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ABSTRACT
Communication is a key capability of autonomous agents in a multi-
agent system to exchange information about their environment. It
requires a naming convention that typically involves a set of prede-
fined names for all objects in the environment, which the agents
share and understand. However, when the agents are heteroge-
neous, highly distributed, and situated in an unknown environment,
it is very unrealistic to assume that all the objects can be foreseen in
advance, and therefore their names cannot be defined beforehand.
In such a case, each individual agent needs to be able to introduce
new names for the objects it encounters and align them with the
naming convention used by the other agents. A language game is a
prospective mechanism for the agents to learn and align the naming
conventions between them. In this paper we extend the language
game model by proposing novel strategies for selecting topics, i.e.
attracting agent’s attention to different objects during the learning
process. Using a simulated multi-agent system we evaluate the pro-
cess of name alignment in the case of the least restrictive type of
language game, the naming game without feedback. Utilising pro-
posed strategies we study the dynamic character of formation of
coherent naming conventions and compare it with the behaviour
of commonly used random selection strategy. The experimental
results demonstrate that the new strategies improve the overall con-
vergence of the alignment process, limit agent’s overall demand on
memory, and scale with the increasing number of the interacting
agents.
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1. INTRODUCTION
Language is an extensively used everyday tool, as it allows in-

dividuals to gain, share and utilise information in a social setting.
It is also a key capability of autonomous agents that facilitates the
exchange of information and enables collaboration in a multi-agent
system. As such, language constitutes the collective adaptation to
the changing circumstances of the environment and advances the
performance of certain social tasks.

Conveying information about the state of the environment, i.e.
communication, requires that agents share a set of predefined names
for all of the perceivable objects. However, it is very unrealistic to
assume that all of the objects can be foreseen in advance, and that
all of the required names can be defined and shared beforehand.
Therefore, all agents need to develop from scratch, and further sus-
tain, their individual names for all of the perceived objects.

In principle, word learning is a rather simple task of mapping
linguistic labels onto a set of pre-established concepts [2]. How-
ever, the problem is far more complex in a multi-agent setting, as
any differences in individual mappings, i.e. naming conventions,
result in miscommunication between interacting agents. As such,
agents not only need to develop and sustain their individual names,
but most importantly need to align them to form a coherent shared
naming convention. In particular, each autonomous agent, through
a series of consecutive interactions with other agents, needs to align
its private linguistic mappings. As such, a multi-agent system com-
prised of communicating individuals can be considered as a ‘com-
plex adaptive system’ [17] that collectively solves the problem of
developing a shared communication system.

Despite several studies [4, 14, 18, 21, 22] the problem of lan-
guage alignment is still an active area of research [13, 18, 20].
Moreover, language game model [7, 8, 18, 19] defines a prospective
mechanism for agents to learn and align their naming conventions.
In this paper we introduce a novel approach of agent’s attention
orienting, i.e. topic selection strategies (see section 4) in language
game, and evaluate its impact on the process of name alignment.
Using a simulated multi-agent system, formalised in section 3, we
study the dynamics of the language alignment process in the case
of no feedback naming game1. Incorporating the adaptive cross-
situational learning scheme [8], in section 5 we study the dynamics
of the emergent process against different topic selection strategies
that are utilised by the speakers. We show how a proper modifica-
tion of the topic selection strategy may improve the overall con-
vergence of the alignment process, limit the overall demand on
memory, and scale properly with the increasing number of agents.
1No feedback naming game [19] is a type of language game [18]
(see section 2)
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Finally, in section 6, we analyse the mechanism underlining the
observed behaviour and conclude the paper in section 7.

2. BACKGROUND AND RELATED WORK
The general problem of language alignment is fundamental to

the field of multi-agent systems, especially embodied multi-agent
systems. For instance, incorporating a flexible semantic communi-
cation system into a smart sensors network [5, 10, 23] may lower
system’s energy utilisation and extend its operation time. However,
the most significant, and most appealing is the incorporation of lan-
guage alignment mechanism in robotic systems [13, 16, 18].

To focus the attention, let us assume a group of spatially dis-
tributed mobile agents operating in an unknown, highly dynamic,
spacious and possibly adversarial territory, similarity to settings
proposed in [12] or [6]. All autonomous agents are embodied, sit-
uated (physically bounded) and distributed, all are capable of ba-
sic manoeuvring and all share a common task of monitoring the
environment. Each individual is wandering around the environ-
ment collecting valuable information and occasionally engaging in
interaction with the nearby agents. Depending on it’s current in-
tentions the character of such interaction may differ, from basic
mutual identification, through information exchange, to a complex
coordinated action. Nevertheless, vast majority of these interac-
tions involve linguistic communication, where language facilitates
the interplay between cognitive agents [3]. In order to convey in-
formation about objects from agent’s sight, for instance to align the
attention of interacting agents and focus on a particular object from
the surroundings, agents must exchange meaningful symbols.

Obviously, in order to focus attention on the exact same object
the population must share and utilise a certain naming convention,
i.e. shared form of language2. A simple solution would involve an
arbitrary label-object mappings that are predefined in the agents.
However when the environment is unknown at the design time, a
coherent naming convention cannot be build-in and shared by all
the agents beforehand. Moreover, due to natural restrictions fol-
lowing from the embodiment, i.e. limited range, interface errors
and costly long range communication, neither any explicit central
coordination approach, nor any global communication scheme are
suitable. Additionally, as each individual is an equally valuable
source of information, a single ‘leader’ agent cannot be directly
imposed on the system. Thus, agents are required to develop their
naming convention from scratch, and are restricted to a local ad-
hoc communication, i.e. linguistic interaction involving only the
nearby members of the population and concerning only a relatively
local set of encountered objects.

As the coherent naming convention cannot be build-in at the de-
sign time, each agent needs to be equipped with an internal mecha-
nism of name acquisition. In principle, allowing the agent to intro-
duce new names for unknown objects. However, due to distributed
character of the population, there is a high chance that a certain
object is labelled differently by multiple agents. As such, intro-
ducing competing labels and increasing the miscommunication be-
tween agents. In order to reduce the number of conflicting words,
the agents should be capable of altering their label-object mappings
and form coherent associations within the entire population. Unfor-
tunately due to local ad-hoc communication restriction, each agent
has only limited knowledge about the naming conventions utilised
by others. In principle, only the occasional interactions between
agents provide valuable insights on the general population naming
stance. Nevertheless, as the available information is very narrow
and highly limited, a simple approach towards alignment cannot

2Throughout this paper, language is perceived as a complex adap-
tive system [17] that can be represented as a weighted complete
bipartite graph (See section 3)

guarantee that multiple agents will eventually agree on a shared
object-label mappings. For instance, as an individual hearing a new
word may presumably assign it to an infinite number of objects in
its sight, leading to indeterminacy of meaning [15].

In fact, developing a mechanism that would lead to a coherent
formulation of names among interacting individuals is not a trivial
task [11]. Several approaches have been proposed and investigated
in the literature [4, 22, 21, 18, 14], ranging from associative types
of memory [18], through genetic algorithm models [21], to neural
network adaptation [14]. The most promising approach addressing
the aforementioned problem is the language game model (LGM)
[18], where a population of agents thrives to develop a shared set
of associations between signs and meanings, using communicative
acts. LGM offers a general framework for modelling the possible
emergence of language and formulates basic settings for linguistic
interaction between agents. It assumes that each agent has its own,
strictly private and individually emerged, word-object associations
(names) that are stored in an associative type of internal memory
- lexicon. In particular, as the lexicons are private, they may dif-
fer between agents resulting in naming conflicts that occur during
interaction.

The idea behind the language game is that through a series of
routine pair-wise interactions, the agents can align their lexicons
reaching a coherent state of the entire population. In naming game,
type of language game specified by LGM, a single interaction is
described as a simple interplay between two agents, one acting as a
speaker, and the other as a hearer. The speaker agent selects a single
object from its sight and names it, according to its internal naming
convention. Whilst the hearer uses the heard utterance as a clue to
identify which of the objects was intended by the speaker. Depend-
ing on the feedback the agents receive after the game, and assuming
that agents are equipped with a pre-developed pointing mechanism,
three basic types of naming games can be identified [19]. In the
simplest case, both agents receive feedback, as the hearer points to
the intended interpretation, and as the speaker points to the intended
topic. In the case of limited feedback, only the speaker receives
feedback, as only the hearer points to the intended interpretation. In
the no-feedback case, neither the speaker nor the hearer receive ad-
ditional feedback after the game leaving both agents clueless about
the results of their interaction. It should be noted that in the sim-
plest case, the hearer is able to precisely deduct speaker’s intended
mapping between the name and the object. Whereas, the absence of
pointing procedure significantly increases the hearers uncertainty,
as all objects in its sight are equally probable topics, resulting in
indeterminacy of meaning.

Basic properties of the alignment process were studied in most
favourable types of environments and population settings, focussing
mainly on the simplest (feedback based) case of Naming Game
[18]. Using a straightforward cross-situational learning (CSL) mech-
anism embodied agents were able to learn the naming conventions
based solely on co-variances that occur across different situations.
In [19] it is shown that in a multiple objects setting the CSL is hard
to properly scale-up with the increasing number of agents, and it
is hard to reach proper coherence among the agents. As such, the
early procedures were extended to incorporate additional mecha-
nism of synonymy reduction [7] and homonymy damping [8] lead-
ing to a substantial improvement in their performance. The former,
introduced additional notion of word utilisation, as a word score
resembling the frequency of its successful usages, whilst the lat-
ter approach, introduced an adaptive alignment mechanisms, i.e.
intelligent cross-situational learning (ICSL). In addition to regular
enforcement and inhibition rules that steer the population of in-
teracting agents to coherent word-meaning mappings, ICSL pre-
serves the relative differences between concurring words that allow
it to outperform other existing approaches in zero feedback naming
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game settings [8].
The extensive literature studies,including most recent summaries

in [18, 20], show that despite its popularity the LGM has been in-
vestigated only in a limited set of basic settings3, where uniform
world structures, random attention orienting strategies, one-step
pair-wise interaction pattern are assumed. As such in this paper
we investigate the effect of introducing non classical attention ori-
enting strategies, i.e. topic selection strategies in the LGM. We
argue that a rational strategy should reflect agent’s internal char-
acter and it’s individual intentions, and not just uniformly sample
agent’s current sight, as in the existing formulations.

3. GENERAL MODEL
We introduce the formal model of the investigated case, and be-

gin by formalising the state of the multi-agent system as a 4-tuple
S(t), as follows

Definition 1. For each time point t ∈ T = (t1, ..., tKT ) a sys-
tem state is a tuple:

S̄(t) = 〈O(t), XO(t), P (t), XP (t)〉
• set of identifiable objects O(t) = (o1, ..., oKO(t))
• context random process XO(t)
• population P (t) = (a1, ..., aKP (t)) of agents
• interaction random process XP (t).

The system state resembles a general state of the entire multi-agent
system in a given point of time. It depicts currently identifiable
objects O, currently operational agents P , and defines the exter-
nally imposed processes, i.e. the model of dynamic environment
XO (available through context) and the model of agent interaction
XP . As such, at each discrete time point t the random process XO
models the current state of the environment that is available to the
system. Each agent a ∈ P (t) perceives a certain part of its lo-
cal environment - context Xa

O(t) - as a set of objects in it’s sight
∀a∈P (t) X

a
O(t) ⊂ O. Analogous, the random process XP for ev-

ery time point t models the set of currently interacting agents, i.e.
XP (t) ⊂ PKI (t), whereKI(t) is the number of interacting agents.

In the assumed settings the context size is fixed ∀t∈T,a∈P (t)

‖Xa
O(t)‖ = c, and the interaction is limited to a single pair-wise

∀t∈TXP (t) ∈ P (t) × P (t) pattern. In the most general case, the
set of identifiable objects and the set of all agents in the popula-
tion can change during the system lifetime, however we assume a
simpler case where both the set O and P are finite and static, i.e.
∀t∈TO(t) = O ∧ P (t) = P .

3.1 Agent
An agent is the most fine-grained autonomous entity present in

the system. It is embodied in the environment and is a part of the
interacting population. In order to communicate, the agent needs to
be equipped with an appropriate semantic infrastructure, that can be
defined as the agent’s state, as follows:

Definition 2. Agent’s a ∈ P (t) state in a given system state
S̄(t) = 〈O(t), XO(t), P (t), XP (t)〉 is a tuple:

Ā(t) = 〈Oba(t),W a(t),La(t), φaP , φ
a
I , θ

a, ψa〉
• set of identified objects Oba(t) = (oa1 , ..., o

a
Ka,Ob(t)

) ⊆ O,
• set of words W a(t) = {(wa1 , sa1), ..., (waKa,W (t), s

a
Ka,W (t))},

• lexicon mapping La(t) : W a(t)×Oba(t)→ [0, 1]
• interpretation function φaI (t) : W a(t)× La(t)→ Oba(t),
• production function φaP (t) : Oba(t)× La(t)→W a(t),

3For the sake of completeness, we note the research in [1], where
different population structures were investigated in a minimal nam-
ing game (single object environment).

• topic selection function θa(t) : 2Ob
a(t) → Oba(t),

• update function ψa(t) : W a(t)× 2Ob
a(t) × La(t)→ La(t).

Each object represents a self contained invariant in the external en-
vironment that is available to agent’s perception and that encap-
sulates the smallest indivisible entity available to its higher pro-
cesses. As the precise formulation of agent’s perception is outside
of the scope of this paper we assume that for each agent an object
is explicitly identified by a unique and strictly internal identifier
(i ∼ oai ). Research in [8] assumed a static and fixed set of objects,
we extend their settings allowing the agent to gradually build up the
set of known objectsOba as it encounters them in the environment.

Words, on the other hand, are external representations identified
by the population as dedicated communication signs. Each signal
waj ∈ W a is associated with agent’s subjective notion of usability
saj ∈ [0, 1] denoting its individual estimate of strength of a word
spread in the population. The set of words that the individual uses
is iteratively build up by the agent, as new words are invented by
the speaker whenever it lacks a proper word for a given topic, and
are incorporated by the hearer whenever it hears an unknown word.

In terms of linguistic capabilities the most important part of the
agent is its lexicon, i.e. the mapping La that represents actual cor-
relation σa(o, w) ∈ [0, 1] between objects o ∈ Oba and words
w = (wai , s

a
i ) ∈ W a. The higher it is the more definite the agent

is that a certain word is an adequate name for an object. As such,
the lexicon encapsulates the current state of agent’s language, that
for convenience can be viewed as a weighted complete bipartite
graph La = (V a, Ea, σa), where V a = W a ∪ Oba is the set
of vertices, Ea = W a × Oba is the set of edges, and σa(w, o)
is the weight of an edge (w, o). Each agent is then able to inter-
pret external utterance wai , i.e. select the most adequate object o
based on its current state La(t), and produce the external utterance
wai , i.e. the most adequate name for a given object o based on its
current lexicon state (see section 3.2). As such, the actual graph
structure modulates agent’s interpretation and production scheme.
In particular, agent’s two φaP and φaI schemes reflect certain method
of traversing the lexicon graph, i.e. proper selection of the edges
according to the current distribution of weights.

We further assume the well established mechanism of interpreta-
tion and production [8]. The interpretation scheme is rather straight
forward, as for a given word w = (wa(t), sa(t)) ∈ W a(t) the
interpretation function φaI selects the edge (w, o) ∈ Ea with the
maximum weight (φaI (w,La(t)) = argmaxoiσ

a(oi, w)), and thus
interprets w as referring to o. On the other hand, the production
scheme assumes that the speaker before uttering a name evaluates
its subjective reflection of the population, by considering the us-
ability s of each possible word w. As such, for a given object o the
production function φaP selects the edge (w, o) ∈ Ea with word
w having the highest usability from all the words that the agent
is able to interpret as referring to the object o (φaP (o, La(t)) =
argmaxwi{wi : o = φaI (wi, L

a(t))}), and thus names o.

3.2 Interaction
Interaction between agents is the only opportunity for an indi-

vidual to verify the appropriateness of its language, and it is the
only way to gain additional information about the naming con-
ventions utilised by others. In the assumed settings, the interac-
tion is governed by the means of no feedback naming game rou-
tine, where at each time point t ∈ T a random pair of agents
Xa
P (t) = (aS(t), aH(t)) where aS(t) 6= aH(t) (aS - speaker, aH

- hearer) advances in a simple communication. The speaker selects
a single object oT (t) as the topic of conversation, according to its
topic selection strategy oT (t) = θaS (XaS

O (t)) and current context
oT (t) ∈ XaS

O (t). Further, the speaker names the intended topic
wT (t) = φaSP (oT (t), LaS (t)), based on its current lexicon state
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and utilising its production function φaSP . Next, the uttered word
is transmitted to the hearer, that receives it along with the current
context of perception XaH

O (t). It is assumed that the topic of the
utterance is shared among both contexts, i.e. oT (t) ∈ XaS

O (t) ∩
XaH
O (t). Based on this information, i.e. the context and the as-

sociated uttered word, the hearer updates its lexicon LaH (t) =
ψaH (wT (t), XaH

O (t), LaH (t − 1)), and interprets the utterance
oI(t) = φaH (wT (t), LaH (t))4. As agents do not receive feedback
concerning the outcomes of the game, the interpreted meaning and
the heard word pair (wT (t), oI(t)) is regarded as the most prob-
able one. As such agent’s subjective notion of usability sT (t) of
the heard word wT (t) should be increased, whilst the usability of
all concurring names {wi : oI(t) = φaHI (wi, L

aH (t))}, i.e. all
other names that can be interpreted as the identified object oI(t),
should be decreased. Moreover, learning from co-occurrence be-
tween words and objects (cross-situational learning) implies that
after each interaction the hearer updates its lexicon La(t) by modi-
fying the correlations σaH (o, wi).The update function ψaH damp-
ens the correlation σaH (o, wi) between the received word wi and
currently not perceived objects o 6∈ XaH

O (t), and enforces the cor-
relation between the received word wi and currently perceived ob-
jects o ∈ XaH

O (t), while the correlations with other words remain
unchanged. In settings involving context with multiple objects, a
single interaction is typically insufficient to determine the utilised
naming convention, as presumably all objects from the context are
equally probable intended meanings. We note, that an object can
dominate the correlation between a certain word only if it occurred,
with this word, more times then with any other object.

3.3 Measures
In order to formulate differences in the dynamics of the align-

ment process, we identify two major axes of comparison, i.e. co-
herence and word statistics, and focus on the evolution of language
in the assumed multi-agent system. We study the behaviour of the
system based on four measures: success rate, language coherence
rate, average number of used and overall number of words.

The most obvious measure is the frequency of successful com-
munications between agents. It resembles the observed ability of
the system to transfer information from one agent to another, and
as such it allows to reason about the utility of the communication
system itself. In order to keep track of the effectiveness of the com-
munication we calculate the success rate µSR, as follows:5

µSR(N) =
∑
t∈T |N

I{oT (t)=φ
aH
I

(φ
aS
P

(oT (t),LaS (t)),LaH (t))} (1)

In general, the success rate µSR(N) of order N is the frequency
of successful communications in the lastN interactions (T |N ), i.e.
successful in terms of that both agents focus on the same object (1).
In isolation, despite its simplicity, this measure is not very useful,
as it does not take into account all objects from the environment,
and can be easily deformed. For instance, agents communicating
only about a single object are able to reach highest possible success
rates, as they might share a common name for the preferred object,
despite having poor coherence between other names.

Due to the above restrictions, we need to formulate additional
measure resembling the naming convention spread among the en-
tire population and reflecting the coherence of names among all ex-
isting objects. As such, we introduce language coherence µLC , as
the probability that two randomly selected agents assign the same
name for a randomly selected object from the environment, as fol-

4If the intended meaning oT is the same as the interpretation oI
then the game is considered successful, otherwise it is a failure.
5I is the identity function, i.e. Ix=x = 1 and ∀x 6=yIx=y = 0

lows:

µLC = Ea,a‘∈P,a 6=a‘,o∈O[φaI (φa‘P (o, La‘), La) = o] (2)

The lowest possible coherence, i.e. µLC = 0, reflects a state of no
language coherence in the system, as there are no two agents that
use the same name for any of the objects. The highest possible co-
herence, i.e. µLC = 1, represents the state of full coherence, where
all agents share the same naming conventions. It should be noted
that in the assumed settings a system is absorbed by the coherent
state, as from this point all of the utterances are consistent with the
observed context, and without any external disturbance all of the
strongest associations remain strongest.

In order to analyse the characteristics of the emergent language
we keep track of the number of used words µUW , and keep track
of the total number of all invented words µTW , defined as follows:

µUW = Ea∈P [‖{w ∈W a : ∃o∈Obaσa(w, o) > 0}‖] (3)
µTW = Ea∈P [‖W a‖] (4)

The former, is calculated as the average, over all agents, number of
positively associated words, and it resembles the stability of cur-
rent associations. As the optimal communication system has one-
to-one mappings between words and objects, i.e. the same number
of used words as the number of existing objects, and any devia-
tion from this proportion reflects a potentially unstable situation, as
miscommunication might occur. In the latter case, we calculate the
overall number of existing words in the system, resembling again
the stability of the communication system during its development.
It should be stressed that new words may enter the lexicon, i.e.
as agents are inventing new words, on regular basis. However, as
it is not possible for a word wj to leave the lexicon, the opposite
mechanisms is a bit different, and a word can become disassoci-
ated through the dampening procedure, i.e. weight of associations∑
o σ(wj , o) shared with wj and/or usability sj of wj is close to

0. Nevertheless, the higher the number of different words in the
system, the significantly higher is the number of all possible as-
sociations and possibly lower coherence. Moreover the higher the
number of words, both used and invented, the more technically de-
manding the system is, as it needs more memory to store all asso-
ciations and more processing power to cope with all possible asso-
ciation.

4. TOPIC SELECTION STRATEGIES
The most common strategy investigated in the literature is the

purely random selection of topic, where a speaker uniformly sam-
ples its current context in order to select the intended meaning of its
utterance. It is a rational approach in the presence of direct feed-
back, as the context degenerates into single object and different
selection strategies do not affect the evolution of the system. How-
ever, in case of limited feedback and significant context sizes the
topic selection strategy can significantly affect the overall evolu-
tion of the system (See section 5). We must underline the fact that,
all of the following extensions relate only to the speaker. Moreover,
as the hearer has no a priori knowledge about the strategy utilised
by the speaker, we assume that it treats all utterances as a result of
random sampling, and follows the behaviour described in section
3.

Different topic selection strategies can be analysed twofold, from
the theoretical point of view and from a more pragmatic stance. The
former approach assumes that selection is just a basic procedure of
choosing a single object oT (t) from a set of objects XO(t). As
such, the speaker agent a perceives current state of the environ-
ment as the context Xa

O(t) of ongoing interaction, and in a pre-
defined manner selects a single object oT (t) as the topic. From
the more practical point of view, the topic selection strategy resem-
bles the speaker’s reaction to the recent state of the environment.
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As such, the context Xa
O(t) is a form of short term memory that

stores the most recent and most important objects, and depending
on its internal perception the speaker agent a selects a single ob-
ject oT (t) that it found valuable, interesting or significant. In this
case topic selection strategy resembles the internal force that drives
agent’s attention, and orients its sensory receptors towards a partic-
ular object and away from other available stimuli [9]. Having this
interpretation in mind, we formulate and introduce three basic topic
selection strategies, and justify them as different points of attention
that affect individual perception and cognition.

4.1 Random
As noted, the original model proposed in [8] assumes a purely

random selection of topic, where at each time point the speaker is
uniformly sampling its current context in order to select the topic
of its utterance. In this case the topic selection function θorig (See
equation 5) is a random variable with a uniform distribution over
all objects in the context and can be defined as follows:

∀t ∈ T Pr(θrandom(XO(t) = o)) = 1/‖XO(t)‖ (5)

This situation resembles the case where the attention of the agent
is randomly focusing on different objects in the environment. As
such all objects are equally valuable to the agent, and uttering the
name of each one of them is of an equal importance to the speaker.

4.2 Min / Max
It is obvious that perception is usually not passive, and it is the

individual that is actively looking or listening in order to see or
hear [9]. Previous strategy assumes no direct force that is applied
on agent’s perception, i.e. the agent perceives the environment in
purely passive manner. However, agent’s focus should depend on
both, agents past observations and the current state of the environ-
ment. As such, attention of a curious agent should be attracted by
a new, or relatively unknown objects from the environment. Re-
sulting in agent’s significant tendency to speak about the least oc-
curring, in past interactions, object. On the other hand, attention of
a more stagnant agent should be attracted by already familiar ob-
jects, or relatively known, objects from the environment. Resulting
in agent’s tendency to select the most occurring, in its past inter-
actions, object. In principle, both, i.e. min and max, approaches
represent two similar forces that drive the attention of an individ-
ual. One is focusing on the least known elements of the environ-
ment (min), whilst the other on the most known elements of the
environment (max).

We further assume that each agent a ∈ P is able to store the
frequencies F a(t) = {fa1 (t), ..., faKa,Ob(t)} of the observed oc-
currences of the encountered objects in its past interactions. This
basic statistics is further stored as agent’s private knowledge about
the environment, and is utilised in its future interactions to drive
agents attention towards certain aspects of the environment. In this
case the topic selection functions θmin and θmax are determinis-
tic functions that for a given state of the environment select the
most and least frequent object, respectively. In order to maintain
the probabilistic notation we denote this deterministic functions as
a random variable with a Dirac delta distribution as follows:

∀t ∈ T Pr(θmax(XO(t) = oi) =

{
1, fi = maxj fj
0, otherwise

∀t ∈ T Pr(θmin(XO(t) = oi) =

{
1, fi = minj fj
0, otherwise

4.3 Preference
The point of attention of the system can also depend entirely on

the internal structure of the agent, i.e. as the agent may have certain

preferences over the objects, or as simply its perception may be at-
tracted by certain objects. As such it is the embodied, i.e. physical
properties of the perception apparatus, and the internal structure,
i.e. pre-build preferences and biases, that has significant impact on
agents orientation. For instance, being equipped with very sensi-
tive microwave sensor the agent might have tendency to focus on
objects that emit such wavelengths, and as such naturally tend to
select them as the intended topics.

In this paper we assume that each agent has a predefined set of
preferences Ra(t) = {rai (t) : oi ∈ Oba(t)} over the objects.
These preference values r can be understood as affordances, i.e. in-
dividual utility of an object as perceived by the agent. Without any
loss of generality preferences can be treated as probabilities, where
for every agent a ∈ P following conditions hold

∑
r∈R r = 1 and

∀r∈Rr ≥ 0. In such a case we can model the topic selection func-
tions θpref (See equation 6) as a random variable with a discrete
distribution over the objects defined by the preferences structure
Ra(t) as follows:

∀t ∈ T Pr(θpref (XO(t) = oi)) = ri(t) (6)

5. EVALUATION
In order to evaluate different topic selection strategies we per-

form numerous simulations. All experiments share a common frame-
work, and assume finite, static set of objects O and agents P , all
incorporate a uniform interaction process6 with a pair-wise commu-
nication model (aS(t) 6= aH(t)), and all are restricted to a shared
context setting (oT (t) ∈ XaS

O (t) ∩ XaH
O (t)). Moreover, it is as-

sumed that agent’s behaviour is governed by a set of standard in-
terpretation φI , production φP , and update ψ rules, as described
in section 3. We investigate a number of simulation settings, in-
cluding various population sizes, various object sizes and different
context sizes using versatile measures, from basic success rate, to
more complex synonymy and homonymy spread in the population.
However, due to the space limitations we only focus on the gen-
eral properties of the system, and present the obtained results as an
exemplification of the observed system’s behaviour.

Baseline parameters assume: ten agents, ten objects, fixed con-
text size limited to two objects, and random selection strategy. All
of the presented graphs are an average over fifty consecutive runs
and as such are a good representation of the observed dynamic
behaviour of the system. In order to compare the topic selection
strategies it is important to guarantee the same experimental set-
tings for each selection procedure by fixing the context path (se-
quence of randomly generated consecutive context) and interaction
path (sequence of randomly generated consecutive agent pairs) be-
fore each run, and sharing it with all of the strategies.

5.1 Success rate and language coherence
Figure 1 depicts the typical character of language coherence dy-

namics. On the right column graphs, we can observe the slow phase
shift dynamics of the coherence rate (See equation 2), reflecting
three fundamental stages of system’s evolution. Whilst, on the left
column, we can observe the typical dynamics of the success rate
(see equation 1).

Initial iterations form and maintain a plateau of low coherence,
where the early invented words shape hooks that gradually begin to
fill up agent’s lexicons with words and cast fresh possible conven-
tions (see section 5.2). Despite, the initial burst of new conventions
and sudden increase of the overall usability of words si, the aver-
age strength of correlation σ is still relatively low. In the second
phase the system undergoes a sudden increase of coherence. Due
to a particular realisation of random processes XO and XP , some

6where each pair of agents is equally probable to interact
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Figure 1: Success rate and language coherence in different topic se-
lection strategies and four different context sizes.

Figure 2: Language coherence in different topic selection strategies
and three different population sizes (context size set to 4).

of the initial hooks are dampened, as such some of the words are
no longer used (see figure 3), whilst the other ones are enforced, as
such the overall strength of correlation of the used words increases.
Resultant, the strongest words start to dominate the convention and
can be easier shared among the individuals. The last stage resem-
bles the significant slow down in alignment process. As most of the
language is already shared by the agents, i.e. the coherence level is
above µLC = 0.8 (80% of the maximum coherence), and due to
the random character of participant and context selection, the less
probable, and still unaligned, cases must occur, i.e. the minority
must adopt the dominant naming convention.

Three basic observations can be made from the obtained results
(see section 6). At first higher levels of coherence are reached by
the min(max) strategy, i.e. at each iteration it is higher compared
to random strategy. Secondly, the more significant the context size
is, the more significant is the observed disproportion. As observed
in figure 2 analogous tendency is maintained with the increase of
population size. Third, the min/max strategies seem to resemble
very similar characteristics under the influence of changing context
size.

5.2 Words statistics
Figure 3 depicts the typical dynamic character of the average

number of words used by an individual (see equation 3) and the
overall number of words present in the system (see equation 4). As
already noted the system undergoes three distinguishable phases.
Initially, as agents lexicons begun to fill up with words, and as
agents still lack of precise information, a sudden increase in the
number of used words is observed. Reaching its maximum at about
the level of 20% of the maximum coherence (see section 5.1). Fur-
ther, as some of the initial formed names, due to random character
of the process, are more ‘popular’ they tend to dominate the pop-

Figure 3: Number of words and used words in different topic selection
strategies and four different context sizes.

ulation, and begin to systematically eliminate all other competing
words from their usage. This early alignment results in the ob-
served sudden decrease in the number of used words, and is corre-
lated with the increase of language coherence (see section 5.1). In
short, as agents begin to share more and more conventions, all of
the most obviously incorrect ones, least ‘popular’, can be quickly
dampen. Obviously, this decrease is less sudden then the initial
burst, and it steadily diminishes with time. Again, the last stage
resembles the significant slow down in the alignment process, as
the minority must aligned to the dominant convention. Finally, the
number of used words stabilises at the number of objects present
in the environment, reaching as such the ideal one-to-one naming
convention (see section 3.3).

Again three basic observations can be made from the obtained
results. At first, the maximum number of words directly depends
on the number of objects in the context and on the selection strat-
egy. In case of random selection the increase of needed number
of words, with the increase of context size, is significant, whereas
the min/max strategies are more or less stable. Importantly, the
min (max) strategy in all context sizes requires significantly less
words, also less used words, then the random strategy. Secondly
the more significant the context size is the less words are needed for
the min/max strategies, and the more significant is the dispropor-
tion between min (max) strategy and the ‘other’ strategies. Third,
the min/max strategies seem to resemble very consistent character-
istics without any significant influence from the changing context
size. The number of invented words is stable at around the same
level (40) for both strategies, and for both strategies the maximum
number of used words undergoes similar change, i.e. decreases
with the increase of context size.

5.3 Dynamic context size
In all of the previous simulations a fixed context size settings

were assumed, where ∀t∈T ‖XO(t)‖ = c. However, despite its
analytical simplification it is still a significant limitation imposed
on the system, as it requires that all interactions between agents
involve a strictly predefined number of objects from the environ-
ment - c ≤ KO . Therefore, it is reasonable to ask how general is
the observed behaviour, and whether it is not only restricted to a
fixed context settings. In order to verify this notion, we introduce a
modification to the previous settings and before interaction alter the
number of objects present in the context. Introduced change is gov-
erned by a predefined probability distribution, i.e. Pr(XO(t) = c).
In particular, as all objects are equally probable to appear in the
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Figure 4: Varying context size settings.

context it seems rational to investigate an analogous type of distri-
bution, where Pr(XO(t) = c) = 1

KO
. We should note that on

average, as the number of interaction increases, each agent inter-
acts equally often in each possible context size setting, e.g. equally
often perceives a single object (c = 1), and equally often perceive
the entire set of objects (c = KO).

Figure 4 represents a typical behaviour of the alignment proce-
dure in dynamic context settings. As in fixed context settings the
min/max strategies result in higher coherence rates, however due
to the aforementioned independent cases and the dynamic charac-
ter of their change the increase is less significant. Nevertheless,
still the min/max selection strategies require less words to reach a
coherent naming convention, as such limit the required memory of
the system and limit the number of used words in the system. Addi-
tionally, dynamic context sizes still maintain the scaling property,
as with the increasing number of objects the difference between
language coherence of random and modified selection is increas-
ing. In short, it should be noted that the behaviour pattern of the
alignment process in case of dynamic context sizes remains consis-
tent with the observations for the case of fixed context structures.

6. ANALYSIS
We can recall that the considered learning mechanism is based

solely on learning from co-occurrences between words and ob-
jects (cross-situational learning), and the more agents ‘talk’ about
a certain object the more names are invented and more conventions
tested. Moreover, the more different agents start to talk about the
same set of objects the more possible naming conflicts might occur,
i.e. more conflicts must be resolved and the names must concur
with other numerous competitors.

At first, the noticeable differences between the random and min
(max) strategy may be falsely attributed to the specificity of the
assumed experimental settings. Seemingly, the limited number of
agents increases the probability that multiple agents share similar
statistics of the environment, i.e. similar private frequencies F (t).
As such, whenever speaker selects the least (or the most) occurring
object the shared frequencies increases the chance that the hearer
also perceives the topic as rare, and resultantly both agents tend to
select similar objects. In particular, being in line with hypothetical
specificity of the assumed settings requires that with the increasing
number of agents the disproportion between min/max and random
strategy should diminish. As this behaviour is not observed, i.e.
the results presented in figure 2, it supports our justification that
the presupposed similarity of perceptions between communicating

individuals does not influence the tendency to dominate correla-
tions.

The key to understand the significant difference between the ran-
dom strategy and min/max strategies lies in the characteristics of
the random process that each selection strategy represents. The fun-
damental probability that a given object o is present in the context is
given as po = Pr(o ∈ XO(t)) = 1

KO
, and therefore the probabil-

ity that a certain frequency increases is Pr(fi(t2) > fi(t1)) = poi
(t1 and t2 indicate two consecutive time points when the agent in-
teracted). Fixing a strategy, results in speaker’s linguistic behaviour
being governed by its selection θ process, that in case of min/max
strategy is additionally modulated by the perceived statistics of the
environment.

Let us consider an isolated (single speaker agent) process of
random topic selection, at each time point a given number of ob-
jects c is drawn (without replacement) from a set containing KO

identifiable objects and put into a shared bin B, i.e. Pr(oi ∈
B) =

(
KO−1
c−1

) · (KO
c

)−1
= c

KO
. Further, a random object i∗

is selected from the bin, i.e. Pr(oi∗ = θorig|oi∗ ∈ B) = 1
c

.
The resultant probability of object oi∗ being selected is equal to
Pr(oi∗ = θorig) = Pr(oi∗ = θorig|oi∗ ∈ B) · Pr(oi∗ ∈ B) =
c
KO
· 1
c

= 1
KO

. If the latter selection procedure is uniform, rep-
resenting the random strategy, the initial distribution of objects is
maintained, i.e. each object is equally probable to be selected as
the topic. Based on this observation the expected number of times
an object o was selected by the speaker XaS

o (N) after N iterations
is equal to E[XaS

o ] = N ·Pr(o = θorig), as the process XaS fol-
lows the multinomial distribution. As such, all objects are evenly
selected by all agents, and significant number of naming conflicts
occurs. This is in line with simulation results (See figure 2), where
in early stage the number of concurring words increases drastically
and the number of invented words is significant.

On the other hand in the case of min/max selection strategy the
presented procedure must be extended to a case where for every
drawn object oi an identical one is added to a shared bin, whilst
the original one is returned to the set. As such the number ni of
objects of type i in the shared bin constitutes the frequency of a
certain object fi = ni/

∑
j nj . Now if at each iteration the agent

selects the bin with lowest / highest number of balls, then this pro-
cess represents min / max strategy appropriately. Let us assume a
simple case, where there are only two objects o1 and o2 present
in the environment. At each iteration a single agent a ∈ P along
with one object oi is randomly selected, increasing agent’s a fre-
quency of oi occurrence fai . Afterwards agent a selects a single
object (o1 or o2) based on its current frequencies (fa1 , fa2 ) and
(min/max) strategy. After N iterations the probability that the fre-
quency of occurrences is equal for both objects is Pr(fa1 (N) =

fa2 (N)) = 1
2

N , and it significantly decreases with the number of
iterations. As θmin = argminojf

a
j the probability that afterN it-

erations the selection process is going to switch objects is equal to
Pr(fa1 (N) = fa2 (N))Pr(θmin(N−1) 6= θmin(N+1)) = 1

2

N 1
2

.
Obviously, with the increasing number of iterations the probability
that the agent a used to select o1(o2) will switch to o2(o1) is de-
creasing exponentially, e.g. for N = 10 the probability of switch-
ing is .05‰, and is highly defined by the early realisation of the
random selection. Resultantly, the agent has a strong preference
over one of the objects (opposite to random selection). It should
be noted that as agents do not share their private perceptions the
frequencies differ between the individuals, and result in even dis-
tribution of preferences between agents, i.e. most likely the same
number of agents will prefer o1 as o2. As such in case of min/max
strategy, the population of interacting agents randomly transforms
themselves into a population of individuals that tend to speak about
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different parts of the environment, i.e. individuals that tend to have
unique selection preferences. Whilst in the case of random strategy,
the population of interacting agents resembles an opposite transfor-
mation into a group of individuals that tend to equally (in terms of
frequency) speak about all parts of the environment. As such in
case of min/max approach the agents need to invent less words (see
section 5.2 ), i.e. on average less conflicts occur, and due to limited
possibilities the higher coherence is easier to achieve (see section
5.1). Interestingly, as the context size increases the agent’s prefer-
ences, selection strategy, tends to be more specialised and focusing
on a single object. Therefore the observed decrease in number of
needed words in increasing context sizes (see figure 3).

7. CONCLUSIONS
In principle, developing a mechanism that would lead to a coher-

ent formulation of names among multiple interacting individuals is
not a trivial task. Several approaches have been proposed and inves-
tigated in the literature, however, the language game model seems
to be still the most significant framework for language emergence.
Presented approach is in line with the ongoing research, as it ex-
tends the ‘classical’ LGM approach of random topic selection, and
studies the dynamic character of the formation of coherent nam-
ing conventions. Using a simulated multi-agent system we give
insights on the effects of different attention attracting procedures,
i.e. topic selection strategies, in the case of the least restrictive type
of naming game (without feedback).

The attention orienting strategies are an important aspect in the
research on language emergence based on the language game model.
In this paper we have introduced three general meta-models of dif-
ferent topic selection mechanisms, and studied their effects on the
behaviour of no feedback naming game with significant contexts
sizes. We justify that incorporation of different topic selection
strategies influences the behaviour of the system, resulting in higher
levels of language coherence and maintaining a the minimal mem-
ory requirements. Moreover, we show that the more significant the
context size is the more significant is the observed disproportion
between different strategies. In particular, we have shown that the
‘classical’ settings of random selection do not guarantee the best
performance, and can be easily enriched through a more determin-
istic strategy. Higher levels of coherence can be reached by agents
tending to select the best known objects (max strategy) or tending
to select the least known objects (min strategy). Additionally, the
more the agents in the population then again more significant is
the observed disproportion between different strategies. As such,
we show that min/max topic selection strategies scale significantly
better then the extensively used random selection.

Our future research focuses on extending the proposed mecha-
nism to a more flexible population structures and less restrictive
environments. We further intend to introduce adaptation proce-
dures that would allow to dynamically modulate agent’s selection
strategy, allowing to study more advanced and complex models of
attention orienting.
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