);

28 while QUEUE # ()

29 remove z from the head of QUEUE;
30 if (Hmaz(x) > Hmm(x))

31 Hpar(z) := Hpin(x);

32 for all z’ € Paths(x)

33 add z’ to the end of QUEUE;
34 remove z’ from Paths(z);
35 function ComputePath()

36 while (OPEN #)

37 remove state s with the smallest g(s) + h(s) value from OPEN;
38 if (S = Sgoal OR h(S) S Hmaz(ld(s)))
/* s is in reusable tree */

39 for all s’ € CLOSED
40 h(s") := g(s) + h(s) — g(s');
41 AddPath(s);
42 return true;
43 insert s into CLOSED;
44 for all s’ € Succ(s)
45 InitializeState(s’);
16 it (g(s) > 9(s) + e(s,)
a7 a(s') 1= 9(s) + cls. 8');
48 Searchtree(s’) := s;
49 if (s' € OPEN)
50 remove s’ from OPEN,;
51 insert s’ into OPEN with value g(s’) + h(s’);
52 return false;
53 function Main()
54 Counter := 1;
55 Hyppaa(0) := —1;
56 for all s € S
57 Generated(s) := Id(s) := 0;
58 Reusabletree(s) := NULL;
59 while (Sstart # Sgoal)
60 InitializeState(Sstart);
61 9(8start) == 0;
62 OPEN := CLOSED := 0;
63 insert Syiqrt into OPEN with value g(Ssiart) + R (Sstart);
64 if (ComputePath() = false)
65 return false; /* failure: the goal state is unreachable */
66 while (h(sstart) < Hmax(1d(Sstart)))
/* Sstart 1s non-goal state in reusable tree */
67 Sstart 1= Reusabletree(Ssiart);
68 for all increased costs c(s, s’)
69 if (Reusabletree(s) = s’)
70 RemovePaths(s);
71 Counter := Counter + 1;
72 return true; /* success: the goal state has been reached */

Figure 2: Tree-AA*

last A* search that generated state s. A* uses these values to
initialize the g-values and h-values of states as needed during an
A* search [procedure InitializeState] to avoid having to initialize
them for all states before every A* search. Searchiree(s) is the
parent of state s in the search tree of the Generated(s)th A*
search. g(s) is the g-value of state s during the Generated(s)th
A* search. h(s) is the current h-value of state s.

= O O =% »
= O O = >

O O % >

=H S QO % >

(c) (d)

z | Hmaz(x) | Hypin (2) | Paths(x)
4 | 0 | 0

1]

1
2

z | Hpmaz(x) | Hypin (x) | Paths(z) z | Hmaz(x) | Hypin (2) | Paths(x)
1 0 [} 1 1 0 []
5 ‘ 0 0 2 2 0 {3}
3 6 1 0

Figure 3: Example Trace of Tree-AA*

zero [Line 57|, Reusabletree(s) to NULL [Line 58] and h(s)
(when needed for the first time during an A* search) to the
user-given consistent h-value H (s) [Line 4] for all states s. It
performs a forward A* search [function ComputePath] until
it is about to expand a state s in the reusable tree (including
the goal state) [Line 38, termination principle]. It sets the
h-value of every expanded state s’ to the f-value of state s
(which is the same as the f-value of the goal state) minus the
g-value of state s’ [Lines 39-40, update principle]. It then
adds the (minimum-cost) path from the current state of the
agent to state s to the reusable tree [procedure AddPath],
as described above [Line 41]. It then follows the minimum-
cost path from the current state of the agent to the goal
state along the branch of the reusable tree [Lines 66-70].
Whenever edge costs increase, it removes paths from the
reusable tree [procedure RemovePaths], as described above
[Lines 68-70]. If the current state of the agent is no longer in
the reusable tree, it performs another forward A* search and
then repeats the process until the agent either reaches the
goal state or it can no longer find a path to the goal state.
The correctness proof of Tree-AA* is basically the same as
that of Path-AA* and thus not given here.

4.4 Example Trace of Tree-AA*

Figure 3(a-d) shows the beginning of a trace of Tree-AA*.
The agent always senses the blockage status of its four neigh-
boring cells and can then move to any one of the unblocked
neighboring cells with cost one. Its task is to move from
start cell S to goal cell G. It assumes that all cells are
unblocked except for the blocked cells that it has already
sensed. It plans a minimum-cost path from its current cell
to the goal cell. As it follows the planned path, it senses
additional blocked cells and adds them to its map. When it
detects blocked cells on its path, it replans a minimum-cost
path from its current cell to the goal cell until it reaches the
goal cell or can no longer find a path to the goal cell. The
user-given h-values are all zero. A cell is black if it is blocked
and this fact is known to the agent. The Id-value of a cell is
shown in its upper left corner. The h-value of a cell (after
it was updated using the update principle) is shown in its
upper right corner. The g-value of a cell is shown in its lower
left corner if it was generated during the current A* search.
A cell is shaded if it was expanded during the current A*
search. The Reusabletree-pointer of a cell is shown as an
arrow if it belongs to the reusable tree.

Figure 3(a) shows the initial situation with start cell D2.
Figure 3(b) shows that the first A* search of Tree-AA* from
D2 to D6 terminates when it is about to expand D6 and
returns the D2 D3 D4 D5 D6. Tree-AA* adds the path to

127

the reusable tree and updates the h-values of the expanded
states using the update principle. The agent then follows
the branch of the reusable tree from D2 to D3, where it
senses that D4 is blocked. Tree-AA* removes D2 D3 D4 D5
from the reusable tree. Figure 3(c) shows that the second
A* search of Tree-AA* from D3 to D6 terminates when it
is about to expand D6 and returns D3 C3 C4 C5 C6 D6. It
expands fewer cells than an A* search with the user-given
zero h-values (which also expands B2, C2 and D2), illus-
trating the speed up achieved with the update principle.
Tree-AA* adds the path to the reusable tree and updates
the h-values. The agent then moves from D3 to C3, where
it senses that C4 is blocked. Tree-AA* removes D3 C3 C4
C5 from the reusable tree. Figure 3(d) shows that the third
A* search of Tree-AA* from C3 to D6 terminates when it
is about to expand C6 and returns C3 B3 B4 B5 B6 C6. It
terminates earlier than a regular A* search with the same
h-values (which also expands C6 and terminates only when
it is about to expand D6), illustrating the speed up achieved
with the termination principle.

4.5 Comparison of Path-AA* and Tree-AA*

Figure 4 shows an example that illustrates the difference
between Path-AA* (top) and Tree-AA* (bottom) on the
same navigation problem. A cell is black if it is blocked
and this fact is known to the agent. A Reusabletree-pointer
is shown as a thick arrow if it was added to the reusable
path (or reusable tree) in the current A* search and as a
thin arrow if it was added in a previous A* search. A trian-
gle marks the cell that the current A* search was about to
expand before it terminated.

Figures 4(a) and 4(e) show that the first A* searches of
Path-AA* and Tree-AA* produce the same result. The
agent then moves from E2 to E3, where it senses that E4
is blocked. Path-AA* removes E2 E3 E4 E5 E6 E7 E8 E9
D9 from the reusable path. Figure 4(b) shows that the sec-
ond A* search of Path-AA* terminates when it is about
to expand D9, and Path-AA* adds E3 D3 D4 D5 D6 D7
D8 D9 (shown as thick arrows) to the reusable path. On
the other hand, Tree-AA* removes E2 E3 E4 E5 from the
reusable tree. Figure 4(f) shows that the second A* search
of Tree-AA* also terminates when it is about to expand D9,
but Tree-AA* adds E3 D3 D4 D5 D6 D7 D8 D9 (shown as
thick arrows) to the reusable tree. Thus, Tree-AA* removes
fewer cells, which might allow its future A* searches to ter-
minate earlier. The agent then moves from E3 to D3, where
it senses that D4 is blocked. Path-AA* and Tree-AA* per-
form their third A* searches. The agent then moves from

Q = = 8 O = >

(e) Tree-AA* Search 1 (f) Tree-AA* Search 2

!

“o

RER
D

—]

v

(g) Tree-AA* Search 5 (h) Tree-AA* Search 6

Figure 4: Comparison of Path-AA* (top) and Tree-AA* (bottom)

D3 to C3, where it senses that C4 is blocked. Path-AA*
and Tree-AA* perform their fourth A* searches. We omit
the details of the third and fourth A* searches due to space
constraints. The agent then moves from C3 to B3, where it
senses that B4 is blocked. Figure 4(c) shows that the fifth A*
search of Path-AA* terminates when it is about to expand
B9. Figure 4(g) shows that the fifth A* search of Tree-AA*
terminates already when it is about to expand E9, illustrat-
ing the speed up resulting from reusing the paths from all
previous A* searches. The agent then moves from B3 to
F5, where it senses that F6 is blocked. Figure 4(d) shows
that the sixth A* search of Path-AA* terminates when it is
about to expand E9. Figure 4(h) shows that the fifth A*
search of Tree-AA* terminates already when it is about to
expand F5, again illustrating the speed up resulting from
reusing the paths from all previous A* searches.

S. TREE-AA*-BACK

An A* search with consistent h-values guarantees that
the g-value of every expanded state is equal to the cost of
a minimum-cost path from the start state to the expanded
state [17]. Thus, if the first A* search of Tree-AA* searches
from the goal state to the current state of the agent (=
backward search), then the resulting search tree restricted
to the expanded states is a reusable tree. All subsequent A*
searches of Tree-AA* must be forward searches. We refer to
the resulting version of Tree-AA* as Tree-AA*-Back. The
reusable tree after the first A* search of (standard) Tree-
AA* contains only the expanded states on the minimum-
cost path from the current state of the agent to the goal
state, while the reusable tree after the first A* search of
Tree-AA*-Back contains all expanded states, which might
allow future A* searches to terminate earlier.

6. EXPERIMENTAL EVALUATION

We compare Tree-AA* to the top incremental heuristic
search algorithms in the context of goal-directed naviga-
tion in unknown grids, namely Adaptive A* (that uses for-
ward searches, which is the most efficient search direction
for Adaptive A*), Path-AA* (that uses forward searches,
which is the only possible search direction for Path-AA*)

128

i

AR E-E yH
I...I l...l
Il.-.l I.I.I I I I
Figure 5: Maps
and D* Lite (that uses backward searches, which is the only
possible search direction for D* Lite). Tree-AA* uses for-
ward searches but we also implement Tree-AA*-Back from
Section 5, whose first A* search is a backward search. For
fairness, all search algorithms use binary heaps as priority
queues and break ties among states with the same f-values
in favor of states with larger g-values (which is known to be
a good tie-breaking strategy), with one exception: During
the first search, Tree-AA*-Back (1) breaks ties among states
with the same f-values in favor of states with larger g-values
but Tree-AA*-Back (2) breaks ties in favor of states with
smaller g-values. During the remaining A* searches, both

versions of Tree-AA*-Back break ties in favor of states with
larger g-values.

6.1 Experimental Setup

We used four-neighbor grids as examples since they re-
sult in integer-valued g-values, h-values and f-values. We
use eight-neighbor grids in the experiments since they are
often preferred in practice, for example in video games [3,
2]. The agent always senses the blockage status of its eight
neighboring cells and can then move to any one of the un-
blocked neighboring cells with cost one for horizontal or ver-
tical movements and cost /2 for diagonal movements. The
user-given h-values are the octile distances [3].

We use two indoor office maps of size 1,000 x 1,000 cells,
where the size of each room is 20 x 20 cells. Figure 5 (left
and center) shows areas of 2 X 2 rooms in office maps 1
and 2. We also use a computer game map of size 3,000 x
3,000 cells adapted from Counter-Strike (courtesy of Vadim
Bulitko from the University of Alberta). Figure 5 (right)
shows the game map. We average our experimental results

Office Map 1
All A* Searches First A¥ Search Remaining A* Searches
@ [® [[d () (M) (g) (h) @
Adaptive A¥ 1,333 652 473 0.127 82.8 900 0.48 472 0.126
D* Lite 1,520 474 562 0.177 83.9 25,836 9.25 508 0.158
Path-AA* 1,333 652 114 0.043 28.0 900 0.48 113 0.042
Tree-AA* 1,333 652 13 0.005 3.3 900 0.45 11 0.004
Tree-AA*-Back (1) 1,337 615 55 0.015 9.2 25,836 5.84 13 0.006
Tree-AA*-Back (2) 1,334 652 212 0.059 38.5 134,669 36.42 6 0.003
Office Map 2
Adaptive A¥ 6,606 | 3,924 512 0.130 1458 900 0.47 512 0.130
D* Lite 5,821 | 2,429 285 0.092 223.5 48,013 17.14 265 0.085
Path-AA* 6,637 | 3,004 88 0.033 102.1 900 0.47 88 0.033
Tree-AA* 6,637 | 3,004 19 0.006 18.6 900 0.48 19 0.006
Tree-AA*-Back (1) || 6,413 | 2,903 36 0.008 23.2 48,013 10.77 19 0.004
Tree-AA*-Back (2) || 6,635 | 3,088 60 0.016 49.4 132,795 36.11 17 0.004
ame Map
Adaptive A¥ 1,842 | 2,624 | 3,424 | 1.094 | 2,761.3 2,671 1.62 3,424 1.094
D* Lite 5,723 | 2,491 | 1,547 | 0.790 | 1,967.9 5,821 3.64 1,545 0.789
Path-AA* 4,841 | 2,520 | 1,442 | 0.525 | 1,323.0 2,671 1.65 1,442 0.525
Tree-AA* 4,841 | 2,519 | 1,353 | 0.437 | 1,100.8 2,671 1.57 1,353 0.437
Tree-AA*-Back (1) || 4,955 | 2,378 | 1,320 | 0.407 967.8 5,821 2.29 1,322 0.406
Tree-AA*-Back (2) || 4,841 | 2,519 | 1,610 | 0.466 | 1,173.9 1,203,590 | 392.12 1,132 0.310
(a) = moves per test case; (b) — A* searches per test case; (c) — cell expansions per A* search; (d) = runtime per A* search; (¢) — runtime per test case;
(f) = cells expansions of the |rst A* search; (g) = runtime of the |rst A* search; (h) = cell expansions per A* search (excluding the |rst A* search);

(i) = runtime per A* search (excluding the |rst A* search).

Table 1: Experimental Results

over 500 test cases with a reachable goal cell for each map.
For each test case in the office maps, we ensure that the start
and goal cells are far apart by independently choosing the
x-coordinate of the start cell randomly between 1 and 100
and the x-coordinate of the goal cell randomly between 901
and 1,000. We independently choose the y-coordinates of the
start and goal cells randomly between 1 and 1,000. Similarly,
for each test case in the game map, we independently choose
the x-coordinate of the start cell randomly between 1 and
300 and the x-coordinate of the goal cell randomly between
2,701 and 3,000. We independently choose the y-coordinates
of the start and goal cells randomly between 1 and 3,000.

6.2 Experimental Results

We report two measures of the difficulty of goal-directed
navigation problems in unknown grids, namely (a) the num-
ber of moves of the agent per test case and (b) the number of
A* searches per test case until the agent reaches the goal cell.
These measures vary slightly among the compared search al-
gorithms since they can determine different minimum-cost
paths, in which case the agents that follow the paths might
sense different blocked cells, which can make their trajecto-
ries diverge. We report three measures of the efficiency of
the search algorithms, namely (c) the number of expanded
cells per A* search, (d) the runtime per A* search in mil-
liseconds and (e) the runtime per test case in milliseconds on
a Linux PC with a Pentium CoreQuad 2.33 GHz CPU and
8 GB RAM. Since the number of A* searches is (approxi-
mately) the same for all search algorithms, their runtimes
per test case are largely proportional to their runtimes per
A* search. Therefore, the main measure of the efficiency
of the search algorithms is their runtime per A* search. In
order to gain more insight into the behavior of the search
algorithms, we divide each test case into two parts, namely
the first A* search and the remaining A* searches other than
the first one. For the first A* search, we report (f) the num-
ber of expanded cells and (g) the runtime in milliseconds.
For the remaining A* searches other than the first one, we
report (h) the number of expanded cells per A* search and
(i) the runtime per A* search in milliseconds. Table 1 shows
the following relationships:

First, Tree-AA* has a smaller runtime per A* search than
Adaptive A* for all maps because it has a smaller number of
cell expansions per A* search due to the speed up achieved
with the termination principle. For example, Tree-AA* ex-
pands only about 2.7, 3.7 and 39.5 percent of the cells per

129

A* search that Adaptive A* expands in office maps 1 and 2
and the game map, respectively. It thus runs by factors of
25.4, 21.7 and 2.5 faster per A* search.

Second, Tree-AA* has a smaller runtime per A* search
than D* Lite for all maps, which is due to two reasons.
First, Tree-AA* has a smaller number of cell expansions per
A* search perhaps due to the speed up achieved with the
update and termination principles. For example, Tree-AA*
expands only about 2.3, 6.7 and 87.5 percent of the cells
per A* search that D* Lite expands in office maps 1 and
2 and the game map, respectively. Second, Tree-AA* has
a smaller number of heap percolates per A* search due to
both the smaller number of cell expansions per A* search
(resulting in fewer heap operations) and a smaller number
of cells in the open list during each A* search (resulting
in fewer heap percolates per heap operation). The smaller
number of cells in the open list is due to each A* search
of Tree-AA* starting with an empty open list rather than
the open list at the end of the previous A* search. Tree-
AA* thus runs by factors of 35.4, 15.3 and 1.8 faster per A*
search.?

Third, Tree-AA* has a smaller runtime per A* search than
Path-AA* for all maps because it has a smaller number of
cell expansions per A* search due to the speed up achieved
with a reusable tree rather than a reusable path. For ex-
ample, Tree-AA* expands only about 11.4, 21.6 and 93.8
percent of the cells per A* search that Path-AA* expands
in office maps 1 and 2 and the game map, respectively. It
thus runs by factors of 8.6, 5.5 and 1.2 faster per A* search.

Fourth, both versions of Tree-AA*-Back have a larger run-
time for the first A* search than (standard) Tree-AA* for
all maps but tend to have a smaller runtime per A* search
for the remaining A* searches, which is due to the following
reasons: The first A* search of Tree-AA* is a forward search,
while the first A* search of both versions of Tree-A A*-Back

2To understand better in which situations Tree-AA* has an ad-
vantage over D* Lite, we also perform experiments on maps of
size 500 x 500 cells and independently block 20, 30, 40, 50 and
60 percent of randomly chosen cells, respectively. We average our
experimental results over 500 test cases with a reachable goal cell
for each map. For each test case, we choose the x-coordinate of
the start cell randomly between 1 and 50 and the x-coordinate of
the goal cell randomly between 451 and 500. We independently
choose the y-coordinates of the start and goal cells randomly be-
tween 1 and 500. Tree-AA* expands only about 11.2, 12.5, 14.9,
17.4 and 87.0 percent of the cells per A* search that D* Lite
expands, respectively.

is a backward search. Backward A* searches expand more
cells than forward A* searches [10]. Thus, the runtime of the
first A* search of both versions of Tree-AA*-Back is larger
than the one of Tree-AA*. The first A* search of Tree-AA*
yields a reusable path, while the first A* search of both ver-
sions of Tree-AA*-Back yields a reusable tree. During the
first search, Tree-AA*-Back (1) breaks ties among states
with the same f-values in favor of states with larger g-values
but Tree-AA*-Back (2) breaks ties in favor of states with
smaller g-values. Thus, the runtime of the first A* search
and the size of the reusable tree of Tree-AA*-Back (2) are
larger than the ones of Tree-AA*-Back (1). The larger the
reusable tree, the more it speeds up the first few remaining
A* searches of Tree-AA*-Back due to the termination princi-
ple until the reusable trees of Tree-AA*-Back and Tree-AA*
are about equally large. For example, Tree-AA*-Back (1)
and, given in parentheses, Tree-AA*-Back (2) expand about
423.1 (1630.8), 189.5 (315.8) and 97.6 (119.0) percent of the
cells per A* search that Tree-AA* expands in office maps 1
and 2 and the game map, respectively. They thus run by fac-
tors of 3.0 (11.8), 1.3 (2.7), and 0.9 (1.1) more slowly per A*
search. However, Tree-AA*-Back (1) and (2) expand about
118.2 (54.5), 100.0 (89.5) and 97.7 (83.7) percent of the cells
per A* search that Tree-AA* expands for the remaining A*
searches other than the first one. They thus run by factors
of 0.7 (1.3), 1.5 (1.5) and 1.1 (1.4) faster per A* search for
the remaining A* searches. Therefore, Tree-AA*-Back (1)
and (2) tend to run faster than Tree-AA* for applications
where the first A* search can be performed offline before the
goal-directed navigation problem in unknown terrain starts
and its runtime thus does not matter, as is often the case in
robotics.

7. CONCLUSIONS

In this paper, we introduced a new incremental heuristic
search algorithm called Tree Adaptive A*. So far, there ex-
isted incremental heuristic search algorithms (such as Adap-
tive A*) that make the h-values of the current A* search
more informed and incremental heuristic search algorithms
(such as D* Lite) that change the search tree of the current
A* search to the search tree of the next A* search. Tree
Adaptive A* uses the update principle of Adaptive A* to
make the h-values of the current A* search more informed.
It also uses the termination principle of Path Adaptive A* to
terminate A* searches earlier than regular A* searches but
generalizes it to reuse suffixes of the minimum-cost paths of
the current and all previous A* searches (= reusable tree).
Overall, Tree Adaptive A* is the first incremental heuristic
search algorithm to combine the principles of both classes of
incremental heuristic search algorithms and can run faster
than Adaptive A*, Path Adaptive A* and D* Lite, the top
incremental heuristic search algorithms in the context of
goal-directed navigation in unknown grids.

8. REFERENCES
11 M

M. Bjornsson, M. Enzenberger, R. Holte, J. Schaeffer, and
P. Yap. Comparison of different abstractions for
pathfinding on maps. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages
1511-1512, 2003.

[2] V. Bulitko, Y. Bjornsson, M. Luvstrek, J. Schaeffer, and
S. Sigmundarson. Dynamic control in path-planning with
real-time heuristic search. In Proceedings of the
International Conference on Automated Planning and
Scheduling, pages 49-56, 2007.

(3] V. Bulitko and G. Lee. Learning in real-time search: A
unifying framework. Journal of Artificial Intelligence
Research, 25:119-157, 2006.

[4] H. Choset, S. Thrun, L. Kavraki, W. Burgard, and
K. Lynch. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[5] D. Ferguson and A. Stentz. Using interpolation to improve
path planning: The Field D* algorithm. Journal of Field
Robotics, 23(2):79-101, 2006.

[6] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics,
2:100-107, 1968.

[7] C. Hernandez, P. Meseguer, X. Sun, and S. Koenig.
Path-Adaptive A* for incremental heuristic search in
unknown terrain [short paper]. In Proceedings of the
International Conference on Automated Planning and
Scheduling, pages 358-361, 2009.

[8] R. Holte, M. Perez, R. Zimmer, and A. MacDonald.
Hierarchical A*: Searching abstraction hierarchies
efficiently. In Proceedings of the National Conference on
Artificial Intelligence, pages 530535, 1996.

[9] S. Koenig, D. Furcy, and C. Bauer. Heuristic search-based
replanning. In Proceedings of the International Conference
on Artificial Intelligence Planning Systems, pages 294-301,
2002.

[10] S. Koenig and M. Likhachev. Fast replanning for navigation
in unknown terrain. Transaction on Robotics,
21(3):354-363, 2005.

[11] S. Koenig and M. Likhachev. A new principle for
incremental heuristic search: Theoretical results. In
Proceedings of the International Conference on
Autonomous Planning and Scheduling, pages 410413,
2006.

[12] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy.
Incremental heuristic search in artificial intelligence.
Artificial Intelligence Magazine, 25(2):99-112, 2004.

[13] S. Koenig, C. Tovey, and Y. Smirnov. Performance bounds
for planning in unknown terrain. Artificial Intelligence,
147(1-2):253-279, 2003.

[14] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and
S. Thrun. Anytime Dynamic A*: An anytime, replanning
algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling, pages 262—-271,
2005.

[15] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and
S. Thrun. Anytime search in dynamic graphs. Artificial
Intelligence, 172(14):1613-1643, 2008.

[16] K. Matsuta, H. Kobayashi, and A. Shinohara. Multi-target
Adaptive A*. In Proceedings of the International
Conference on Autonomous Agents and Multiagent
Systems, pages 1065—-1072, 2010.

[17] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[18] A. Stentz. The Focussed D* algorithm for real-time
replanning. In Proceedings of International Joint
Conference in Artificial Intelligence, pages 1652—1659,
1995.

[19] X. Sun, S. Koenig, and W. Yeoh. Generalized Adaptive A*.
In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, pages
469-476, 2008.

