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ABSTRACT
Reasoning about the mental states of agents is important in
various settings, and has been recognized as vital for team-
work. But the complexity of some of the more well-known
agent logics that facilitate reasoning about mental states
prohibits the use of these logics in practice. An alterna-
tive is to investigate fragments of these logics that have a
lower complexity but are still expressive enough for reason-
ing about the mental states of (other) agents. We explore
this alternative and take as our starting point the linear
time variant of BDI logic (BDILTL). We summarize some of
the relevant known complexity results for e.g. LTL, KD45n,
and BDILTL itself. We present a tableau-based method for
establishing complexity bounds, and provide a map of the
complexity of (various fragments of) BDILTL. Finally, we
identify a few fragments that may be usefully applied for
reasoning about mental states.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification

Keywords
reasoning about mental states, linear time BDI logic, satis-
fiability, complexity

1. INTRODUCTION
In a social context, and more specifically for teamwork,

the ability of an agent to reason about other agents has been
recognized as vital [7]. In particular, reasoning about ones
own and the mental states of other agents is important to
be successful in such contexts. Reasoning about the mental
states of others is needed to establish joint commitments and
joint intentions [17, 4], collaboration and cooperation [17],
teamwork [4, 7, 20], and coordination more generally [8].
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One application area is socio-cognitive robotics and human-
robot teamwork [15], where modeling of social behavior is
needed and it has been recognized that “consideration of
the knowledge, abilities, goals, and even feelings of others”
is required.

In practice, however, little use is made of logical approaches
such as [4, 18, 9] that support reasoning about mental states
due to the inherent complexity of the logics. For example,
the satisfiability problem for agent dynamic logic, a logic
closely related to the KARO framework, is in 2EXPTIME
[19] and for the TeamLog framework including group atti-
tudes as well as propositional dynamic logic it is EXPTIME-
complete [9]. Practical approaches typically do not maintain
many of the formal properties of mental attitudes, and, as
noted in [11], “the need for high-level logic-based languages
capturing the key components of the BDI model remains.”
This problem has also motivated the work reported in [9].
More generally, the issue is related to “the gap between the-
ory and practice” [21] since complexity bounds at least the-
oretically determine what can be done in principle to bridge
this gap. In practice, agent platforms typically have been
restricted to reason with the beliefs and goals of a single
agent [2, 3] and do not allow reasoning about the beliefs and
goals of other agents, e.g. having a belief about the goal of
another agent. Identifying such extended fragments there-
fore is important as it may allow the use of logical fragments
in practice for reasoning about other agents.

One approach to deal with this problem is to study and
identify fragments of agent logics that have a lower com-
plexity but still support reasoning about other agents’ men-
tal states. There are general techniques for identifying such
fragments and reducing the complexity. For example, it is
known that restricting the number of propositional atoms
used or the depth of modal nesting may reduce the com-
plexity of a modal logic [12]. It is not cognitively plausible
either that humans use unlimited depth of reasoning [7].

The problem we explore in this paper is the satisfiabil-
ity problem of fragments of BDILTL. We present a tableau-
based proof method for a family of BDILTL. The tableau-
method can also be used to analyze the complexity of this
family and we show BDILTL is in PSPACE. We then ex-
plore which fragments have a significantly lower complexity
than full linear time BDI logic. More specifically, the aim is
to identify fragments for which the satisfiability problem is
in NP. Identifying such fragments is a first step towards es-
tablishing reasonable computational performance as typical
problem instances may be easier to solve [13], and, as even
satisfiability for propositional logic is an NP-complete prob-
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lem we cannot do better without restricting this underlying
logic. Our main motivation for doing so is that agents need
a tool for reasoning about other agents’ mental states in or-
der to coordinate their actions and a logic-based approach
seems most suitable. We also briefly informally consider the
expressivity of these fragments.

The paper is organized as follows. Section 2 reviews rel-
evant related work. Section 3 briefly introduces BDILTL

and discusses some fragments that are promising from a
computational point of view. In Section 4 a tableau-based
method for proving satisfiability is introduced. This method
provides the basis for some of the complexity results for
BDILTL. Section 5 then presents the main complexity results
for BDILTL and for fragments of the logic. Section 6 infor-
mally discusses whether some minimal requirements are met
for these fragments to be useful for reasoning about other
agents. Finally, Section 7 concludes the paper.

2. RELATED WORK AND RESULTS
Although significant work has been done in isolating frag-

ments of various modal logics including LTL [5], logics of
knowledge and belief [13], and combinations thereof [6] for
which the satisfiability problem is in NP, as far as we know,
no existing work has identified fragments with similar com-
plexity that allow the combination of informational and mo-
tivational attitude operators with time. However, if we want
our agents to reason about both the informational as well as
the motivational states of other agents we need exactly this
combination. We believe that incorporating time is essen-
tial to be able to differentiate various types of goals such as
achievement and maintenance goals (cf. also Section 6).1

Here we build on the work of [18] which introduces (a
family of) linear time BDI logic(s) BDILTL. BDILTL pro-
vides a logical framework that allows an agent to distin-
guish between different mental attitudes, i.e. beliefs ver-
sus desires/intentions, and between different types of de-
sires/intentions by means of temporal operators. This sets
our work apart from [9] where complexity issues of a multi-
agent logic called TeamLog are investigated in a setting
without time. Before we explore fragments of BDILTL itself,
we first review relevant complexity results for linear tem-
poral logic and logics of mental attitudes available in the
literature. This will be useful for identifying fragments of
BDILTL for which the satisfiability problem is in NP. In the
remainder we assume that Φ denotes a set of propositions.

Normal modal logics. A starting point for our search for
a computational logic for reasoning about the mental states
of (other) agents is provided by the extensive work on logics
of knowledge and belief reported [13]. [13] presents results
that show that the complexity of the satisfiability problem
for single agent logics of knowledge S5 and belief KD45 are
NP-complete, for multi-agent logics of knowledge S5n and
belief KD45n are PSPACE-complete, and extensions with
a common knowledge operator are EXPTIME-complete.

For conative logics that are used for modeling the moti-
vational attitudes of agents typically the modal logic KD
is used [21]. The logic KD is in between K and S4, i.e.
K ⊆ KD ⊆ S4 = KT4. According to Ladner’s Theo-
rem [1] this means that the satisfiability problem for KD
is PSPACE-complete.

1We will sometimes also talk about goals if there is no need
to differentiate between desires and intentions.

In [9] it is shown that combining the multi-agent logic of
belief and the multi-agent conative logic does not increase
the complexity of the satisfiability problem which remains
PSPACE-complete.

Restricted settings for the logics K,K45,KD45,S5,S4, and
their multi-agent versions are considered in [12] and [9]. The
main results are that satisfiability checking can be done in
linear-time for many standard multi-agent extensions of K
by bounding the number of propositional atoms and the depth
of modal operators. Here, we will just present the result for
KD45n which are of interest for our purposes. It is shown
that satisfiability checking can be done in linear time if the
number of propositions and nestings is fixed. The problem
remains in this class for the single-agent setting (n = 1) even
if nestings are not bounded. The problem gets harder if there
is no restriction on the number of propositions and only a
bound on the number of nestings. In this case satisfiability
checking is NP-complete. [9] shows that by bounding the
modal depth by a constant the satisfiability problem of com-
binations of multi-agent belief and multi-agent conative logic
is also NP-complete. Only bounding the number of propo-
sitional atoms does not lower complexity. Bounding both
the number of propositional atoms and the depth of modal
operators reduces complexity to linear time, however. This
is true even when group attitudes such as common belief
and collective intentions are added [9]. We use depthm(ϕ)
to denote the modal depth of ϕ (i.e. the number of nested
modal operators); e.g. Kip∧KiKjq as modal depth 2. (Cf.
Section 3.2 for a formal definition.) In the following table
we use md ≤ c, c ∈ N0, to denote the restriction to formulae
ϕ with depthm(ϕ) ≤ c. We use |Φ| to denote the number
of propositions. The first cell of a row is understood as a
constraint, e.g. |Φ| ≤ c, md ≤ c′ characterises the case in
which the number of propositions and the modal depth is
bounded by some natural numbers c and c′, respectively. In
the table below we summarize some complexity results of
the satisfiability problem which are relevant for our study:

K45,KD45,S5 K,KDn,K45n,KD45n,S5n
no constraints NP-compl. PSPACE-compl.
|Φ| ≤ c linear time PSPACE-compl.
md ≤ c NP-compl. NP-compl.
|Φ| ≤ c, md ≤ c′ linear time linear time

Temporal Logics. It is well-known that the complexity of
the satisfiability problem for LTL is PSPACE-complete and
for CTL EXPTIME-complete. In [5] a large number of
propositional fragments of LTL is considered and complexity
results for both model checking and satisfiability are estab-
lished. Restrictions on the temporal operators that may be
used, the number of propositional atoms, and the temporal
depth are considered. Satisfiability for a limited number of
fragments turns out to be in the class NP. This is shown for
the following fragments of LTL: (1) The “future-only” frag-
ment; (2) The “next-time” fragment; and (3) the fragment of
LTL that allows no nesting of temporal operators. Satisfia-
bility for the fragment with a fixed number of propositional
atoms and limited temporal depth (but no restrictions on
the temporal operators) can be solved in deterministic log-
arithmic space L. The table below summarises the rele-
vant results. LTL(U) is used to denote the fragment with U
being the only temporal operator. Similarly to the modal
depth, we define the temporal depth, deptht(ϕ), of ϕ. In this
case the number of nested temporal operators is considered.
td ≤ c is also defined and used analogously to md.
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LTL LTL(U)
|Φ| ≤ c, td ≤ c′ L L
td=0 NP-compl. NP-compl.
|Φ| = 1 PSPACE-compl. P
td = 2 PSPACE-compl. PSPACE-compl.

Logics of Knowledge and Time. It is natural to com-
bine linear time with combinations of other modal operators
(for representing mental attitudes) but only work on combin-
ing belief/knowledge and time is known to us. In [14] results
related to numerous logics of knowledge and time are consid-
ered. A result of this work is that agents that do not forget
or do not learn greatly increasing the complexity of reason-
ing about knowledge and time. It is shown that combining
the logic of knowledge and linear time results in a logic for
which the satisfiability problem is PSPACE-complete and
the satisfiability problem for the combination of knowledge
and branching time is EXPTIME-complete.

3. LINEAR TIME BDI LOGIC
In the literature surveyed, the complexity of fragments

that combine time, and multi-agent belief and motivational
attitudes is not discussed. Of course, closely related work
does exist, and some of the more important work has been
discussed above. We take the work reported in [18] as our
starting point, which introduces a linear time BDI logic and
presents decision methods for satisfiability using a tableau-
based approach. Below, we first define the language and its
semantics and then continue to discuss potentially interest-
ing fragments from a complexity point of view.

3.1 Language and Semantics
The logic BDILTL introduced here is based more or less on

[18]. We use the same language but extend it with multiple
modal operators to be able to represent the mental atti-
tudes of multiple agents. The semantics has also been set
up slightly differently, and we use runs and time points as
the basis for accessibility relations instead of worlds that are
related through states in [18]; our setup is similar to that in
[10].

The language of BDILTL includes temporal operators, and
multiple belief, desire, and intention operators, one for each
agent out of a finite set of agents. The temporal operators
are the usual linear time temporal operators for next time
and the until operator.

Definition 1 (The language of BDILTL). Let Φ be
a set of propositional atoms with typical element p and Agt
be a finite set of agents with typical element i:

ϕ ∈ L ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | fϕ | Biϕ | Diϕ | Iiϕ
Models for the language L of BDILTL consist of runs and of

indexed relations on these runs used to define the semantics
of mental attitudes of agents. Runs are derived from a given
set of states and a transition relation on those states and are
used to interpret temporal operators.

A run r over a set of states Q is an infinite sequence
from Qω. We use r[i] to denote the ith state on run r,
starting from i = 0. r[i,∞] is used to denote the sub-run of
r that starts at i. That is, r[i,∞] = r[i]r[i + 1] . . . . Given
a set of states Q and a transition relation →, the set of all
runs induced by (Q ,→) is denoted by R(Q,→). R(Q,→) thus
consists of all runs r for which we have that: ∀i ∈ N0 : r[i]→
r[i+ 1]. Finally, the set of time points (r,m) given a set R
of runs is defined by: PointsR = {(r,m) | r ∈ R,m ∈ N0}.

Definition 2 (Models for BDILTL). A model for the
language of BDILTL is a tuple: M = (Q ,→,
R, {Bi}i∈Agt, {Di}i∈Agt, {Ii}i∈Agt, π) where

• Q is a non-empty set of states,
• →⊆ Q ×Q a serial (temporal) accessibility relation,
• R ⊆ R(Q,→) is a non-empty set of runs,
• Bi ⊆ PointsR × PointsR is a transitive, serial, and

Euclidean belief accessibility relation,
• Di ⊆ PointsR×PointsR is a desire accessibility rela-

tion,
• Ii ⊆ PointsR × PointsR is called an intention acces-

sibility relation, and
• π : Q → P(Φ) a labelling or valuation function.

Models for BDILTL include the usual restrictions on the
type of accessibility relations in the definition of a model.
We are also interested in some additional restrictions that
may be imposed on models. For example, B may also be
reflexive, to obtain the usual semantics for knowledge, and
we consider the additional constraint where D is serial to ex-
clude inconsistent desires. It is well-known that these con-
straints correspond with particular axiom schema labeled
K, T, D, 4, 5. This gives rise to a family of BDI logics and
we introduce some notation to refer to different variants.
We use BDILTL to refer to BDIKD45,K,KD

LTL , i.e. the logic with
KD45 belief operators, K desire operators, and KD inten-
tion operators. Alternatively, by varying the restrictions on
the accessibility relations, we obtain, for example, the logic
BDIS5,KD,KD

LTL which combines knowledge, consistent desires,
and intentions. In the following we define L := {K,KD,

KD45,S4,S5 } and often write BDIX,Y,ZLTL where we implicitly
assume that X,Y,Z ∈ L.

It is usual to consider a range of additional constraints on
models, which give, for example, rise to interaction axioms
[9, 18]. For reasons of space, we consider only two of the
more interesting interaction axioms. That is, we consider
the constraint Di ⊆ Bi giving rise to the axiom Biϕ→ Diϕ
that is called realism and the constraint

∀t ∈ PointsR∃t′ ∈ PointsR : tDit′ and tBit′

giving rise to the axiom Diϕ → ¬Bi¬ϕ that is called weak
realism [18].

Definition 3 (Semantics).
Let M be a model with associated set PointsR and (r,m) ∈
PointsR. Then the relation |= is defined by:
M, r,m |= p iff p ∈ π(r[m])
M, r,m |= ¬ϕ iff M, r,m 6|= ϕ
M, r,m |= ϕ ∧ ψ iff M, r,m |= ϕ and M, r,m |= ψ
M, r,m |= fϕ iff M, r,m+ 1 |= ϕ
M, r,m |= ϕUψ iff ∃k ≥ m with M, r, k |= ψ and ∀l with

m ≤ l < k we have that M, r, l |= ϕ
M, r,m |= Biϕ iff M, r′,m′ |= ϕ for all (r′,m′) with

(r,m)Bi(r′,m′)
M, r,m |= Diϕ iff M, r′,m′ |= ϕ for all (r′,m′) with

(r,m)Di(r′,m′)
M, r,m |= Iiϕ iff M, r′,m′ |= ϕ for all (r′,m′) with

(r,m)Ii(r′,m′)

We say a formula ϕ is satisfiable in M if there is a run
r ∈ R and m ∈ N0 such that M, r,m |= ϕ, and simply
satisfiable if it is satisfiable in some model M. ϕ is said to
be valid if M, r,m |= ϕ for all runs r ∈ RM and m ∈ N0

in all models M. We define the logic BDILTL as the set of
formulas that are valid on the class of BDILTL-models.
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3.2 Fragments
We are interested in establishing lower complexity bounds

for fragments of the logic BDILTL that are still expressive
enough to allow reasoning about mental states of other agents.
We have reviewed relevant results in Section 2. Based on the
summary overview provided there, there are just a few frag-
ments of BDILTL that may be in NP (or even have a lower
complexity). A number of options to lower complexity are
not that interesting since we want to be able to reason about
the mental states of agents. Therefore, single agent frag-
ments, or single proposition fragments are not interesting.
Fragments that may be interesting clearly need to restrict
the temporal depth (i.e. nesting of temporal operators),
modal depth (i.e. depth of nesting of mental attitude opera-
tors), and may need to restrict the number of propositional
atoms used.

By inspecting the tables for linear time logic and multi-
agent knowledge/belief logics, to obtain fragments that pos-
sibly are in NP the following is clear:

• modal depth, i.e. nesting of B, D, and I operators
needs to be bounded, and

• no nesting of temporal operators is allowed at all if
unbounded number of propositional atoms are allowed,
or temporal depth needs to be bounded.

This means that there are only two fragments of the lan-
guage that we need to consider in the remainder when we are
looking for fragments for which satisfiability is in NP: (1)
the fragment with finitely many propositional atoms, lim-
ited temporal height, and bounded nesting of other modal
operators representing mental attitudes, and (2) the frag-
ment with no nesting of temporal operators and bounded
nesting of other modal operators representing mental at-
titudes. Apart from the language, we also consider slight
modifications of the semantics as discussed above as well as
the interaction axioms below.

Formally, we use depthm(ϕ) to denote the modal depth of
ϕ with respect to modal operators Bi, Ii, and Di. We define
depthm(p) = 0, depthm(¬ϕ) = depthm(ϕ), depthm( fϕ) =
depthm(ϕ), depthm(ϕ ◦ ψ) = max{depthm(ϕ), depthm(ψ)}
for ◦ ∈ {∧,U}, and depthm(Oiϕ) = depthm(ϕ) + 1. Simi-
larly, we define the temporal depth deptht(ϕ) of ϕ. In this
case the number of nested temporal operators are counted.

4. TABLEAU METHOD FOR BDI LOGIC
We will present a tableau-based method for the satisfia-

bility problem of BDIX,Y,ZLTL . We also consider settings where
mental attitudes interact such as the conditions of realism
and weak realism introduced above. The method has been
used by others as well and our approach builds upon the
work of [23] which discusses the tableau method for tempo-
ral logic extended with either a belief or a knowledge oper-
ator. The extension we propose also uses ideas presented in
[9, 13, 18]. Although a tableau algorithm for linear time and
BDI-operators has been provided in [18] as well, the main

concern of our paper, i.e. the complexity of BDIX,Y,ZLTL and
associated bounded fragments is not discussed in [18].

4.1 Basic Definitions
We use sub(ϕ) to denote the set of subformulas of ϕ. For-

mulas are classified as either α- or β-formula (or none of
these). Figure 1 shows which formulas are α- and which for-
mulas are β-formulas. We also refer to αO -formulas (see Fig-

α α1 α2

¬¬ϕ ϕ ϕ
¬ fϕ f¬ϕ f¬ϕ
ϕ ∧ ψ ϕ ψ
¬(ϕUψ) ¬ψ ¬ϕ ∨ ¬ f(ϕUψ)

β β1 β2

¬(ϕ ∧ ψ) ¬ϕ ¬ψ
ϕUψ ψ ϕ ∧ f(ϕUψ)

αO αO
1 αO

2

Oiϕ ϕ Oiϕ

Figure 1: α, β, αO-rules with O some modal operator

ure 1) as α-formulas; the reason for introducing this separate
class of rules is that they are needed when the accessibility
relation associated with Oi is reflexive, a case that is treated
differently from other properties. (Note, that some formu-
las match non of these cases, e.g. ¬Oiϕ.) We note that for
each α-formula (resp. β-formula) we have that α↔ α1 ∧α2

(resp. β ↔ β1 ∨ β2). A set Σ of formulas is said to be
α-closed (resp. β-closed, αO -closed), if for each α-formula
(resp. β-formula, αO -formula) we have {α1, α2} ⊆ Σ (resp.
{β1, β2} ∩ Σ 6= ∅, {αO

1 , α
O
2 } ⊆ Σ). A set Σ of formulas is

said to be fully expanded if for each ϕ ∈ Σ and for all sub-
formulas ψ ∈ sub(ϕ), ψ ∈ Σ or ¬ψ ∈ Σ. A set of formulas
is called blatantly inconsistent (b-inconsistent for short) if
it contains ⊥, ¬>, or two complementary pairs of formulas
ϕ,¬ϕ. If a set is not b-inconsistent it is b-consistent.

In the remainder of this paper, we use O to refer to arbi-
trary BDI operators, i.e. O ∈ {B,D, I}, and O to refer to
the corresponding accessibility relation. We say that an op-
erator O is a T-operator if the associated accessibility rela-
tion O is reflexive. Similarly, we say that O is a KD-operator
if the relation is serial, etc. We also write X ∈ schema(O)
if O is an X-operator, X ∈ L and so on.

Definition 4 (PC-tableau). We call a set Σ of for-
mulas a PC-tableau if Σ is b-consistent, α- and β-closed,
and fully expanded. Moreover, we assume that it is αO -
closed if O is a T-operator.

A PC-tableau derived from Σ′ is a PC-tableau Σ such
that Σ′ ⊆ Σ. The set of all PC-tableaux derived from Σ′

is denoted PC(Σ′). (Note that if Σ′ is b-inconsistent then
PC(Σ′) = ∅.)

As noted, the use of the rule αO (see Figure 1) differs
from others in that it is applied to all formulas Oϕ iff O is
a T-operator; it is therefore easier to incorporate this rule
into the definition of a PC-tableau. Note that for reflexive
relations O we actually have αO ↔ αO

1 ∧ αO
2 .

4.2 Tableau Construction
We now discuss the tableau-based method for showing

satisfiability of the family of logics BDIX,Y,ZLTL . Each vari-
ant within this family of logics requires that some modi-
fications are applied to the general and generic algorithm
below. We begin with explaining the idea for the particular
logic BDIKD,KD,KD

LTL , and thereafter discuss the modifications
that are needed for the other members of our family.

BDIKD,KD,KD
LTL -pseudo-structure algorithm.

The tableau approach is based on the idea that tableaux can
be used to construct models. Pseudo-structures have the
important property that they can be extended to a model if
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The algorithm specifies S = (Q̂ , →̂, {B̂i}i∈Agt, {D̂i}i∈Agt,

{Îi}i∈Agt, π̂) on input ϕ0.

1. (Initialisation) For each ∆ ∈ PC({ϕ0}) add a state q with

π̂(q) = ∆ to Q̂ .

2. Repeat until convergence:

(a) (Modal transitions) For any q ∈ Q̂, if ¬Oiψ ∈ π̂(q) set

(?) Σ = {¬ψ}∪{χ | Oiχ ∈ π̂(q)}∪create labelischema(O)(π̂(q)).

If such a formula does not exist then define

Σ = {χ | Oiχ ∈ π̂(q)} ∪ create labelischema(O)(π̂(q)).

For each ∆ ∈ PC(Σ) if there is a state q′ ∈ Q̂ with π̂(q′) = ∆

add the relation qÔiq′. Otherwise,

(??) create a node q′ with π̂(q′) = ∆ and add relation qÔiq′.

(b) (Temporal transitions) For any q ∈ Q̂, if ©ψ ∈ π̂(q) then for

each ∆ ∈ PC(π̂(q)/ e) if there is a state q′ ∈ Q̂ with π̂(q′) = ∆
add the transition q→̂q′ else add a new state q′ with π̂(q′) = ∆
and add the transition q→̂q′.
3. (Deletion) Delete a state q ∈ Q̂ if one of the following
conditions applies:
(a) ∃ψ ∈ π̂(q) such that ψ is (S, q)-temporally inconsistent.
(b) ∃ψ ∈ π̂(q) such that ψ = eχ and there is no q′ with q→̂q′.
(c) ∃ψ ∈ π̂(q) such that ψ = ¬Oiχ and there is no q′ with qÔiq′
and ¬χ ∈ π̂(q′).
(d) ∃ψ ∈ π̂(q) such that ψ = Oiχ and there is no q′ with qÔiq′
and χ ∈ π̂(q′) (only if O is a D-operator).

Figure 2: BDIX,Y,ZLTL -pseudo-structure algorithm for se-
rial accessibility relations and input ϕ0. We assume
that O ∈ {Bi, Di, Ii} and that Ô denotes the corre-
sponding accessibility relation.

The procedure returns the following set:

1. ∅ if X ∈ {K,KD}.
2. {Oiψ | Oiψ ∈ Σ}∪{¬Oiψ | ¬Oiψ ∈ Σ} if X ∈ {KD45,S5}.
3. {Oiψ | Oiψ ∈ Σ} if X = S4.

Figure 3: create label iX(Σ) procedure.

and only if the input formula is satisfiable. Accordingly, we
present an algorithm that generates pseudo-structures.

Definition 5. A pseudo-structure is a tuple S = (Q̂ , →̂,
{B̂i}i∈Agt, {D̂i}i∈Agt, {Îi}i∈Agt, π̂) where Q̂ is a (possibly empty)

set of states, and →̂, B̂i, D̂i, and Îi are binary relations be-
tween states, and π̂ : Q̂ → P(L) assigns sets of formulae to
states.

The basic algorithm is called BDIKD,KD,KD
LTL -pseudo-structure

algorithm and is presented in Figure 2. If the algorithm
returns a pseudo-structure and the input formula is satisfi-
able, a BDILTL-model can be extracted from the structure
that witnesses the truth of the formula. In Theorem 2 it is
shown that the pseudo-structure contains a state q whose
label contains ϕ if, and only if, the pseudo-structure can be
extended to a BDIKD,KD,KD

LTL -model satisfying ϕ.
The first step in the algorithm generates nodes each la-

beled with a PC-tableau derived from {ϕ}. Then, steps
(2a) and (2b) are performed until none of these cases can be

applied anymore. Step (2a) generates Ôi transitions. De-

pending on the properties of Ôi (referred to by procedure
schema(O)) the procedure create label ischema(O)(Σ) which is

shown in Figure 3 creates the label of a (possibly new) node.
Different logics require a different procedure. π̂(q)/ fis de-
fined as {ψ | fψ ∈ π̂(q)} and π̂(q)/Oi analogously.

Condition (??) corresponds to the seriality condition of Ô.
In (2b) temporal successors are created. The idea is that if
the current state contains a formula fϕ there has to be a
→-related state satisfying ϕ. Finally, in step (3) the algo-
rithm deletes states which are not consistent – one way or
another. Of particular interest is step (3a) which removes
nodes in which an eventuality formula cannot be satisfied
anymore. This step involves the notion of temporally con-
sistent formulas, which is defined next.

Definition 6 (Temporally consistent). Given a

pseudo-structure S and a state q ∈ Q̂S a formula ϕ is said
to be (S, q)-temporally consistent iff if ϕ = ψ1Uψ2 then there
is a state q′ reachable from q via the transitive closure of →̂
such that ψ2 ∈ π̂(q′). If ϕ is not (S, q)-temporally consistent
it is said to be (S, q)-temporally inconsistent.

In step 3(d) states are deleted that are not consistent with
the fact that an operator O is a KD-operator, which requires
a successor state in the corresponding models.

Modifications: BDIX,Y,ZLTL -pseudo-structure algorithms.
Before we state our general result, we briefly consider what
needs to be modified to cater for other logics than BDIKD,KD,KD

LTL .

We consider the general case and define a generic BDIX,Y,ZLTL -
pseudo-structure algorithm as follows. First, for operators
and associated relations O that have other properties than
seriality the labeling of nodes in (?) needs to be modified.
The required modifications are listed in Figure 3 for the dif-
ferent cases that we consider here.

Finally, for operators that are not D-operators, the cases
that relate to the seriality of the accessibility relation in the
algorithm need to be disregarded. This applies in particular
to condition (??) which should be ignored when dealing with
such operators. Finally, also the deletion of states needs to
be modified and only the cases 3(a)-3(c) should be executed
while case 3(d) in Figure 2 needs to be ignored.

4.3 Soundness and Completeness
We now consider the soundness and completeness of the

algorithm. The proofs of the results are fairly standard (cf.
[23, 9, 13, 18]) and we focus on some of the basic ideas.

A pseudo-structure S = (Q̂ , →̂, {B̂i}i∈Agt, {D̂i}i∈Agt,

{Îi}i∈Agt, π̂) is said to be a BDIX,Y,ZLTL -tableau for ϕ if the fol-

lowing 8 conditions are satisfied: (1) There is a state q ∈ Q̂

such that ϕ ∈ π̂(q). (2) For each q ∈ Q̂ , π̂(q) ∈ PC(π̂(q)).
(3) If T ∈ schema(O) then if Oiψ ∈ π̂(q) then ψ ∈ π̂(q). (4)
If D ∈ schema(O) then if Oiψ ∈ π̂(q) then there is a state

q′ with qÔiq′. (5) If 4 ∈ schema(O) then if Oiψ ∈ π̂(q) then

for all q′ with qÔiq′, Oiψ ∈ π̂(q′). (6) If 5 ∈ schema(O) then

if qÔiq′ and qÔiq′′ and Oiψ ∈ π̂(q′) then {Oiψ,ψ} ⊆ π̂(q′′).
(7) If fψ ∈ π̂(q) then there is a q′ ∈ Q̂ such that q→̂q′. (8)

If fψ ∈ π̂(q) then for all q′ ∈ Q̂ with q→̂q′ it holds that
ψ ∈ π̂(q′).

Conditions 3, 4, 5, and 6 correspond to reflexivity, serial-
ity, transitivity, and Euclideanity, respectively. The follow-
ing theorems are more or less standard.

Theorem 1 (Tableau satisfiability). A formula ϕ

is BDIX,Y,ZLTL -satisfiable iff there is a BDIX,Y,ZLTL -tableau for ϕ.
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Proof sketch. ⇒: It is easily seen that one can define a
tableau from a satisfying model. ⇐: The set of timelines R
is obtained by unravelling the relation →̂, enforcing the sat-
isfaction of eventuality formulae (cf. [23] for details). The

definition of the state-based Ô-relations to point-basedO ac-
cessibility relations is also done according to [23]: For exam-

ple we set (r,m)Oi(r′,m′) if r(m)Ôir′(m′). Minor modifica-
tion are necessary to ensure that O is a schema(O)-operator
(e.g. taking the reflexive transitive closure, etc.). �

Theorem 2 (Sound-, Completeness). The algorithm

terminates on all inputs and ϕ is BDIX,Y,ZLTL -satisfiable iff the

BDIX,Y,ZLTL -algorithm on input ϕ returns a BDIX,Y,ZLTL -tableau
for ϕ iff the structure returned by the algorithm contains a
state q containing ϕ.

Proof sketch. Termination of the algorithm is guaran-
teed as there are only finitely many different PC-tableaux
and the algorithm does not create nodes twice. Soundness
is proved following similar steps as in [23]: It is shown that
if the algorithm returns a pseudo-structure for ϕ then it is
actually a tableaux for ϕ (this is achieved by verifying the
8 conditions of a tableau). For the completeness one shows
that if there is no state q in the returned structure, then ϕ
is not satisfiable (cf.[23, Th.4]). The modal operators are
treated independently. �

4.4 Interaction Axioms
Finally, we consider the interaction axioms. The realism

axiom is given by Biϕ → Diϕ. In order to extend our
tableau method an additional alpha rule is introduced: α =
Biϕ and α1 = Biϕ and α2 = Diϕ. The condition that we
need to add to cover for this axiom is the requirement that
a PC-tableau is also closed under this new rule (see Df. 4).

Similarly, for the weak realism axiom Diϕ → ¬Bi¬ϕ, a
second new α-rule is introduced: α = Diϕ and α1 = Diϕ
and α2 = ¬Bi¬ϕ, and the definition of a PC-tableau needs
to be modified accordingly.

It is not difficult to see that the sound- and completeness
results from Section 4.3 also hold with these extensions. The
additional α-rules for realism and weak realism give rise to
the corresponding rules

9. If Biϕ ∈ π̂(q) then Diϕ ∈ π̂(q); and

10. if Diϕ ∈ π̂(q) then ¬Bi¬ϕ ∈ π̂(q), respectively,

in the BDIX,Y,ZLTL -tableau (see also [18, 23]). The correspond-
ing model is constructed from such a table in the same way
as in the cases without interaction (cf. Theorem 1) and the
completeness proof of Theorem 2 is done analogously (see
e.g. [18, 9]).

5. COMPLEXITY OF SATISFIABILITY
In this section we consider the complexity of the BDIX,Y,ZLTL -

satisfiability problem. In [13] a tableau-based decision pro-
cedure has been used to prove PSPACE membership of
the multi-agent logics K, T, S4, S5, and KD45. In [9] a
PSPACE tableau algorithm for a BDI logic combining S4,
K, and KD operators has been presented and in [18, 23]
tableau-based algorithms for linear-time and combinations
of other modalities were given. However, the complexity of
the latter algorithms has not been analysed.

“Standard” LTL-tableau constructions have been shown
implementable in PSPACE [22]. The algorithm presented
here when executed with purely temporal formulae is essen-
tially equivalent to that of [22]. The next result shows that
the addition of other modal operators does not increase the
complexity.

Theorem 3. The BDIX,Y,ZLTL -satisfiability problem is
PSPACE-complete for all X,Y,Z ∈ L.

Proof sketch. The lower bound follows from LTL-satisfi-
ability, cf. e.g. [5]. We sketch the upper bound. In the

following we take d = depthm(ϕ)O(1).
(I) Purely modal part (step 2(a) in our algorithm): In [13]

it was shown that the length of sequences of subsequent
states generated by the tableau algorithm is bounded by
d. (Note, that we abstracted from the calculation of PC-
tableaux. The treatment is standard.) The “tree” consisting
of all these polynomial length sequences is searched in a
depth first search manner using only polynomial space. This
procedure generalizes to multiple modal operators.

(II) Purely temporal part (step 2(b) in our algorithm):
In [22] a PSPACE-tableau algorithm for LTL is presented.
The main observation is that if an LTL formula is satisfi-
able then it is satisfiable on a path q0q1 . . . qm such that for
some qj , j ≤ m with qm→̂qj and m ≤ 2O(|ϕ|). The follow-
ing polynomial space algorithm implements this idea: Guess
state qj and guess valid subsequent successor states q (for at

most 2O(|ϕ|) steps) until q = qj for some state in which all
eventualities are fulfilled (ϕ is satisfiable). In memory, only
the counter, the current state and qj are kept.

(III) We consider BDILTL. As noted in [10] time and epis-
temic operators are independent from each other which al-
lows for a combination of (I) and (II). From (I) we know
that the number of consecutive epistemic steps is bounded
by d. Now, each time we are in step 2(a) we apply the depth
first search strategy from (I) and each time we execute step
2(b) we try to build the infinite trace as in (II). The number
of “temporal traces” is bounded by |ϕ| ·d. Hence, one has to
store at most |ϕ| · d counters, current states, and the states
guessed to indicate the entry point of a loop for the tempo-
ral part and |ϕ| ·d states constituting the current “epistemic
path” which is kept in memory (possibly interrupted by a
temporal path). (In addition to some other book keeping
operations needed for the depth first search.) �

In a non-temporal setting, it was shown that adding vari-
ous interaction axioms does not increase the complexity [9].
This is also the case in the temporal setting considered here.
The result follows immediately since the interaction axioms
do only require the application of some additional α-rules as
explained above.

Corollary 4. The BDIX,Y,ZLTL -satisfiability problem assum-
ing realsim or weak realism is PSPACE-complete.

5.1 Bounded Temporal and Modal Depth
Here we consider fragments of BDIX,Y,ZLTL with bounds on

the temporal depth deptht(ϕ) and modal depth depthm(ϕ)
of a formula ϕ.

To be precise, we define the fragments of BDIX,Y,ZLTL consid-
ered here using the notions of temporal and modal depth.
We define Li,j as the set of formulas ϕ ∈ L with deptht(ϕ) ≤
i and depthm(ϕ) ≤ j.
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The upper bound of the next result follows from Theo-
rem 3 and the lower bound from [5] where the satisfiability
problem for LTL with a temporal bound of ≥ 2 is shown to
be PSPACE-complete.

Proposition 5 ([5]). Let i, j ∈ N and i ≥ 2. The

BDIX,Y,ZLTL -satisfiability problem over the language Li,j is
PSPACE-complete. The same result holds over the class
of models that satisfy (weak) realism.

The previous result is negative. However, the complexity
improves if the temporal depth is at most 1.

Theorem 6. Let i ∈ N. The BDIX,Y,ZLTL -satisfiability prob-
lem over the language L1,i is NP-complete. The same result
holds over the class of models that satisfy (weak) realism.

Proof sketch. In [5] it is shown that if an LTL formula
with deptht(ϕ) ≤ 1 is satisfiable then satisfiability can be
witnessed by an initial polynomial length prefix of a path.
This prefix can be non-deterministically guessed and verified
in polynomial time. Moreover, as shown in [13, 9] the purely

modal tableaux have |ϕ|O(i) many nodes. Combining both
results and inspecting the proof sketch of Theorem 3 shows
that for the full logic the number of nodes in the tableau is
also bounded by |ϕ|O(i). (Here, it is important to note that
there can be at most one alternation between epistemic and
modal transitions along each path in the tableau.) Thus, we
can guess a tableau of polynomial size and check whether it
satisfies ϕ. �

Finally, we consider the case in which the temporal and
modal depth are bounded and additionally only finitely many
propositional symbols are available. We note that a finite
set of propositions is often of less practical interest (e.g.
settings requiring natural numbers usually require an un-
bounded number of propositional symbols). For the purely
temporal fragment it has been proven that the problem can
be checked in logarithmic deterministic space [5]. In [12], on
the other hand, satisfiability of the purely modal fragment
has been shown to be solvable in linear deterministic time.
The proof of [5], however, can directly be used to show that

BDIX,Y,ZLTL -satisfiability for formulae of Li,j , i, j fixed, can be
checked in logarithmic deterministic space. The basic idea
relies on the observation that there are only finitely many
inequivalent formulae over Li,j . For each class of equivalent
formulae we identify a “canonical formula”. Then, given a
formula ϕ of which the satisfiability should be checked sim-
ple rewrite rules can be applied to determine the canoni-
cal representation ψ of ϕ. If ψ does not correspond to the
canonical representation of ⊥ it is satisfiable.

Theorem 7. Let i, j ∈ N. The BDIX,Y,ZLTL -satisfiability
problem over Li,j over a finite set of propositional atoms
can be solved in deterministic logarithmic space. This is also
true for the class of models that satisfy (weak) realism.

6. REASONING ABOUT MENTAL STATES
We have studied various fragments of the linear time BDI

logic BDILTL and obtained results on the complexity of the
corresponding satisfiability problems. Our motivation for
examining these fragments has been that agents need to be
able to reason about other agents’ mental states and logic
seems one of the most suitable tools to do so. However,

an agent also needs to be able to do so within reasonable
amounts of space and time. We have shown that fragments
exist of which the complexity can be reduced to NP. As
argued above, as a first step towards a logic that can actually
be used, these results are promising. Here we briefly consider
informally whether these fragments are also satisfactory for
the main task we had in mind, i.e. for the representation
and reasoning with mental states of other agents.

In order to evaluate this, we briefly introduce and dis-
cuss some minimal criteria. In order to support reasoning
about other agents’ mental states, we argue that the mini-
mal requirement a logic needs is that the logic (i) is able to
discriminate between informational attitudes such as beliefs
and knowledge and motivational attitudes such as desires,
goals, and intentions; (ii) facilitates reasoning about a finite
number of nestings of mental attitudes; (iii) facilitates rea-
soning about any finite number of agents; and (iv) is able
to discriminate between types of motivational states, and,
ideally would support reasoning about the class of deadline
goals which subsumes achievement and maintenance goals.

Criterium (i) has motivated us to study fragments of BDILTL.
This is one of the more well-known types of agent logics
and clearly distinguishes between informational and moti-
vational states as parts of an agent’s state.

Criterium (ii) is in part motivated by results from cogni-
tive science which inform us that a limited depth of mental
operators seems sufficient for reasoning about mental states
as humans are not able to nest such operators to a depth of
more than 3 [7]. On the other hand, in the context of agent
communication and reasoning about speech acts, one finds
that one quickly needs at least three levels of nesting (see
e.g. the example of a decision rule to inform another agent
below). Given these basic results about depth of nesting
of mental attitude operators, it seems reasonable to bound
the depth of such operators. The BDILTL fragments that we
showed to be in NP clearly support such limited nesting.

Criterium (iii) is an obvious criterium given that we are
motivated by logics that allow agents to reason about other
agents’ mental state. This motivated us to introduce the
multi-agent variant of BDI logic. From a semantic and a
complexity perspective this requirement poses no problems.

Criterium (iv) most clearly distinguishes our work from
that of others, in particular [9], which studies a multi-agent
logic called TeamLog that does not incorporate time. Being
able to support some form of reasoning about time, however,
greatly increases the expressivity and in particular allows to
distinguish between various kinds of goals. For example,
using a single U operator we are already able to represent
deadline goals. Moreover, it is clear that achievement goals
can be represented by 3φ and maintenance goals by 2φ.
The fragments we showed to be in NP support making these
distinctions. However, only the fragment with finitely many
atoms supports nesting of temporal operators (Th. 7). The
fragment that allows for infinitely many atoms (Th. 6) thus
does not allow reasoning about e.g. persistence goals 32ϕ.
It would be interesting to investigate if that fragment could
be extended with such specific combinations (while not al-
lowing nesting of arbitrary temporal operators).

Clearly, group attitudes such as common knowledge and
common or joint intentions cannot be defined using the bounded
fragments we discussed. Introducing these concepts imme-
diately blows up complexity (e.g. [9, 13]). Of course, we
can define more basic notions such as “everybody in a group
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believes ϕ”, i.e. E-BG(ϕ)↔ ∧
i∈GBiϕ. Even without such

stronger notions, however, agents can coordinate their be-
havior. The idea would be that agents can incorporate rea-
soning based on a BDILTL fragment into their decision mak-
ing algorithms. This would already allow for action choices
based on decision rules of the form: (i) if BiIjϕ then do(a),
(ii) if BiBjϕ then do(a), and (iii) if BiDj(Kjϕ ∨Kj¬ϕ) ∧
Biϕ then inform (ϕ).

7. CONCLUSION AND FUTURE WORK
We have discussed the issue of reasoning about mental

states of other agents and argued that the BDI logic BDILTL

offers a suitable tool to do so. We have studied several frag-
ments of BDILTL and showed complexity of the satisfiability
problem for these fragments to be in NP. We also intro-
duced a very generic tableau method to do so.

From a complexity point of view there are many ways
to continue the search for practical and useful fragments of
BDILTL. For example, in [6] it is shown that the satisfiabil-
ity problem for a special semantics for temporal logic with
knowledge called XL5 is NP-hard and it is interesting to
study whether similar techniques can be applied to BDILTL.
[16] discusses the complexity of the satisfiability problem for
a range of multi-modal logics restricted to the Horn fragment
including e.g. KDn, KD45n, etc. The restriction to the Horn
fragment is relevant because it may provide practical exten-
sions to e.g. Prolog. [16] also investigates bounded modal
depth but does not discuss fragments that include both in-
formational and motivational operators and does not discuss
temporal operators either. Another line of research would
involve looking at CTL instead of LTL, and identify com-
plexity classes for fragments of BDICTL.

In the future, we would also like to consider agents that
have perfect recall or do not learn and extend our analysis
in this respect. Both properties are of practical importance.
However, usually reasoning becomes computationally much
harder in the presence of these properties.

Finally, it is interesting to experiment in practice with
implemented reasoners to determine what is feasible. More-
over, if we want to incorporate a restricted BDI logic into
the decision making component of a software agent, we not
only need a reasoner, but we will also need ways to efficiently
update sets of BDILTL formulas when the agent receives new
information from its environment or through communication
with other agents.
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