Resource-Aware Junction Trees for Efficient Multi-Agent
Coordination

N. Stefanovitch
LIP6 - UPMC
75016 Paris, France

A. Farinelli
University of Verona
Verona, 1-37134, Italy

A. Rogers, N.R. Jennings
University of Southampton
Southampton, SO17 1BJ, UK

stefanovitch@poleia.lip6.fr alessandro.farinelli@univr.it {acr,nrj}@ecs.soton.ac.uk

ABSTRACT

In this paper we address efficient decentralised coordinaif co-
operative multi-agent systems by taking into account theshc
computation and communication capabilities of the agemée
consider coordination problems that can be framed as bigad
Constraint Optimisation Problems, and as such, are saitatibe
deployed on large scale multi-agent systems such as seasor n
works or multiple unmanned aerial vehicles. Specifically,facus

on techniques that exploit structural independence amgegts’
actions to provide optimal solutions to the coordinationlpem,
and, in particular, we use the Generalized Distributive I(@MDL)
algorithm. In this settings, we propose a novel resourcerawa
heuristic to build junction trees and to schedule GDL corafiabs
across the agents. Our goal is to minimise the total runrimg t
of the coordination process, rather than the theoreticalpbex-

ity of the computation, by explicitly considering the contgtion
and communication capabilities of agents. We evaluate oo p
posed approach against DPOP, RDPI and a centralized satver o
a number of benchmark coordination problems, and show tirat o
approach is able to provide optimal solutions for DCOPsfa$ian
previous approaches. Specifically, in the settings consitjevhen
resources are scarce our approach is up to three times fhaater
DPOP (which proved to be the best among the competitors in our
settings).

Categories and Subject Descriptors

1.2.11 Distributed Artificial Intelligence]: [Coherence and coor-
dination, Multiagent systems]

General Terms
Algorithms, Performance, Experimentation

Keywords

multiagent coordination, junction tree, treewidth, vatéaelimina-
tion, heuristic algorithm, GDL, DCOP

1. INTRODUCTION

Many practical applications require the development oéctffe
decentralised coordination techniques for cooperativéiagent
systems. For example, agent-based techniques have beely wid

Cite as: Resource-Aware Junction Trees for Efficient Multi-AgentoGo
dination, N. Stefanovitch, A. Farinelli, A. Rogers and N.JenningsProc.

of 10th Int. Conf. on Autonomous Agents and Multiagent 8yste
(AAMAS 2011)Tumer, Yolum, Sonenberg and Stone (eds.), May, 2-6,
2011, Taipei, Taiwan, pp. 363-370.

Copyright (C) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

363

used to control physical devices which can acquire and psoice
formation from the environment, such as sensor networkogeg
to collect environmental data [12] or multiple unmannedaee-
hicles deployed to collectively patrol and map a defined Eréh
The development of decentralised coordination technidgiesr-
ticularly challenging in these domains because such deuseally
have constrained computational resources (due to theresnent
of minimising power consumption) and because communicatio
is usually limited in bandwidth and is dependent on the ptalsi
distance and mutual positions of the devices (due to thelegise
communication technology frequently used). Moreover,geetbp
more cost effective systems, and to manage legacy, it iscéegbe
that the devices within such networks will be heterogengbas-
ing different computation and communication capabilities
Recent work has shown that to develop effective and efficient
coordination techniques it is crucial to exploit the stouat inde-
pendence between the agents’ utility functions (i.e. tlut flaat
the utility of each agent only depends on its own choice abact
and that of a small number of locally interacting neighbd(is,
14]. Doing so allows the decentralised coordination pnobte be
framed as a Distributed Constraint Optimisation Problel@QP),
enabling a number of optimal algorithms to be used as salutio
techniques, e.g., ADOPT [9], OptAPO [8] and DPOP [15].
However, these algorithms take no account of the heterogsne
computational and communication resources available eadtf:
ferent agents within the system. In many settings, andquéatily
in the cooperative settings we focus on here, it may be bealefic
to delegate computations such that (i) we take advantaggeuits.
with greater than average computational capabilities, (@have
minimise communication between agents with poor communica
tion links. Current algorithms for solving DCOPs do not ddes
such strategies. For example, DPOP arranges the congtetint
work into a pseudo-tree using a Depth First Search (DFS)adeth
While the DFS can be conveniently performed using distedut
algorithms, it does not take into account agents’ indiviganpu-
tation and communication capabilities, and it can resudtrinnef-
ficient allocation of computations to the agents. In contPaskin
and Guestrin developed an approach to cope with networks tha
have poor quality communication links (as it is frequentlg tase
with wireless networks)[14]. Their approach uses the rautree
of the communication network to arrange agents intoretion
tree, which is then further optimised in order to minimise commu-
nications. While this work takes computation and commuivca
into account, it forces the junction tree structure to be anamg
tree of the communication network, which can, as we shalivsho
later, significantly reduce the efficiency of the coordioatprocess.
Thus, against this background, in this paper we addrese thes
shortcomings by proposing r@source awaresolution technique
for DCOPs. Our approach pre-processes the constraint nebyo

building a junction tree, over which optimal inference isfpemed
using standard message passing techniques, such as thaisegr
by the Generalised Distributive Law (GDL) framework [1].ndd
tion trees are well known structures, frequently used iplgical
models and constraint processing [7] and while finding théy
junction tree (in the sense of a minimal size of the largeguel)
is NP-hard, a number of heuristics that build near optimatjion
trees are well known. Here, we propose a distributed apprtac
build the junction tree that is based on the variable elitimealgo-
rithm [5], but is extended to consider the heterogeneousr@aif
both computational and communication resources withinntste
work. In this context, the optimal tree is not the one thatimiges
the theoretical complexity of the computation (as is theaaishin
the standard literature of junction trees), but is the oraé thin-
imises the total running time of the coordination algoritfinclud-
ing both the time required by the agents to individually corep
their partial solutions, and the time for these solutiongrtipagate
up and down the junction tree).

In doing the above, this paper makes the following contidmnst
to the state of the art:

e We present the first model of decentralised coordination tha
explicitly considers the total running time required by a co
ordination algorithm that operates in heterogeneous multi
agent system.

e We propose a novel distributed algorithm, based on the vari-
able elimination algorithm, which uses a novel resourceawa
heuristic to minimise the running time of the coordination
process (as defined above).

e We empirically evaluate the proposed technique on a simu-
lated environment, comparing it with three state of the art
approaches for multi-agent systems: the pseudo-treeltyuilt
DPOP, the junction tree formation algorithm of Paskin and

Guestrin, and a benchmarking centralised approach. Our re-

Figure 1. Example of a MAS coordination problem : commu-
nication (wide grey edges) and constraint network (thin blak
edges), nodes represent both agents and variables

the variables it depends on. Given this settings, we wishtbtfie
variable assignmerX™ such that the sum of all constraint func-
tions is maximised:

X* = arg max Z U,(X;) Q)

i=1

2.2 Junction Trees

DCOPs can be solved using message passing algorithms #ueoss
constraint networka graph representation of a DCOP where nodes
are variables and edges are constraint functions. Howgver-

der to ensure completeness and termination, the constretinbrk
must be a tree. If this is not the case, then it is necessaraiis-t

sults show that, when communication resources are scarce.form the original constraint network into a special graphatruc-
our resource aware heuristic improves upon previous tech- yre called a junction tree. This is done by forming a cliquap

niques being up to 3 times faster than DPOP, which proved
to be the best competitors in our settings.

The rest of the paper is organised as follows: Section 2 pro-
vides basic background knowledge on DCOPs and graphical mod
els while Section 3 formalises the problem we are addresSiag-
tion 4 details our approach and the resource aware heuvigtic
propose. Section 5 presents the empirical analysis of qumoaph,
Section 6 discusses related work and Section 7 concludes.

2. BACKGROUND

We provide here a brief review of background knowledge comce
ing DCOPs, junction trees and the GDL framework.

2.1 Distributed Constraint Optimisation Prob-
lems

Formally a DCOP can be defined as a tuflg X', D, ¥'), where
A= {A,..., Ay} isasetof agentsY = {1,...,n}is a set of
variables. Each variable is owned by exactly one agent rbagjant
can potentially own more than one variable. An agent is nesipte
for assigning values to the variables it owd3.= {D:,--- , D, }
is a set of discrete and finite variable domains, each variatéhn
take value in the domai;. Finally, ¥ = {¢1,...,¢¥m} is a
set of constraint functions that describe the constraimisray vari-
ables. Each functiog; : D;, x --- x D;,. — R depends on a set
of variableX; C X, wherer; = |Xj| is the arity of the function.
Each function assigns a real value to each possible assigrohe

364

whose nodes (cliques) and edges (separators) are clufteas-o
ables. A junction tree is simply a clique graph which satssfre
following four properties: single-connectedness, rugriitersec-
tion, covering and maximality. Single-connectedness ssthat
the graph is a tree, yielding termination. Running intetisacen-
sures that any variable present in the intersection of tineadlo of

two cliques is also present in every clique of the path jajrttrem,
yielding correctness. Covering ensures that the domairverye
constraint function of the DCOP is the subset of at least tigae
Maximality states that a clique can not have a domain which is
a subset of the domain of another clique. One of the most well-
known algorithms to transform a constraint graph into a fiamc
tree is the variable elimination algorithm. This algoritiwarks by
sequentially selecting variables of the constraint grapminating
them and forming cliques accordingly (see [7] for more de}ai

2.3 GDL

Having formed a junction tree, the optimal solution of the @~
can be found using a suitable message passing algorithmhiohw
GDL is the most general [1]. The GDL algorithm uses two oper-
ators,® for function combination ané for function marginalisa-
tion, and exploits the distribution property @fover®. It works by
passing messages along the edges of the junction tree dochper
ing computation at the level of the nodes. DCOPs can be salyed
GDL using thesum andmaax operators respectively.

A message from a clique to a cliquem is a utility function
defined recursively over the intersection of the domains afdm

by the formula:Vy € d(m) N d(n), where the functiod gives the
set of variables associated to a clique or separator (¢@hese):

Yn—m(¥) = Bxed(n)\d(m) (Rier(m)\mPi—n & Yn)(xUy)

A special node, called the root, receives the informatiomfall of

its neighbours. It computes the optimal instantiation®fdriables
and then starts the recursive phase of local optimisatieldiyig the
global optima (propagation phase). Specifically hen a eligure-

ceives the instantiation from its paremtit conditionally optimise
the instantiation of its variable and then propagates thefsi-

stantiation it knows:

Xy, = (arg®xed(n\d(m) (Qier () \mWVi—n®n) (XUXp0n)) UXnan

Both the collect and propagation phases can be performddavit
linear number of messages. However, during the collectgphibe

computation of the messages and the size of the messages are e

ponential in the size of the clique sending them, and theirality/
of the corresponding separator respectively.

The use of junction trees in combination with the GDL algo-
rithms is attractive as they inherently work in a distrilsiveay by
message passing. Moreover such an approach is efficienisas it
exponential only in the treewidth rather than in the totamber
of variables. The treewidth is a parameter of a tree decoitipos
which is the size of the largest clique, and is usually farlemthan
the total number of variables. Finding a junction tree of imial
treewidth is however an NP-hard problem [7].

3. PROBLEM DESCRIPTION

Having presented the necessary background, we now formedly
scribe the problem that we tackle; that of, minimising thaltoun-
ning time of a coordination algorithm when faced with hetgro
neous computational resources, and a bandwidth congiraore-
munication structure. To this end, we introduce the conoépt
computationakask to model the GDL solution process for DCOP.
A computational task (¢n—m(y)) describes the amount of com-
putation that an agent has to perform in ordecamputethe mes-
sagey,n—m (y) defined in Section 2.3.

Since the computation of a messagge ... (y) recursively de-
pends on the computation of messages from neighbouringediq
these computational tasks are tied by the set of execution co
straintsEC(r;) = {r{,--- ,7i} wherer; are tasks that must be
executed before;. We denote the set of all the computational tasks
as'T, and this consists of the set of cliques of the junction tree a
the set of constraint functiohsExecution of a computational task
involves the processing of constraint functions and reckimes-
sages (i.e., the summation of those functions and the mgaation
over some subsets of the decision variables) in order to atenp
the message. Each computational task is assigned to a agnehe,
which is responsible for all the aspects of the executiohisftask.
We denotex : T — A the function representing this allocation.

Thecompletion timef a taskr depends on its size (given by the
size function), on the computational power of the agedt) ex-
pressed as the number of constraint checks per unit of tilmen(g
by thespeed function), and on the characteristics of the communi-
cation links used to route the messages produced by theteecu
of EC(7) to the agentx(7) (given by thetrans function). The
completion time of a single computational task, can thendfimeld

1Constraint functions can be seen as computational taskrireg
no processing from the agent side, but requiring some nom-ze
transmission time to the agent responsible of the cliquehizhv
the constraint function is allocated.

365

Eb

P1ipathr YarhsiPs

Figure 2: Instance of a solution obtained on the MAS coordi-
nation problem of Figure 1

as a functionC'T : T — N, whose expression is:
CT (1)

maz,,cgc(-)CT(Ti) + transa(r,y,a() (i)
+size(T)/speed(a(T))

Note that, we assume that agents are not multitasking akd tas
are not preemptive, such that agents can either computd,®en
receive messages at any time, and can not interrupt one &¢ tho
activities if already started. We consider a restricted mami-
cation structure composed of pairwise communication linker
each link we consider a symmetric limited bandwidth thatrosei
the time required to transmit messages over the link. If antg
on the shortest path between two agents is performing oneeof t
above activities, messages between these two agents hiasetei
wait or to find a new route. Such a setting models some impor-
tant aspects of wireless sensor networks such as limitediielth,
limited connectivity, multi-hop communication and podsimet-
work congestions. Small bandwidth values can represehtibat
throughput reliable communication links or high throughpore-
liable communication links.

Figure 1 shows an exemplar instance of a constraint netwsrk a
sociated with a restricted communication network. The sade-
resent decision variables, the thin black edges are camstte-
pendencies between the variables. Constraints that holdeba
variables are associated with constraint functignsaas shown in
the figure. The thick grey edges represent the underlyinghoem
nication network between the agents responsible for thahlas.
Numbers next to those edges correspond to the bandwidtheof th
communication links while numbers next to the agents regmies
computational speed of the agents.

Now, given any specific constraint network, we can define the
set of computational tasks and the set of messages that méed t
computed and propagated according to the GDL algorithm. The
GDL algorithm can then be described as the execution of tecas
ated computational tasks using agents as computatior@ainees.
Specifically, given a DCOP instanded, X', D, ¥), to obtain the
set of associated computational tasks we have to choose@ set
of cliques, an allocatiomvwy : ¥ — C of constraints functions to
cliques, and an allocationc : C — A of the cliqgues onto the
agents. We can now define S(C, aw, ac) as the time to com-
plete all tasks subject to the execution constraints. Suchexion
is known as the makespan in the scheduling literdtuaed in our
setting it corresponds to the time at which the last task le&n b
computed (which is the maximisation of the root clique). fEhe
fore, representing the special task associated to the liootecof
the GDL algorithm as-., the makespan can be defined a8S =

>The makespan is a concept more general but akin to the number
of non concurrent constraint checks in DCOP literatureesinex-
plicitly takes into account communication delays

CT (). Our aim is then to find the junction tree, the allocation of
constraints to cliques and cliques to agents that will misénthis
makespan, such that:

arg min MS(C,aw,ac)
C,ay,ac
Unfortunately, optimally scheduling a set of tasks onto taoe
heterogeneous processors, even without considering caiaiu
tion, is known to be NP-hard [18]. Therefore, in this pape,aim
to design an effective heuristic that works well in practise

4. RESOURCE-AWARE JUNCTION TREES

Here we present our approach to build junction trees andatko
computational tasks to agents in order to heuristicallyimise
the makespan of the coordination process. We first note hieat t
minimisation problem stated in the previous section caniided
into two sub-problems: (i) finding a suitable junction treszdm-
position of the problem, by defining cliques and allocatirmy-c
straint functions to cliques; (ii) allocating the resudficomputa-
tional tasks to agents to minimise the makespan. Howewewh
subproblems are interconnected because grouping of \esiab
cligues induced by the junction tree impacts on the comjmurtat
and communication that agents need to perform. The appreach
propose treats both subproblems at the same time, and Widedi
into two key parts: a distributed protocol that implemerdsable
elimination and a novel resource aware heuristic (RAH) sleatks
to select variables in order to heuristically minimise thakespan
of the coordination process.

Distributed Protocol for Variable Elimination

This protocol is a distributed negotiation protocol thateexis the
variable elimination algorithm by making use of calls fooposals
(CFP) and bids in order to determine the next variable toielim
nate and the agent responsible for the associated cliquinisax
tion. Our protocol proceeds by each agent broadcasting éife C
for each variable it is responsible for. Each agent thenegpb

a CFP by estimating the makespan associated with itsel§bein
sponsible for the computation of the clique that would beawé

if the variable specified in the CFP was eliminated. Given tt@-
scription, we now formally define the key elements of our pcot.

e A constraintis a tuple(f, X, v ¢, ar), wheref is the identifier
of the constraintXy C X is the domain (or label) of the constraint
function,; : 2%/ — R is the constraint function and; € A is
the identity of the agent owning the constraint.

e A variableis a tuple(X, I'x, T%*** ax, cx), whereX is the
identifier of the variableI'x C X is the set of neighbours of
this variable in the constraint grapiz*** C X' is the set of for-
mer neighbours that have already been eliminaiedc A is the
agent responsible for this variable anyd € C is the clique related
to the elimination of this variable (initially void). For $tance,
in the Figure 1 variableXs is represented by the following tuple
<X27 {17 2, 3}7 {}7 2, ®>

e A cliqueis a tuple(c, X., ., TS, X, a.), wherec is the iden-
tifier of the clique,X. C X is the domain (or label) of the clique,
V. C U is the set of constraint functions allocated to the clique
(initially void), TS C C is the set of neighbours in the junction tree
(initially void), X. € X is the variable whose elimination led to
the creation ot anda. € A is the identity of the agent responsi-
ble of the clique. For instance in the Figure 2 the clidieX> X3
is represented by the following tupleX1 X2 X3, { X1, X2, X3},
{wlv ¢27 ¢7}7 {X1X3X6}7 X27 1>

e An agentis a tuple(a, Xa, ¥q,Cq, ['¢°™), wherea is the iden-
tifier of the agentX, C X is the subset of variables the agent
owns, ¥, C W is the set of constraint functions allocated to the

366

agent,C, C C is the set of cliques allocated to the agent (initially
void) andT';°™ C A is the set of neighbours of the agent in the
communication graph. For instance in the Figure 2, agent&is
resented by the following tuplé3, { Xs}, {3, 6}, {X1X3Xe,
X3XaXe}, {1,2,3}).

e A CFPis initiated by one agent which proposes to another to
take the responsibility of a clique (which is onpartially created
and initialised). Formally a CFP is a tuple, ¢, d), wheres € A is
the sender agend, is a date (the number of the bidding turn), and
c is a clique, whose function (of exponential size) is not wda
The initialised fields ofc are ¥, - with the list of subfunctions
that would be allocated te, I'C - with the list of neighbouring
cliques in the junction tree (this set is needed to deterthieset of
separators, which in turns define the scope of messages olied w
have to be transmitted or received byand X . - which identifies
the variable for which the CFP has been sent.

e A bid is formally a tuple(s, r, cfp, clique, v) wheres € A is
the sender agent, € A is the addressee agenf,p is the CFP for
which the bid is a replylique is the identity of the clique to which
the constraint functions of the clique of the CFP will be edited
andv € R is an evaluation of the time it would take the agent
to compute the clique proposed by ageim his CFP.

Algorithm 1 Variable selection and eliminationd]ection)

1: parallel{treat_CFP() }
. date— 0O

2:

3: while date < |X| do

4: |/ conpute variables’ heuristic values

5. send_CFP()

6. treat_bids()

7. |/ select the next variable to elinminate
8: selected_bid < consensus_selebt(st_bid)

9

c «— selected_bid.cfp.c

X «— X,

11: // allocate the clique

12: if selected_bid.s = a then

13: Co — CoU{cx}

14: endif

15: // update the set of constraint
functions

16: if X € X, then

17: W, «— ¥, \ T,

18: endif

19: // add new constrai nt dependencies

bet ween each pair of neighbours

20: forY e X;nAX.do

21: for Ze X.:Y # Zdo

22: if Y ¢ Tz then

23: /1 extend vari abl es’ nei ghbour hood
24: I'y; —T'zU {Y}

25: I'y «<TI'y U {Z}

26: end if

27: end for

28: end for

29: // update vari abl es nei ghbourhood with

respect to X
forall X, € X, do
// renpbve vari abl es’

constrai nt edges
32: anhan\{X}

33: /1 menorise variables’ past constraint
edges

34: I TR U{X}

35: end for

36: // reset the algorithm s |ocal variables

37: best_bid —)

38: date « date + 1

39: end while

40: compute a maximum spanning tree and connect the cligues a

cordingly
1: start the GDL message passing inference algorithm

N

Having defined our terms we now present our protocol in al-
gorithms 1-5. Variable elimination works first by computiag
heuristic evaluation for each variable. This is done by conc
rently executing the functiongreat_CF P (line 1 of Algorithm
1), send_CF P andtreat_bids (lines 5-6 of Algorithm 1). CFP
are used in order to assess the impact on the makespan offtie el
nation of a variable. In order to do so a CFP contains the elau-
responding to the elimination of this variable. No cliquadsied to
the junction tree until a consensus has been reached onribblea
to eliminate (lines 9-14 of Algorithm 1), at which time onlye
clique is actually created.

e send_CF' P computes and sends a CFP for each of the variable
an agent is responsible for. The fidld is filled with the set of con-
straint function3 that would be allocated to this clique if actually
created, and the sEf is filled accordingly with the neighbourhood
of this clique. Notice that this is a conservative estimats the
actual neighbours will be computed in Algorithm 1 (line 4®.
CFP is compiled only with the information available in theedi
neighbourhood of the variable in the constraint graph ¢lide 6
and 8). The CFP is then propagated to all the agents.

e treat_C'F P waits for incoming CFP and calls upon receiving
the procedureRAH _evaluate_clique. This function returns an
heuristic evaluation of the impact on the makespan for tipénato
compute the clique in the CFP. If the clique of the CFP has aailtom
which is a subset of one of the cliques associated with abariaf
the agent, the evaluation is then set to 0, and the cliquentbald
be created is set to this already existing clique. Othenligevalue
is left untouched and the clique that would be created is tigeio
the CFP (lines 4-9). This is done in order to enforce the use of
maximal cliques only. The bid is then sent to the sender agent

e treat_bids handles received bid messages. If an incoming
bid has an evaluation lower than the current best bid, itlecsed
as the best bid (lines 5-8). The agent corresponding to thedb
evaluation is stored inside the bid data structure. Whettalbids
have been received, the flow of control returns to Algorithm 1

e sclection is the function implementing the actual distributed
variable elimination algorithms. Once the previous aldpns com-
plete, it selects a variable to eliminate according to theriséic
evaluation computed (line 7). This step is made through aemn
sus, where each agent proposes the best bid it has receieed. V
ious algorithms such as a wave propagation algorithm [1d]cco
be used in order to perform a consensus, however the sinydgst
is to propagate each message to all the agents. The variadble a
the clique are then extracted (lines 8-9). The agent seldwtehe
winning bid adds the new clique to the set of cliques that ieis
sponsible for (lines 11-13). The agent owning the selectedble
first updates the set of its constraint functions by remotiregones
allocated to the new clique (line 17). All the neighbourirgeats
of the selected variables update concurrently both théghbeur-
hood (lines 31-34) and the constraint neighbourhood of treei-
ables (lines 24-25). It is necessary to do so in order to diotle
the deleted edges (used to compute the heuristic) and thsetul
of dependencies between variables (used to communicatealkit
the relevant agents). When all the variables have beenreltet,
the cliques are connected together using a maximum spatreig
which enforces the tree structure and the running intemseptop-
erty of the junction tree [3]. This can be done efficiently idia-
tributed way using the approach of [6]. Finally, Algorithnsthrts

3The actual function is not transmitted as it is of exponésiize.
The heuristic can be computed by considering only its dor{s&e
line 13 of Algorithm 5)

the GDL messages-passing algorithm (line 41). The root i®de
selected as the one in the middle of the diameter of the jumcti
tree.

Algorithm 2 Outgoing CFP managementeqd_CF' P)

1: // conpute and send CFPx
2: forall X € &, do

3: // conpute the domain of the clique

4: X.—{X}Uulx

5. // conpute the set of related constraint
functions

6: U, «— UYGFXUrg(ast{<f7 Xp,0,ay) : Yy € Wap, Xy C
Xe

7. |/ conpute the set of related cliques

8: Ff — UYerpa,st{CY}

9: // partially create the clique

10: clique — (¢, Xe, ¥, TS, X,)

11: // create the CFP

12: CFPx < (a,clique,date)

13: broadcastCF Px

14: end for

Algorithm 3 Incoming CFP managemerit-¢at_CF P)
1: if receive(cfp = (s,c,d)) A d = date then

2: v < RAH_evaluate_clique(c)

3: //lenforce the use of maxi mal cliques
only

4 if3X € Xy : X C &, then

5: clique «— cx

6: v—0

7. else

8: clique «— ¢

9: endif

10: bid < (a, s, cfp, clique, v)

11: sendbid

12: end if

Algorithm 4 Incoming bid managementi(eat_bids)

1: bids +— ()
2: while |bids| < |.A| do

3. if receive(bid = (s,r, cfp, clique,v)) AT = a A cfp.d=
date then

4 bids «— bids U {bid}

5 if best_bid.v > v then

6: best_bid — bid

7. v+ 0

8: end if

9: /1 select the next variable

10: endif

11: end while

As there are a finite number of variables and one variable is al
ways eliminated at the end of each turn, this algorithm willaays
terminate provided that there is no message loss. While weto
deal with such an issue here, we note that such issue could-be a
dressed by using other consensus approaches [4] or spexific ¢
munication protocol (such as for example TCP). Our protdsol
fully distributed as an agent only needs to know the conssat
is involved with and the total number of agents in the systam,
no moment does an agent know the full set of constraints or var
ables. In contrast, each agent executes the part of thévlegbm-
ination relative to their variables. The consensus prdtensures
that at each step, all the agents are synchronised on thigtydei
the eliminated variable. Therefore, our protocol is carrand re-

“While each agent might not be able to reach all other agents sults in the same junction tree that would be created thraugn-

directly, messages will be propagated to all the agentsilggss
though multi-hop communication.

367

ventional centralized variable elimination using our tese aware
heuristic.

(a) (b) (c)

Figure 3: Constraint graphs of (a) ring, (b) tree and (c) cluster
instances

Resource Aware Heuristic

Algorithm 5 RAH heuristic RAH _evaluate_clique(c : clique))

v — X,

: eval— +o0o

. a « identity of the current agent

. timeComp— s(d())/speed(a)

Il estimaterans for r € C (separators)

: timeSep— 0

: forall ¢ € ¥.do

timeSep— max(timeSep,sp(a,,s(X. N X.)))

: end for

./l estimatérans for 7 € ¥ (constraint functions)
: timeSub— 0

forall f €T do

timeSub— max(timeSub,sp(as,s(ty)))

: end for

. eval« min(eval,timeComp+timeSep+timeSub)
: return eval

The RAH _evaluate_clique procedure takes as input a clique and
gives an heuristic estimate of the impact on the makespaheof t
computation of the clique on the current agent. This is done b
greedily allocating constraint functions to this cliquedaadlocat-
ing the clique to one agent. In more detalil, this proceduremgdes
the sum of three values: the time to compute the task, thettme
transfer the allocated constraint functions, and the tionteansfer
the messages of the execution constraints (lines 5-14 afritgn

5). The evaluation of the time to transfer messages is cadput
as the size of the message divided by the maximal bandwidth be
tween the involved agents. This computation is done bysthe
function (lines 8, 13 of Algorithm 5), where the functiereturns
the number of elements in the utility table representingretion
given its domains. Note that this is an approximation sirme&es-
tion in the communication network will impact this resulovever

as discussed in Section 3 we focus here on an effective kieuris
approach rather than an optimal allocation which is knowbeo
NP-hard [10].

Figure 2 depicts the results of our approach applied to th&MA
coordination problem of Figure 1. The constraint functidio-a
cation are indicated beneath the cliques, and clique altot#o
agents are indicated on top of each clique with the numbeheof t
responsible agent. The asterisk denotes the root. In tkiarine,
agent 3 is responsible for two cliques as the heuristic egém
that the makespan could best be reduced by saving commionicat
rather than exploiting distribution of computations.

5. EMPIRICAL EVALUATION

We empirically evaluate our RAH algorithm against two clgse
related state of the art distributed inference algorith(j)sDPOP,
whose pseudo-tree is built with a distributed DFS apprdaahd

>We use here the most connected node (MCN) heuristics, wkich a

368

@) (b) (©)

Figure 4. Three communication graphs of thecluster instance,
where (a) r=100, (b) r=300 and (c) r=700

(i) RDPI (Robust Distributed Probabilistic Inferencehetinitial
junction tree construction of Paskin and Guestrin whichHdsua
junction tree over the minimum spanning tree of the comnamnic
tion network [14]. We also compare against a centralisecttoen
marking approach, which generates a near-optimal jundtiea
using the standard variable elimination algorithm andnifi@mum
size(MS) heuristic, and then allocates all tasks to the fasigsnia
in the system. We refer to this algorithm as MS.

We benchmark these algorithms on a set of three scenaribs wit
different constraint network structures. Agents are ledan a
square of fixed size of 1000 unit and we consider three diftere
topologies: rings, trees and clusters with 30, 40 and 30tagen
spectively. For simplicity we consider that there are asymaani-
ables as agent; constraints are n-ary. Figure 3 shows thiige
of the three constraint networks considered.

For each scenario we perform a set of experiments by vargimg t
communication range (i.e., the distance within which twerdg
can communicate) in order to study the impact of the avditabi
of communication resources on the coordination procediitee
communication range describes the availability of the comica-
tion resources. A communication range lower than 100 indica
that only a few communication links between neighbouringrag
exist, while a communication range greater than 500 impheas
each agent is roughly connected to at least half of the agette
system. The wider is the communication range, the moreyliiel
is to find direct high bandwidth communication links betwesry
two agents. In the limit, such a case is equivalent to havimg n
communication constraint at all.

Figure 4 represents the structure of the communicationor&tw
for three different ranges of communication in ttiesterinstance.
For each experiment (i.e. afixed constraint and commuwicakgt-
work structure) the agents’ computational speed and libksid-
width are randomly drawn from the set {2,4,8}.

Results

We measure the makespan and tteewidth (the size of a maxi-
mal clique [7]) for each algorithm. The makespan is empiifca
computed on a simulation environment matching the full abar
teristics described in Section 3 (i.e., blocking commutidees, non
multitask agents and non preemptive tasks) using the saunte ro
ing policy for all the algorithms (except RDPI which has itgn).
Note that in these simulations we include the full effect efwork
congestion. The unit of makespan measurement is the tirpe ste
of the simulator. For each experiment we performed 15 rund, a
we report the mean and the standard error of the mean in Figure
The treewidth measurements are reported in Table 1. In tzsth ¢
r notes the communication range parameter.

In the ring and cluster scenario, the resource aware heuristic
performs up to three times faster than DPOP when resourees ar

discussed in [15] drives the DFS to obtain pseudo-trees aith
treewidth

scarce (communication range below 100). The performaree th

. . L Ring Structured Constraint Networks
stabilises (two times faster than DPOP) when the communitat Tng ST : ‘

w
a

range increases. In thieee scenario, because the communica- L ;L"/f'H
tion and constraint networks are both tree structured andrgéed 300t) 1 - - DPOR|

according to a distance measure between agents, commanicat
along the DPOP pseudo-tree matches the communication retwo
more closely than in other instances, where the agent reggen
for neighbouring cliques are less likely to be neighboutsé@com-
munication graph. As a result the performances of RAH and BPO
are similar until the point where communication is no longer
scarce resource (communication range of 400) where DPQffeis a
to perform better. These results show the importance ofigaikito
account the differences between the communication andredmts

Coordination Process Makespan
= N N
ol o a
e o ©

i
/
;
.
=
7
,
/

=
o
Q
i
'
’
—

50 ‘ ‘ ‘ ‘ ‘
. 0 100 200 300 400 500
netWOI‘kS n DCOPS] Range Parameter (r)
The comparison between RAH and MS shows that the differ- Tree Structured Constraint Networks

ence in performance is not only highly contrasted but is nsad
when communication is no longer a scarce resource. Spdlifica
in such a case MS is able to perform better than the resouraraw
heuristic we propose as all the agents are able to directhnuo
nicate with fast communication links with the centralisiagent,
indicating that in this case centralising the solution isreneffi-
cient. Conversely when resources are highly constrainedRH

is able to perform up to 3 times faster than MS.

The makespan obtained with the RDPI algorithm was extremely

high (around two orders of magnitude higher than MS) in oty se
tings, and are thus not reported in the Figure 5. This isedlab

Coordination Process Makespan

the high treewidth (see Table 1) of the junction trees whichp 59 100 200 300 200 500
to six times the treewidth of a near-optimal junction tred &mo Range Parameter (1)

to three times larger on average.This is due to the fact tRRIR o Cluster Structured Constraint Networks
forces the junction tree to be built on top of a spanning tfeb® ---Ms
communication network and this can result in junction treféts 600l | R

very large treewidth. In order to tackle this problem, Pagkio-
poses to use simulated annealing in order to optimise thaipm

tree. However, such a procedure requires an expensivébdisil
evaluation procedure in order to evaluate the cost of a loxale

and an unbounded number of messages [13]. As we focus here on
the efficiency of junction trees that can be obtained withpbnpre-
processing techniques, we only report for RDPI the perfocaaf

the initial junction tree. The reported experimental enicks sug-

gest that the cost of RDPI when the optimisation proceduoes c

IN
o
Q
——i

Coordination Process Makespan
]
<
bt
i
i

verge, is within a factor of two of hypothesized optimal jtion 100100 200 300 400 500 600 700

tree, which was built using an off-line centralised proaegdwhile Range Parameter ()

the initial tree is up to seven times worst than that. Howewer

tice that in our experiments RDPI results were orders of ritade Figure 5: Coordination process makespan for the ajing b) tree
worst than competitors. and c) cluster structured constraint graph instance

Furthermore notice that the treewidth for MS and RAH are very
similar (see Table 1) but RAH clearly outperforms MS when eom
munication is scarce (see Figure 5). These results again tteo

importance of taking into account agents’ communicatich@m- r MS RAH DPOP RDPI
putation capabilities when building the junction tree. 50 5 58+0.1 6 10.4£ 0.3
Summarising, our results show that while the treewidth ef th S|100| 5 54401 6 8.8+ 0.2
junction tree remains an important parameter as it has amexp 3300 5 52401 6 11.1+ 05
tial impact on the efficiency of the algorithm, junction tsesith 500 5 5.1+0.1 6 19.4+ 05
higher treewidths can still result in better overall penfiances in 50 4 44+01 [13.3f 0.7
such heterogeneous distributed settings if computationagpro- © | 100| 4 4.4+01 5 18.5+ 0.7
priately scheduled across agents. £1300| 4 42401 5 20.6+ 1.0
500 4 4.1+0.1 5 20.6+ 1.0
; 5 | 50 7 7.0+0 7 8+0
Co‘mplexny o o , ©|100| 7 7.4401 7 8+0
While the running time depicted in Figure 5 only shows thatreé 3 300 7 7.1+01 7 13+ 0.7
performance of the different junction trees, it is impottfon real- 700 7 7.0+0 7 249405

world applications to also take into account the distridutening
time of the preprocessing steps of all those algorithms. Muds
here the complexity, in terms of number of messages exchisfoge Table 1: Benchmarked treewidths
the different approaches. For ease of notation, let us assuene

369

are as many agents as variable, wherfig this numbertw is the lution techniques developed in the graphical model comtyiuni
treewidth, and that each agent possesses exactly oneleariab decentralised constraint optimisation.

In terms of number of messages, DFS exploration @seses- Specifically, we show the importance of taking into accotet t
sages, and the MCN heuristic uses messages at each steps, actual resources of a multi-agent system when solving costdi
yielding a number of messages for our DPOP implementation in rial optimisation problems across it, and validate our epph on
O(ntw). RDPI use)(nlogn) messages in order to build a span- benchmark coordination problems

ning tree and thel(n — 1) messages in order to build the junction Future work are divided in two directions. The first is to empi
tree on top of it, yielding a number of message®im logn). The cally validate our approach on a deployed wireless sensaionie.
MS algorithm is centralised and therefore each agent sentet The second aims to investigate bounded approximate digusit
centralising agent its information regarding the variatdad vari- Addressing the trade-off among communication, computaaiod

ables neighborhood, requiring the exchange ofessages. Finally the bound that can be provided on solution quality.
the number of messages of our approach is the following. rQuri
the stef) < k < n of Algorithm 1n — k CFP andn(n — k) bids 8. REFERENCES
. . 3 -
are sent, yielding a total number of messages for RAB(n”). [1] S. Ajiand R. McEliece. The generalized distributive [d&EE

While the number of messages of our algorithm is higher than Transactions on Information Theqr6(2):325-343, 2000.
the others, as the results show, our approach can yield bette [2] D. Allouche, S. de Givry, and T. Schiex. Towards paratieh serial
ning time for the DCOP solving algorithm for the solution pba dynamic programming for solving hard weighted cspPhinciples
For real applications the measure we are interested in isdhe and Practice of Constraint Programmingolume 6308 ot ecture
bined running time of the preprocessing phase and the asiial Notes in Computer Scienogages 53-60, 2010.
tion phase. Such a running time depends on various parasntter [3] J. R. S. Blair and B. Peyton. An introduction to chordahgjns and

clique treeslinstitute for Mathematics and Its Applicatigrs6, 1993.
[4] T.D. Chandra and S. Toueg. Unreliable failure detectorseliable
distributed systemsl. ACM 43(2):225-267, 1996.

number of variables:, the tree-widthtw and the cardinalityl of
the variables and also depends on the computation and commun

cation capabilities of the multi-agent system. Now, the banof [5] R. Dechter and J. Pearl. Network-based heuristics for
messages of the preprocessing phase for RAH is higher than co constraint-satisfaction problemactif. Intell., 34(1):1-38, 1987.
petitors, but notice that messages sent in this preproxegpsiase [6] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distriuiit
are of fixed size with respect tav andd, while the complexity of algorithm for minimum-weight spanning treesCM Trans.

the junction tree solution phase is exponentiatinwith a basis Program. Lang. Syst5(1):66-77, 1983.

of d. Therefore, depending on the values of the above parameters [7] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifytree
the time required to send the messages for the preprocesisisg ‘iem{"g(_’i't'onls for geason'”g in graphical modalsif. Intell.,
can be negligible with respect to the gain obtained in th@ing 66(1-2):165-193, 2005.

: . - . . [8] R. Mailler and V. Lesser. Solving distributed consttaiptimization
time for the solution phase. For instance if we considercthster problems using cooperative mediation.Aroc. of the 3rd Int. Contf.

experiment, we have = 30, tw = 7, d = 2. The maximal time to on Autonomous Agents and MultiAgent Systqrages 438445,
compute a clique in such a casefs= 128 times steps, while the 2004.

RAH algorithm needs to exchang2® - 10° messages. However, [9] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:

if we considerd = 10, the complexity of the junction tree solution Asynchronous distributed constraint optimization witrakiy
phase become prevalent with - 10° times steps while the number guaranteesartificial Intelligence (161):149-180, 2005.

[10] A. Moukrim and A. Quilliot. Scheduling with communidat delays
and data routing in message passing architecturéarallel and
Distributed Processingsolume 1388 of_ecture Notes in Computer

of messages sent by RAH does not change.
Thus, depending on the settings of a coordination problem ou

algorithm can provide substantial gains in terms of totaining Sciencepages 438-451, 1998.
time despite having a preprocessing overhead greaterlibanes [11] L. Otten and R. Dechter. Towards parallel search fomoigation in
currently used in DPOP, MS and RDPI. graphical models. IProc. of the 11th Int. Symposium on Avtificial

Intelligence and Mathematic2010.
[12] P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A
6. RELATED WORK utility-based sensing and communication model for a glasasor
The use of junction trees (and other related graphical nspdet &et}lt\-lopr\k' 'ntPSf;OC-t of 5th Int. %Jgé olg éAéthggrgous Agents and
solving DCOPs and the development of distributed appraafdre ulti-rAgent systempages 1355- L
. . T . . [13] M. A. Paskin.Exploiting locality in probabilistic inference®hD
junction tree compilation is a recent research topic thagising

d thesis, University of California at Berkeley, 2004.
increasing attention. For example, Xia and Prassana use-a di [14] M. A. Paskin and C. E. Guestrin. Robust probabilistiference in

tributed junction tree creation algorithm based on a DF8 &ed distributed systems. IRroceedings of the 20th Conf. on Uncertainty
propose to select the root so as to minimise the makespan@19] in Artificial Intelligence pages 436-445, 2004.

ten and Dechter propose an heuristic for graphical modedscha [15] A. Petcu.A Class of Algorithms for Distributed Constraint

on problem size measure that aims at load balancing effigite Optimization Phd. thesis no. 3942, Swiss Federal Institute of
junction tree inference on as set of processors [11], Ahetand al. Technology (EPFL), 2007.

explicitly consider the problem of using distributed vati@elimi- [16] R. Stranders, A. Farinelli, A. Rogers, and N. Jennifgscentralised
coordination of mobile sensors using the max-sum algorifinm

nation in order to solve hard constraint optimisation peafs [2]. Proc. of the 21st Int. Joint Conf. on Atrtificial Intelligenqeages

However, none of these approaches address the problem from a 292298, 20009.

MAS perspective, and as such they do not consider heteritgene [17] G. Tel.Introduction to Distributed Algorithm<Cambridge University

of computation and communication and they do not focus or hav Press, 2000.

ing a distributed approach [18] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task schedulifgaithms
for heterogeneous processdpsoc. of Heterogeneous Computing
Workshop pages 3-14, 1999.

7. CONCLUSION [19] Y. Xia and V. K. Prasanna. Parallel exact inference enall

In this work we take a first important step to explicitly caesi brogdband engine procesiori':z'mzcdé’éthe 2008 ACM/IEEE Conf.

multi-agent system specific issues (such as heterogenfeiiyno- on Supercomputingages 1-12, '

putation and communication across the agents) when ajgpsgn

370

