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ABSTRACT
Social commitments have been widely studied to represent
business contracts among agents with different competing
objectives in communicating multi-agent systems. However,
their formal verification is still an open issue. This paper
proposes a novel model-checking algorithm to address this
problem. We define a new temporal logic, CTLC, which
extends CTL with modalities for social commitments and
their fulfillment and violation. The verification technique is
based on symbolic model checking that uses ordered binary
decision diagrams to give a compact representation of the
system. We also prove that the problem of model checking
CTLC is polynomial-time reducible to the problem of model
checking CTLK, the combination of CTL with modalities
for knowledge. We finally present the full implementation
of the proposed algorithm by extending the MCMAS sym-
bolic model checker and report on the experimental results
obtained when verifying the NetBill protocol.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Check-
ing

General Terms
Algorithms, Verification

Keywords
Social Commitments, Fulfillment, Violation

1. INTRODUCTION
Over the last two decades, a significant number of social

approaches that aim to define a semantics for Agent Com-
munication Languages (ACLs) have been proposed [1, 2, 9,
16, 19, 23]. These approaches particularly aim to overcome
the shortcomings of ACLs semantics defined using mental
(or cognitive) approaches where the mental semantics is ex-
pressed in terms of the agents’ internal mental states such
as believes, desires and intensions. Social commitments are
employed in some of these social approaches that success-
fully provide a powerful basis to represent business contracts
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among autonomous and possibly heterogeneous agents with
different competing objectives within multi-agent systems
(MASs) [3, 7, 9, 19, 21]. Formally, social commitments are
denoted by C(i, j, ϕ) meaning that i, the debtor, commits to
j, the creditor, that ϕ holds [7, 8, 19].

Conventionally, the semantics of ACL messages in terms
of social commitments satisfies some crucial criteria intro-
duced in [19]: 1) formal (based on some temporal logics);
2) declarative (which focuses on what the message means
not how the message is exchanged); 3) verifiable (we can
check if the agents are acting according to the semantics);
and 4) meaningful (the focus is on the content of messages,
not on their representation as tokens). Recent research in
agent communication using social commitments has high-
lighted their use in a variety of areas ranging from modeling
business processes [8], developing artificial or virtual institu-
tions [12], defining programming languages [22], developing
web-based applications [21] to specifying multi-agent inter-
action protocols, called commitment protocols [2, 5, 7, 9,
16, 23]. In particular, these commitment protocols are more
suitable for regulating and coordinating agent interactions
than computer protocols formalized using Finite State Ma-
chines or Petri Nets, which only capture legal orderings of
the exchanged messages without considering the meanings
of those messages. Missing such meanings limits the abil-
ity to verify the compliance of agent behaviors with a given
protocol.

Related Work. The motivation behind verifying that agents
are acting according to a given commitment protocol was
first investigated by Venkatraman and Singh [21]. They de-
veloped an approach for locally verifying whether the behav-
ior of an agent complies with a given commitment protocol
specified in Computational Tree Logic (CTL) [6]. Their veri-
fication method concentrates on the conditions under which
an individual agent may check others’ commitments toward
itself. The ideas presented by Venkatraman and Singh were
further complemented in two research works by Desai et al.
[7] and Cheng [5]. They developed the idea of supporting
the verification of properties geared toward the composition
of commitment protocols. These properties are specified in
Linear Temporal Logic (LTL) [6] and their approach depends
on translating the protocol into PROMELA (the input lan-
guage of the SPIN automata-based model checker) where
commitments are represented as data structures [5] or pro-
cesses [7]. Bentahar et al. [3] presented ACTL∗ logic (an ex-
tension of CTL∗) to define semantics of social commitments
and associated actions and specify multi-agent interaction
protocols and some desirable properties. Their verification
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technique is based on the translation of ACTL∗ formulae
and protocol into a variant of alternating tree automata
called alternating Büchi tableau automata (ABTA) in or-
der to directly use the CWB−NC automata-based model
checker where commitments are represented as variables and
actions as atomic action propositions using CCS (the input
language of CWB-NC). El-Menshawy et al. [9, 10] intro-
duced CTL∗sc logic extending CTL∗ with commitments and
associated commitment actions to drive a new specification
language of multi-agent interaction protocols having social
semantics. Their symbolic verification technique is based on
reducing CTL∗sc logic into LTLsc and CTLsc sub-logics and
then defining the participating agents in protocol as SMV
modules using SMV and agent sections using ISPL (the in-
put languages of the NuSMV and MCMAS symbolic model
checkers respectively) where commitment states and com-
mitment actions are defined as local state variables. Gerard
and Singh [13] used CTL and MCMAS to verify the re-
finement of multi-agent interaction protocols having social
semantics by developing a preprocessor tool that first reads
protocols and specifications from files and then translates
them into ISPL model in order to directly use MCMAS.
However, the above frameworks are translation-based ap-
proaches, which have the following shortcomings: 1) they
prevent verifying the real and concert semantics of commit-
ments and related concepts as defined in the underlying log-
ics and provide partial solution to the problem; 2) they may
not be straightforward and prone to errors, particularly in
the context of complex systems; and 3) they lack a full and
dedicated model-checking algorithm.

The motivation of this paper is to address the above chal-
lenges by: 1) presenting a new semantics for social commit-
ments and their fulfillment and violation using a new logic,
CTLC, which extends CTL [6] with modalities for reason-
ing about social commitments and their fulfillment and vi-
olation (Section 2); 2) introducing a new model-checking
algorithm to directly verify commitments and their fulfill-
ment and violation (Section 3); and 3) presenting the full
implementation of the proposed algorithm by extending the
MCMAS symbolic model checker [15] (Section 4).

The introduction of a new logic is motivated by the fact
that the needed modal connectives for social commitments
and their fulfillment/violation cannot be expressed using
only existing temporal logics, e.g. CTL. A dedicated logic
and model checking for commitments play the same role
as CTLK [17] and MCMAS do for knowledge. Furthermore,
the election of CTL is motivated by our objective to balance
between expressiveness and verification efficiency. Using
more expressive languages such as First Order Logic (FOL)
needs very complex and maybe intractable model checking.
In fact, we prove that the problem of model checking CTLC
is polynomial-time reducible to the problem of model check-
ing CTLK (the combination of CTL with modalities for
knowledge). For checking the effectiveness of our approach,
we report on the experimental results obtained when verify-
ing the NetBill protocol [20] taken from e-business domain.
Our approach can complement the static verification method
introduced in [23] to check the agent behaviors with given
protocol specifications via an event calculus planner.

2. CTLC LOGIC
In this section, we briefly present the interpreted systems

introduced in [11] to formalism MASs. The reason for us-

ing this formalism is the usefulness of ascribing autonomous
and social behavior to the components of a system of agents.
It also allows us to abstract from the details of the compo-
nents and focus only on the interactions among the various
agents. However, modeling complex and open systems such
as MASs using the formalism of interpreted systems is typ-
ically conducted by using logic-based formalisms. Thus, we
below present a new temporal logic called CTLC logic.

2.1 Interpreted Systems
An interpreted system as introduced by Fagin et al. [11] is

a formalism that models the temporal evolution of a system
of agents to reason about knowledge and temporal proper-
ties. In this formalism, the interpreted system is composed
of a set of n agents A = {1, . . . , n} and an environment e.
This environment can be seen as a special agent that can
capture any information, which may not pertain to a spe-
cific agent. For each agent i ∈ A, we associate a set of local
states Li and a set of local states Le is associated to the
environment agent.

As in [11], we represent the instantaneous configuration
of all agents in the MAS at a given time via the notion of
global state. The set of all global states is denoted by S and
a global state s ∈ S is a tuple s = (l1, . . . , ln, le) where each
component li ∈ Li represents a local state of agent i and
le is an environment local state. Thus, the set of all global
states S ⊆ L1 × . . . × Ln × Le is a subset of the Cartesian
product of all local states of n agents and local states of
the environment in the system. We use the notation li(s)
to represent the local state of agent i in the global state
s. I ⊆ S is a set of initial global states for the system.
To account for the temporal evolution of the system, the
formalism of interpreted systems associates with each agent
i the set Acti of actions, and with environment the set Acte
of actions. It is assumed that null ∈ Acti for each agent i,
where null refers to the fact of doing nothing. Each agent
i ∈ A has a local protocol Pi : Li → 2Acti to identify the
set of the enabled actions that may be performed in a given
local state. With the same meaning we can define Pe.

As in [11], the interpreted system formalism is a syn-
chronous model. So, we can define the global transition
function as follows: τ : S × ACT → S, where ACT =
Act1× . . .×Actn×Acte and each component a ∈ ACT is a
joint action, which is a tuple of actions (one for each agent).
An evolution function ti that determines the transitions for
an individual agent i between its local states is defined as
follows: ti : Li ×ACT → Li, where ti(li(s), null)= li(s). In
a similar way, we have an evolution function for the environ-
ment’s local states: te : Le × ACT → Le. Finally, given a
set Φp = {p, p1, p2, . . .} of atomic propositions and the val-
uation function V for those propositions V : Φp → 2S , an
interpreted system is a tuple:
IS = 〈(Li, Acti,Pi, ti)i∈A, (Le, Acte,Pe, te), I, V 〉.

2.2 Syntax of CTLC
The proposed language CTLC is a multi-modal logic in-

cluding branching time CTL [6] and modalities for social
commitments and their fulfillment and violation.

Definition 1 (syntax). The syntax of CTLC logic is
given by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | EGϕ | C(i, j, ϕ)

| Fu(C(i, j, ϕ)) | Vi(C(i, j, ϕ))
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In this definition, p ∈ Φp is an atomic proposition and E

(“there exits a path”) is the existential quantifier on paths.
The formula EXϕ stands for “ϕ holds in the next state in
at least one path”; E(ϕUψ) stands for “there exists at least
one path where ψ holds at some point in the future and
ϕ holds in all states until then”; and EGϕ stands for “there
exists a path in which ϕ holds globally”, i.e., ϕ holds in every
future state in at least one path. Other temporal modalities,
e.g., F, and the universal path quantifier A (“for all paths”)
can be defined in terms of the above as usual, for examples,
AXϕ , ¬EX¬ϕ and AGϕ , ¬EF¬ϕ where EFϕ , E(trueUϕ).
A(ϕUψ) has the obvious semantics. The modal connective
C(i, j, ϕ) is read as“agent i commits towards agent j to bring
about ϕ” or equivalently as “ϕ is committed to by i towards
j”. The modal connective Fu(C(i, j, ϕ)) is read as“C(i, j, ϕ) is
fulfilled (discharged)”and the modal connective Vi(C(i, j, ϕ))
is read as “C(i, j, ϕ) is violated”.

2.3 Semantics of CTLC
In order to define the semantics of CTLC formulae, a

Kripke model M = 〈W, I,Rt, Rc, V 〉 is associated to a given
interpreted system IS as follows: the set of reachable1 worlds
W is the set S of global states for the system; I ⊆W is the
set of initial states as defined in IS; the temporal transition
relation Rt ⊆ W ×W for the system is defined using the
local protocols and evolution functions and the two worlds
w and w′ are related by Rt (i.e., (w,w′) ∈ Rt) iff there ex-
ists a joint action (a1, . . . , an, ae) ∈ ACT such that for all
i ∈ A, ai and ae are enabled by the protocols Pi and Pe
respectively and ti(li(s), a1, . . . , an, ae) = li(s

′); the relation
Rc : W × A × A → 2W is the social accessibility relation
for social commitments. It is defined by w′ ∈ Rc(w, i, j)
iff ∃w′′ 6= w such that: 1) li(w) = li(w

′′) = li(w
′); and 2)

lj(w
′′) = lj(w

′); and V is an interpretation over the set of
atomic propositions as defined in IS.

The social accessibility relation Rc is transitive, symmet-
ric, and Euclidean. Thus, the resulting logic of social com-
mitments is K4B5 ≡KB5. In this relation: 1) li(w) =
li(w

′′)=li(w′) means that the local states of i in the global
states w, w′, and w′′ are indistinguishable; and 2) lj(w

′′) =
lj(w

′) means that the local states of j in global states w′′

and w′ are indistinguishable where w′′ 6= w. Intuitively,
w′ ∈ Rc(w, i, j) means there is an intermediate state w′′

so that there is no difference for the debtor i among be-
ing in w, w′′ and w′; however, for the creditor j there is
no difference between being in the intermediate state w′′

and accessible state w′. This accessibility relation captures
three fundamental issues: 1) the debtor’s uncertainty about
the current state (w′′ 6=w); 2) the unchangeability of the
debtor (li(w)=li(w

′)); and 3) the possible changeability of
the creditor because of the intermediate state.

A path (or computation) π = 〈wi, wi+1, wi+2, . . .〉 such
that for all i ≥ 0, (wi, wi+1) ∈ Rt is an infinite sequence of
reachable global states in the system. π(k) is the kth global
state of the path π. The set of all paths is denoted by Π,
whilst Πwi is the set of all paths starting at the given state
(wi ∈ W ). We define the set of states that are in the past
of w (Pas(w)) as follows:

Pas(w) = {w′ ∈W | (w′, w) ∈ Rt or ∃π ∈ Π such that

π = 〈w′, . . . , w, . . .〉} ∪ {w}

1W contains states in S that are reachable from I using Rt.

We also define the set of states that are in the future of w
(Fut(w)) as follows:

Fut(w) = {w′ ∈W | (w,w′) ∈ Rt or ∃π ∈ Π such that

π = 〈w, . . . , w′, . . .〉} ∪ {w}

Definition 2 (Satisfaction). Satisfaction for a CTLC
formula ϕ in the model M at a global state w, denoted as
〈M,w〉 |= ϕ, is recursively defined as follows:

• 〈M,w〉 |= p iff w ∈ V (p);

• 〈M,w〉 |= ¬ϕ iff M, 〈w〉 2 ϕ;

• 〈M,w〉 |= ϕ ∨ ψ iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;

• 〈M,w〉 |= EXϕ iff there exists a path π starting at w
such that 〈M,π(1)〉 |= ϕ;

• 〈M,w〉 |= E(ϕUψ) iff there exists a path π starting
at w such that for some k ≥ 0, 〈M,π(k)〉 |= ψ and
〈M,π(j)〉 |= ϕ for all 0 ≤ j < k;

• 〈M,w〉 |= EGϕ iff there exists a path π starting at w
such that 〈M,π(k)〉 |= ϕ for all k ≥ 0;

• 〈M,w〉 |= C(i, j, ϕ) iff Rc(w, i, j) 6= ∅ and for all global
states w′ ∈ W such that w′ ∈ Rc(w, i, j) we have
〈M,w′〉 |= ϕ;

• 〈M,w〉 |= Fu(C(i, j, ϕ)) iff there exists w′ such that:

1) 〈M,w′〉 |= C(i, j, ϕ); and 2) w ∈ Fut(w′); and
3) w ∈ Rc(w′, i, j);

• 〈M,w〉 |= Vi(C(i, j, ϕ)) iff there exists w′ such that:

1) 〈M,w′〉 |= C(i, j, ϕ); and 2) w ∈ Fut(w′); and
3) for all w′′ ∈ Pas(w) ∪ Fut(w) we have
w′′ /∈ Rc(w′, i, j).

Excluding the commitment and its fulfillment (discharge)
and violation, the semantics of CTLC state formulae is de-
fined in the model M as usual (semantics of CTL)—see for
example [6, 11]. The state formula C(i, j, ϕ) is satisfied in
the model M at w iff the set of accessible states obtained
by the social accessibility relation Rc(w, i, j) is not empty
and the content ϕ is true in every global state in this set.
Note that this semantics requires checking whether or not
Rc(w, i, j) 6= ∅ because the social accessibility relation is
not necessarily reflexive2 like for the epistemic accessibility
relation ∼i for agent i in the logic of knowledge [11]. In
this logic, the epistemic accessibility relation ∼i⊆ W ×W
represents that two global states are “indistinguishable” for
this agent. Formally, w ∼i w′ iff li(w) = li(w

′) [11]. In
fact, the emptiness checking is compatible with the uncer-
tainty of agent i about the current state. The state formula
Fu(C(i, j, ϕ)) is satisfied in the model M at w iff there exists
a state w′ satisfying the commitment (condition 1) and the
current state (i.e., w) is both in the future of w′ and acces-
sible via the accessability relation Rc(w

′, i, j) (conditions 2
and 3). The intuition behind Fu’s semantics is to ensure that
the current state w is reachable in terms of transitions and
accessible in terms of the social accessibility relation from
the state w′ where the commitment holds, because to be
fulfilled, the commitment should prior exist.

2This means that reflexivity is not always satisfied.
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Conversely, the state formula Vi(C(i, j, ϕ)) is satisfied in
the model M at w iff there exists a state w′ satisfying the
commitment and the current state (i.e., w) is in the fu-
ture of w′ such that every state both in the past and future
of w is not accessible in terms of the accessability relation
Rc(w

′, i, j). The main motivation behind including Fu and
Vi modal connectives is to ensure that an agent can detect
if there exists a conflict among its commitment states. For
example, from the semantics, we can easily check that when
the commitment is violated, then there is no way to fulfill
it in the future and it has not been fulfilled in the past and
vice versa.

3. MODEL CHECKING CTLC FORMULAE
In a nutshell, given the model M representing a MAS w.r.t

the formalism of interpreted system IS and a formula ϕ in
CTLC describing a property, the problem of model check-
ing can be defined as establishing whether or not M |= ϕ,
i.e., ∀w ∈ I : 〈M,w〉 |= ϕ. Symbolic approaches have been
recently proven as an efficient technique to automatically
verify MASs [15, 18]. This is because these approaches use
less memory than automata-based approaches as their algo-
rithms are applied to Boolean Functions (BFs) not to Kripke
structures. In practice, space requirements for BFs that can
be represented using ordered binary decision diagrams (OB-
DDs) [4] are exponentially smaller than for explicit repre-
sentation. As a result, these approaches alleviate the “state
explosion” problem, but cannot eliminate it totally as the
space still increases when the model is getting larger.

In general, symbolic model checking techniques address
the state explosion problem by computing the set of states
satisfying ϕ in the model M (denoted by JϕK), which is rep-
resented in OBDDs and then comparing it against the set
of initial states I in M that is also represented in OBDD.
If I ⊆ JϕK, then the model M satisfies the formula; oth-
erwise a counter example can be generated showing why
the model does not satisfy the formula. This paper is only
concerned with developing a new symbolic model-checking
algorithm SMC(ϕ,M) to compute the set JϕK of states sat-
isfying a CTLC formula ϕ. This algorithm also provides a
methodology to build the OBDD corresponding to JϕK. For
example, when the sets of states are encoded using BFs,
all operations (e.g., intersection) on sets are translated into
operations (e.g., conjunction) on BFs.

3.1 Symbolic Model-Checking Algorithm
The basic idea of our main SMC(ϕ,M) algorithm is in-

spired by the standard symbolic procedure introduced in
[14] for computing the set of states in M satisfying the for-
mula ϕ in CTL (see Algorithm 1). In particular, we extend
this algorithm by adding the procedures that deal with the
new modalities of our logic. It starts by checking atomic
formulae (line 1) and Boolean operators: negation and dis-
junction (lines 2 and 3). In lines 4 to 6, the algorithm calls
the standard procedures SMCEX(ϕ1,M), SMCEU(ϕ1, ϕ2,M)
and SMCEG(ϕ1,M) introduced in [14] to check the formulae
having the forms EXϕ1, E(ϕ1Uϕ2) and EGϕ1 respectively. It
then checks the commitment modality (line 7) by calling the
procedure SMCc(i, j, ϕ1,M) (see Algorithms 2 and 3). The
algorithm proceeds to check the satisfiability of Fu(C(i, j,
ϕ1)) and Vi(C(i, j, ϕ1)) by calling respectively the proce-
dures SMCFu( i, j, ϕ1,M) (see Algorithm 4) and SMCVi(i, j,
ϕ1,M) (see Algorithm 5) (lines 8 and 9).

Algorithm 1 SMC(ϕ,M): the set JϕK satisfying the CTLC
formula ϕ

1: ϕ is an atomic formula: return V (ϕ)
2: ϕ is ¬ϕ1: return W\SMC(ϕ1,M)
3: ϕ is ϕ1 ∨ ϕ2: return SMC(ϕ1,M) ∪ SMC(ϕ2,M)
4: ϕ is EXϕ1: return SMCEX(ϕ1,M)
5: ϕ is E(ϕ1Uϕ2): return SMCEU(ϕ1, ϕ2,M)
6: ϕ is EGϕ1: return SMCEG(ϕ1,M)
7: ϕ is C(i, j, ϕ1): return SMCc(i, j, ϕ1,M)
8: ϕ is Fu(C(i, j, ϕ1)): return SMCFu(i, j, ϕ1,M)
9: ϕ is Vi(C(i, j, ϕ1)): return SMCVi(i, j, ϕ1,M)

3.1.1 BDD-based Algorithm for Commitments
We use the social accessibility relation Rc to compute the

set JC(i, j, ϕ)K of states in which the formula C(i, j, ϕ) holds,
as reported in the procedure of Algorithm 2. This procedure
firstly computes the set X1 of states in which the formula
ϕ holds where ϕ is the commitment content. It then builds
X2, the set of states that have at least one accessible state
via Rc and all the accessible states from each state in this
set (i.e., X2) are in X1, which means they satisfy ϕ. The setJC(i, j, ϕ)K is finally computed by returning the set X2.

Algorithm 2 SMCc(i, j, ϕ,M): the set JC(i, j, ϕ)K
1: X1 ← SMC(ϕ,M)
2: X2 ← {w ∈ W | Rc(w, i, j) 6= ∅ and ∀w′ ∈ Rc(w, i, j) we

have w′ ∈ X1}
3: return X2

Example 1. To clarify the computation of each set of
states in each proposed BDD-based algorithm, we consider
the following example. It consists of eight global states and
the transitions between them along with the social accessi-
bility relation Rc and the epistemic accessibility relations ∼i
and ∼j such that w1, w2, w3, w4, w5 and w8 hold the formula
ϕ and w7 does not satisfy ϕ (see Figure 1).
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Figure 1: An example of Rc along with ∼i and ∼j
Note that, w′ ∈ Rc(w, i, j) iff ∃w′′ 6= w such that w ∼i
w′′ ∼i w′ and w′′ ∼j w′. The reason behind using ∼i and
∼j in Figure 1 will be motivated later on. From example 1,
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the computation of SMCc algorithm (see Algorithm 2) is as
follows: X1 = {w1, w2, w3, w4, w5, w8}, X2 = {w1, w2, w3,
w4, w5}. Finally, the algorithm returns X2 (see Figure 1).

The procedure reported in Algorithm 2 represents a direct
implementation of the proposed semantics of the social com-
mitment modality. We can use an alternative procedure to
implement it, which is more efficient by using the negation
of the formula ϕ and the existential quantifier “∃” instead of
the universal one “∀” in computing the sets X1 and X2 (see
Algorithm 3). Note that, X3 ensures that Rc is not empty
and X2, in line 4, is the complement of X2. From example 1,
X1 = {w7} contains the states satisfying ¬ϕ, X2 = ∅, X3 =
{w1, w2, w3, w4, w5}, X2 = {w1, w2, w3, w4, w5, w6, w7, w8}
and X2 ∩ X3 = {w1, w2, w3, w4, w5}, which is the same re-
sult obtained by Algorithm 2 (see Figure 1).

Algorithm 3 SMCc(i, j, ϕ,M): the set JC(i, j, ϕ)K
1: X1 ← SMC(¬ϕ,M)
2: X2 ← {w ∈W | ∃w′ ∈ X1 such that w′ ∈ Rc(w, i, j)}
3: X3 ← {w ∈W | Rc(w, i, j) 6= ∅}
4: return X2 ∩X3

3.1.2 BDD-based Algorithm for Fulfillment
The procedure SMCFu(i, j, ϕ,M) starts with computing

the set X1 of states satisfying the commitment C(i, j, ϕ)
(see Algorithm 4). It then constructs the set X2 of ac-
cessible states that can “see” by means of the social ac-
cessibility relation Rc a state in X1. It then proceeds to
compute the set X3 of those states (i.e., X2), which are
reachable using transitions from the states in X1 by calling
the procedure Future(X1) (see Algorithm 7). From exam-
ple 1, X1 ={w1, w2, w3, w4, w5}, X2 = {w1, w2, w3, w4, w5},
Future(X1) = {w1, w2, w3, w4, w5, w6, w7, w8} and X3 =
Future(X1) ∩ X2 = {w1, w2, w3, w4, w5}. The algorithm
finally returns X3 (see Figure 1). It is clear that the main
motivation of computing X3 is to eliminate the states that
are reachable but never accessible from the states of X1 (e.g.,
w8).

Algorithm 4 SMCFu(i, j, ϕ,M): the set JFu(C(i, j, ϕ))K
1: X1 ← SMCc(i, j, ϕ,M)
2: X2 ← {w ∈W | ∃w′ ∈ X1 and w ∈ Rc(w′, i, j)}
3: X3 ← Future(X1) ∩X2

4: return X3

3.1.3 BDD-based Algorithm for Violation
The procedure SMCVi(i, j, ϕ,M) starts with computing

the set X1 of states satisfying the commitment C(i, j, ϕ). It
then computes the set X2 of those states, which are accessi-
ble and reachable from each state w′ in X1 via the social ac-
cessibility relation and transitions. The procedure proceeds
to compute the set X4 of all global states in the system that
are not reachable from and cannot reach the accessible states
in X2. Finally, the procedure returns those states (i.e., in
X4), which are in the future of states where the commit-
ment holds (i.e., X3∩X4) (see Algorithm 5). From example
1, X1 = {w1, w2, w3, w4, w5}, X2 = {w1, w2, w3, w4, w5},
X3 = Future(X1) = {w1, w2, w3, w4, w5, w6, w7, w8} and
X4 = W−Past(X2) ∪ Future(X)2 = {w6, w7}. Finally,
the algorithm returns X3 ∩X4 = {w6, w7}. From Figure 1,

Algorithm 5 SMCVi(i, j, ϕ,M): the set JVi(C(i, j, ϕ))K
1: X1 ← SMCc(i, j, ϕ,M)
2: X2 ← {w ∈ W | ∃w′ ∈ X1 and w ∈ Rc(w

′, i, j) ∩
Future({w′})}

3: X3 ← Future(X1)
4: X4 ←W − (Past(X2) ∪ Future(X2))}
5: return X3 ∩X4

it is obvious that w6 and w7 are the two states where the
commitment C(i, j, ϕ) holding at w1 is violated as they are
reachable but not accessible from w1.

The above Algorithm 5 calls two procedures Past(X) and
Future(X) that compute the set of past (resp. future) states
of X (see Algorithms 6 and 7). Algorithm 6 reports the pro-
cedure Past(X) by calling the standard procedure pre∃(X)

Algorithm 6 Past(X): the set of past states of X

1: Y ← pre∃(X) ∪X
2: Z ← ∅
3: While Z 6= Y do

4: Z′ ← Z
5: Z ← Y
6: Y ← Y ∪ pre∃(Y − Z′)
7: end While

8: return Y

introduced in [14]. The main idea of Past(X) procedure is to
iterate using while...do construct over the set of past states
captured by pre∃(X) until reaching the fix-point. Note that,
line 1 reflects the idea that each state is the past of itself.
The procedure pre∃(X) takes a set X ⊆ W as input and
computes the set of states Y ⊆ W such that a transition is
enabled to a state in X. Formally:

Y=pre∃(X)← {w ∈W | ∃w′ s.t. w′ ∈ X and (w,w′) ∈ Rt}
Similarly, the procedure Future(X) depends on the pro-

cedure next∃(X), which is computationally the dual of the
procedure pre∃(X) (i.e., it computes the next states enabled
by the transition from the current state). The next∃(X)
procedure is formally defined as follows:

Y=next∃(X)← {w ∈W | ∃w′ s.t. w′ ∈ X and (w′, w) ∈ Rt}

Algorithm 7 Future(X): the set of future states of X

1: Y ← next∃(X) ∪X
2: Z ← ∅
3: While Z 6= Y do

4: Z′ ← Z
5: Z ← Y
6: Y ← Y ∪ next∃(Y − Z′)
7: end While

8: return Y

This section is concluded by the following theorem:

Theorem 1. Model checking CTLC is polynomial-time
reducible to the problem of model checking CTLK, the com-
bination of CTL with the logic of knowledge (i.e., CTLC ≤p
CTLK).

Proof. In order to prove this theorem, we present the
semantics of the epistemic modality Kiϕ, which means“agent
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i knows ϕ” [17]. Given a formula ϕ of CTLK, 〈M,w〉 |= Kiϕ
iff for all w′ ∈W such that w ∼i w′ we have 〈M,w′〉 |= ϕ.

Let ψ be a formula in CTLC, based on the structure of
the formula ψ, three cases should be analyzed:
Case 1: ψ = C(i, j, ϕ).

From Section 2.3, w′ ∈ Rc(w, i, j) iff ∃w′′ 6= w such that
w ∼i w′′ ∼i w′ and w′′ ∼j w′. Therefore:
1) if w 6= w′ then w′ ∈ Rc(w, i, j) iff w ∼i w′ as ∼i and ∼j
are reflexive. Because the comparison of w and w′ can be
done in a polynomial time, the reduction in this case can be
done in a polynomial amount of time.
2) if w=w′, to check if w′∈Rc(w, i, j), we use the algorithm:

for all w′′ such that w ∼i w′′
if w′′ ∼j w return true
return false

Since this algorithm is linear with the size of the model, the
reduction of Case 1 can be done in a polynomial amount of
time.

Case 2: ψ = Fu(C(i, j, ϕ)).
In this case, three steps are needed: 1) 〈M,w′〉 |= C(i, j, ϕ);

2) w ∈ Fut(w′); and 3) w ∈ Rc(w′, i, j). Step 1 is reducible
in a polynomial time (Case 1). Step 2 is reducible to the
future in CTLK in a polynomial time. Step 3 can be done
in a polynomial time (see Case 1). Thus, the reduction of
Case 2 can be also done in a polynomial amount of time.

Case 3: ψ = Vi(C(i, j, ϕ)).
In this case, three steps are also needed: 1) 〈M,w′〉 |=

C(i, j, ϕ); 2) w ∈ Fut(w′); and 3) for all w′′ ∈ Pas(w) ∪
Fut(w) we have w′′ /∈ Rc(w′, i, j). Steps 1 and 2 are likewise
steps 1 and 2 in Case 2. In step 3, checking the membership
is linear with the size of the model and since the union of 2
sets can be done in a polynomial time, then the reduction
of Case 3 can also be done in a polynomial amount of time,
which completes the proof.

It is obvious that model checking CTL is also polynomial-
time reducible to the problem of model checking CTLC. We
can conclude that CTL ≤p CTLC ≤p CTLK).

4. IMPLEMENTATION
This section includes a description of the extensions made

on top of MCMAS to implement our BDD-based algorithms
presented in Section 3.1. MCMAS [15] is developed par-
ticularly to verify MASs formalized using the interpreted
systems. It also implements BDD-based algorithms to ver-
ify CTL modal connectives, epistemic logic, alternating time
logic and deontic operators. MCMAS is developed in C++
and uses the efficient CUDD library that provides BDD data
structure and performs OBDD operations and asynchronous
variable reordering. It also provides fairness, counter-examples,
witness generation and interactive execution.

4.1 BDD-based Algorithm of Commitments
As we mentioned, the needed BDD-based algorithms of

CTL modal connectives are implemented in MCMAS. In or-
der to fully implement the BDD-based algorithm SMCc of
social commitments on top of MCMAS, we need to perform
the following two steps: 1) extend the method check formulae

in the modal formulae class in the parser directory to han-
del the new commitment modality C; and 2) add the new
BDD-based algorithm of commitment modality C along with
other related methods into utilities.cc in the utilities

directory. The motivation behind step 1 is to enforce the

MCMAS’s syntax [15] to accept the proposed new grammar
specified in Definition 2.2. To achieve step 2, the BDD-based
algorithm of social commitments (see Algorithm 3) is rewrit-
ten using the epistemic accessibility relations (i.e., ∼i and
∼j) that define our social accessibility relation Rc. The set

Algorithm 8 SMCc(i, j, ϕ,M): the set JC(i, j, ϕ)K
1: X1 ← SMC(¬ϕ,M)
2: X ′2 ← {w∈W | ∃w′∈X1 such that w ∼i w′ and w ∼j w′}
3: X ′′2 ← {w∈W | ∃w′∈X ′2 such that w ∼i w′ and w 6= w′}
4: X3 ← {w∈W | ∃w′∈W such that w ∼i w′ and w 6= w′}
5: return (W−X ′′2 ) ∩X3

X2 in the original BDD-based algorithm of social commit-
ments is refined into two sets X ′2 and X ′′2 w.r.t. ∼i,∼j and
∼i respectively. Also, the set X3 that checks the emptiness
of Rc, in Algorithm 3, is rewritten w.r.t. ∼i (see Algorithm
8). The set JC(i, j, ϕ)K is finally computed by returning the
set of all global states W , which differs from the states ac-
cessible from states satisfying ¬ϕ (i.e., X ′′2 ) and accessible
from all states in W w.r.t ∼i (i.e., in X3)

In a similar way, we can easily perform the above two
steps to implement the BDD-based algorithms SMCFu and
SMCVi of Fu and Vi modal connectives respectively.

4.2 A Motivating Case Study
In this section, we provide a description of our motivating

case study, called the NetBill protocol [20], which we used
to evaluate the effectiveness of the proposed model-checking
algorithm. The NetBill protocol is a security and transaction
protocol optimized for the selling and delivery of low-priced
information goods over the Internet. The original wording
from [20] is as follows:

“The NetBill payment protocol is eight steps (see Figure
2). The first message requests a quote based on the cus-
tomer’s identity, to allow for customized per-user pricing,
such volume discounts or support for subscriptions. If the
quote (step two) is accepted (step three), the merchant sends

Account 

Funding

Customer Merchant

1: Request Quote 

2: Present Quote

3: Accept Quote

NetBill Server

6: Send EPO and Key

NetBill's BankCustomer's Bank Merchant's Bank

Batch

Payment

4: Deliver Goods

5: Send EPO

8: Send Receipt

7: Send Receipt

Figure 2: The NetBill payment protocol

the digital information to the customer (step four) but en-
crypts and withholds the key. The customer software con-
structs an electronic payment order (EPO) describing the
transaction and including cryptographic checksum of the goods
received. The order is signed with the customer’s private
key and sent to the merchant, who verifies its contents, ap-
pends the key for decrypting the goods, endorses the EPO
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with a digital signature and sends it on to the NetBill server.
The NetBill server verifies funds in the customer’s NetBill
account, debiting the customer and crediting the merchant,
and digitally signed receipt, including the key to decrypt the
goods, is sent first to the merchant and then on to the cus-
tomer. The customer software can now decrypt the pur-
chased information and present it to the customer”.

Modeling NetBill Protocol
We used our formal model M = 〈W, I,Rt, Rc, V 〉 associated
to the interpreted system IS to model the NetBill Protocol.
As in [9, 23], we omit the banking procedures by assum-
ing that if a merchant gets an EPO, he can take care of
it successfully. In this setting, the protocol rules interac-
tions among two agents: the merchant (Mer) and customer
(Cus). Each agent has a set of local states, a set of local
actions, local protocol, local evolution function and local ini-
tial state. Because of space limit, we omit the details of the
modeling process. As in [9, 23], the following abbreviations
capture the commitments that exist in this protocol:
• acceptQuote abbreviates goods → C(Cus,Mer, pay),

which means that the customer commits to pay the
agreed amount if he receives the goods.

• promiseGoods abbreviates acceptQuote→ C(Mer, Cus,
goods), which means that the merchant commits to
sending the requested goods if the customer commits
to paying the agreed amount.

• promiseReceipt abbreviates pay → C(Mer,Cus, receipt),
which means that the merchant commits to sending
the receipt if the customer pays the agreed amount.

• offer abbreviates promiseGoods ∧ promiseReceipt.

The above commitments are established by exchanging mes-
sages among agents. These messages can also bring about
certain propositions. For example, by exchanging “send
Goods” message, we can realize the proposition “goods”.

Specifications
To verify the NetBill protocol, various protocol properties
are formalized using CTLC logic w.r.t the model M .

Reachability property. Given a particular state, is there
a valid computation sequences to reach that state from an
initial state. The following lists the formulae that can be
used to check the reachable states in the NetBill protocol:

ϕ1 =E(¬goods U (goods ∧ C(Cus,Mer, pay)))

ϕ2 =E(¬acceptQuote U (acceptQuote ∧ C(Mer,Cus, goods)))

ϕ3 =E(¬pay U (pay ∧ C(Mer,Cus, receipt)))

For example, the formula ϕ1 means that there exists a path
where the customer will not commit to send payment to the
merchant until he receives the requested goods.

Safety property. This property means “something bad
never happens”. For example, a bad situation is: the cus-
tomer sends payment, but the merchant never commits to
send the receipt to him:

ϕ4 =AG ¬(pay ∧ ¬C(Mer,Cus, receipt))

Liveness property. This property means “something good
will eventually happen”. For example, in all paths globally
if the customer requests a price quote, then in all paths in
the future the merchant will commit to deliver the goods:

ϕ5 =AG(reqQuote→ AF (C(Mer,Cus, goods))

Fulfillment Commitment. While verifying the behavior of
agents for commitment fulfillment, it is crucial to verify some
conditions under which the commitment fulfillment can oc-
cur. For example, when the customer sends the payment to
the merchant, the commitment is successfully fulfilled:

ϕ6 =EF Fu(C(Cus,Mer, pay))

Violation Commitment. In a similar way, when the customer
fails to send the agreed amount of payment to the merchant,
the commitment is violated as the customer violates the pro-
tocol specification:

ϕ7 =EF Vi(C(Cus,Mer, pay))

4.3 Experimental Results
We encoded the NetBill protocol and the above proper-

ties in the ISPL model and verified them using the proposed
algorithm implemented on top of MCMAS. In order to pro-
vide a thorough assessment, we tested our implementation
on 10 experiments (see Table 1). These experiments are
ranged from 1 customer requests goods from 1 merchant to
10 customers request goods from 10 merchants. The ex-
periments were meant to check the effectiveness of the pro-
posed algorithm in terms of execution time and memory in
use. They are performed on an AMD Phenom(tm) 9600B
Quad-Core Processor with 8GB memory running Fedora 12
x86 64 Linux. In fact, from experiment 2 we rewrite the
defined properties in a parameterized form, for example in
experiment 10:

ϕ′1 = E(

10∧
i=1

¬goodsi U
10∧
i=1

goodsi

10∧
i=1

C(Cusi,Meri, payi))

which means that there exists a path where the ten cus-
tomers will not commit to send payment to the ten mer-
chants until they receive the requested goods.

Table 1 reports the number of reachable states, the execu-
tion time (in seconds) and BDD memory in use (in MBs) ob-
tained in the verification of the NetBill protocol against the
above properties, as a function of the number of customer
and merchant agents (first and second columns). We found

Table 1: Verification Results
#Cus #Mer #States Memory Time

1 1 10 8.6 MB < 0.01s
2 2 43 8.971 MB < 0.01s
3 3 239 9.958 MB < 0.01s
4 4 1597 12.056 MB < 0.01s
5 5 11545 16.856 MB 1s
6 6 88055 36.134 MB 2s
7 7 708461 45.592 MB 8s
8 8 6.01734e+06 56.28 MB 29s
9 9 5.25729e+07 94.36 MB 426s
10 10 4.59517e+08 153.008 MB 1128s

that: 1) all the defined properties hold in the 10 experiments;
and 2) the execution time and number of reachable states
increase exponentially when the number of agents increases
because the number of Boolean variables required to encode
agents increases. However, the memory consumption does
not increase exponentially because OBDDs encoding may
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change from one model to another based on some internal
optimization techniques. Furthermore, we did not compare
our approach with others because unlike our proposal, they
are based upon the translation process and do not use a
dedicated model checker.

5. CONCLUSION AND FUTURE WORK
To have a full and dedicated model checking for social

commitments and related concepts such as fulfillment and
violation, a new temporal logic, called CTLC, is presented
in this paper. Without such a logic, these concepts can only
be encoded and abstracted as simple variables, processes or
data structures in existing model checkers. Our CTLC logic
extends CTL with modalities for social commitments and
their fulfilment and violation. We developed a new model-
checking algorithm that extended MCMAS to be able to
verify commitments. We proved that the problem of model
checking CTLC is polynomial-time reducible to the problem
of model checking CTLK. In our implementation, we con-
ducted 10 experiments, which demonstrate the effectiveness
of our algorithm in terms of execution time and memory con-
sumption. As future work, we plan to extend the proposed
logic and its model checking to consider conditional com-
mitments and commitment actions such as cancel, release,
assign and delegate.
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