
Specifying and Applying Commitment-Based
Business Patterns

Amit K. Chopra
University of Trento

Via Sommarive, 14 I-38123 Povo, Italy
chopra@disi.unitn.it

Munindar P. Singh
North Carolina State University

Raleigh, NC 27695-8206
singh@ncsu.edu

ABSTRACT
Recent work in communications and business modeling em-
phasizes a commitment-based view of interaction. By ab-
stracting away from implementation-level details, commit-
ments can potentially enhance perspicuity during modeling
and flexibility during enactment.

We address the problem of creating commitment-based
specifications that directly capture business requirements,
yet apply in distributed settings. We encode important busi-
ness patterns in terms of commitments and group them into
methods to better capture business requirements.

Our approach yields significant advantages over existing
approaches: our patterns (1) respect agent autonomy; (2)
capture business intuitions faithfully; and (3) can be enacted
in real-life, distributed settings. We evaluate our contribu-
tions using the Extended Contract Net Protocol.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Design, Theory

Keywords
Protocols, Software engineering, Method engineering

1. INTRODUCTION
Commitment-based approaches to agent communication

are finding broad traction in specifying interaction proto-
cols. What makes commitments an appealing abstraction is
that they naturally capture the business relationships that
arise in our everyday life and business interactions, and offer
flexibility in realizing them.

The expression C(debtor, creditor, antecedent, consequent)
represents a commitment: it means that the debtor is com-
mitted to the creditor for ensuring the consequent if the
antecedent holds. For example, C(buyer, seller, goods, paid)
means that the buyer commits to the seller that if the seller
provides the goods the buyer will ensure he is paid. Whereas

Cite as: Specifying and Applying Commitment-Based Business Pat-
terns, Amit K. Chopra and Munindar P. Singh, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 475-482.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

it is easy enough to come up with commitments, it is not
easy to specify the right commitments for particular appli-
cations. For instance, Desai et al. [4] show how a scenario
dealing with foreign exchange transactions may be formal-
ized in multiple ways using commitments, each with differ-
ent ramifications on the outcomes. This leads us to the main
question we address: How can we guide software engineers
in creating appropriate commitment-based specifications?

Such guidance is often available for operational approaches
such as state machines and Petri nets that describe interac-
tions in terms of message order and occurrence. For in-
stance, Figure 1 shows two common patterns expressed as
(partial) state machines, which can aid software engineers in
specifying operational interactions. Here, b and s are buyer
and seller, respectively. (A) says that the seller may accept
or reject an order; (B) says the buyer may confirm an order
after the seller accepts it.

Figure 1: Example operational patterns.

By contrast, commitment protocols abstract away from
operational details, focusing on the meanings of messages,
not their flow. Clearly, operational patterns such as the
above would not apply to the design of commitment pro-
tocols. What kinds of patterns would help in the design
of commitment protocols? By and large, they would need
to be business patterns—characterizing requirements, not
operations—that emphasize meanings in terms of commit-
ments. In contrast with Figure 1, business patterns—as we
formalize them—describe what it means to make, accept,
reject, or update an offer, not when to send messages.

We apply our patterns towards creating commitment-based
specifications in a manner inspired by situational method en-
gineering (SME) [10]. In SME, a method corresponds to a
particular software engineering lifecycle and is composed of
reusable fragments selected based on application and orga-
nizational requirements. For example, based on its require-
ments, a development organization may adopt goal-based
or scenario-based requirements engineering or omit require-
ments engineering altogether. Analogously, for us, those de-
veloping commitment-based specifications would choose a
commitment-based method that composes specific business
patterns and that suits their requirements, including those
relating to the organizational context [12] in which the sys-

475

tem to be will be enacted. In this sense, a method describes
a second-order business pattern.

Contributions. Our contributions are as follows. First, we
identify business patterns as distinct from semantic and en-
actment patterns. Whereas semantic patterns encapsulate
general commitment reasoning [2] and enactment patterns
guide a commitment-based agent design, business patterns
support specifying business protocols in cross-organizational
settings. Second, we identify semantic antipatterns, which
generally reflect a closed system way of thinking and are
not suitable for open settings. Third, we identify several
business patterns that accommodate common business sit-
uations. Fourth, we formulate engineering methods as sets
of selected patterns and outline a simple approach based on
organizational requirements for selecting among methods.

Like any set of patterns, the patterns in this paper reflect
intuitions rooted in experience. Our patterns, however, are
also motivated by the following requirements.
Autonomy-compatibility Autonomy broadly refers to the

lack of control: no agent has control over another
agent. To get things done, agents set up the appro-
priate commitments by interacting. Any expectation
from an agent beyond what the agent has explicitly
committed to is unreasonable.

Explicit meanings Our patterns make public the aspects
of meaning that ought to have been public in the first
place, but are often hidden within agent implementa-
tions. For example, updating a standing offer would
mean replacing an existing commitment with a new
one. An operational approach would simply allow for
multiple UpdateOffer messages. If agents differently
assume whether the latest message prevails, misalign-
ment would ensue.

Distributed enactment Our business patterns build up
systematically from a core set of communication prim-
itives reflecting established ways to manipulate com-
mitments in distributed settings.

Result. We evaluate our approach via a case study. The
main result we obtain is that our approach highlights the
critical design decisions and places them at a business level.
First, a designer can see what is at stake in those decisions
and can choose according to the needs of the business part-
ners and the contextual setting in which they will interact.
Second, through its focus on formalizing business meaning,
our approach captures exactly what the business needs. In
contrast, traditional approaches are guilty of over-specifying
on some aspects (leading to rigid enactments) and under-
specifying others (leading to potential ambiguity in realistic
environments). Their only recourse against the former is
to enumerate additional enactments and their only recourse
against the latter is to insert additional ad hoc constraints,
thus leaning toward over-specification. The overall outcome
is excessive complexity.

Organization. The rest of the paper is organized as follows.
Section 2 describes the necessary background for comput-
ing commitments in distributed settings. It also discusses
semantic patterns. Section 3 introduces some business pat-
terns, enactment patterns, and semantic antipatterns. Sec-
tion 4 applies the patterns toward protocol specification via
methods. Section 5 applies our approach to the Extended

Contract Net Protocol [15]. Section 6 sums up our approach
along with a discussion of the relevant literature.

2. BACKGROUND
We adopt Chopra and Singh’s formal framework [2], in-

cluding their language and reasoning postulates. Table 1
repeats their grammar for commitments and for messages
that manipulate commitments. A sender can inform a re-
ceiver using a Declare. A commitment is detached when its
antecedent becomes true (>), meaning its debtor is uncon-
ditionally committed. A commitment is discharged when
its consequent becomes true. Table 2 lists some important
kinds of commitments that may arise in a fan-selling sce-
nario.

Table 1: Syntax for commitments and messages.

Commitment −→ C(Agent, Agent, DNF, CNF)
Content −→ Atom | ¬ Atom | Stative(Agent, Agent,
DNF, CNF)
Stative −→ created | released | canceled | violated
DNF −→ And | And ∨ DNF
CNF −→ Or | Or ∧ CNF
And −→ Content | Content ∧ And
Or −→ Content | Content ∨ Or
Message −→ Declare(Agent, Agent, News)
Message −→ Op(Agent, Agent, DNF, CNF)
News −→ Atom | Stative(Agent, Agent, DNF, CNF)
| Atom ∧ News | Stative(Agent, Agent, DNF, CNF) ∧
News
Op −→ Create | Cancel | Release | Delegate

Table 2: Commitments in the syntax of Table 1.

Name Commitment (S is seller; B is buyer)

cA C(S,B, paid, fan): S commits to B that if pay-
ment is made, the fan will be delivered.

cUA C(S,B,>, fan): The unconditional version of
cA. S commits to B that the fan will be deliv-
ered.

cB C(S,B, released(S,B,>, fan), created(S,B,>,
discount)): S commits to B that if B releases
S from the commitment to deliver the fan, S
will give B a discount on its next purchase.

cC C(S,B,¬fan∧released(S,B,>, fan), created(S,B,
>, discount)): Similar to cB except that it
accounts for the case when S’s delivery of the
fan and B’s release cross in transit—in such a
case, S need not give the discount anymore.

The statives (except violated) record the history of com-
mitment operations. For example, created(x, y, r, u) is added
to an agent’s KB when an agent has observed the message
Create(x, y, r, u), and so on. We introduce violated to cap-
ture that an unconditional commitment has been violated,
e.g., because the deadline for bringing about its consequent
has passed. Table 3 lists each message along with its sender
and receiver, and the effects of the messages (we omit the
assignment operation for brevity).

Chopra and Singh’s framework uses two kinds of postu-
lates: update postulates (appropriately constrained by the

476

Table 3: Core messages pertaining to commitments.

Message Sender Receiver Effect

Create(x, y, r, u) x y C(x, y, r, u)
Cancel(x, y, r, u) x y ¬C(x, y, r, u)
Release(x, y, r, u) y x ¬C(x, y, r, u)
Delegate(x, y, z, r, u) x z C(z, y, r, u)
Declare(x, y, p) x y p

conditions listed below) that capture the computation of an
agent’s state following its observation of a message, and com-
mitment reasoning postulates such as (assuming the same
debtor-creditor pair throughout a postulate) u → ¬C(r, u)
(captures discharge) and C(r ∧ s, u) ∧ s→ C(r, u) (captures
detach), and so on. These postulates encode semantic pat-
terns, that is, the domain-independent rules of computing
commitments. In Table 3, the effects are nominal because
they hold only under the following conditions. (A commit-
ment C(r, u) is stronger than C(r′, u′) iff u ` u′ and v′ ` v.)
Novel Creation Create(r, u) is a noop if a stronger com-

mitment C(s, v) holds or has held before (that is, if
created(s, v) holds).

Complete Erasure Release(r, u) or Cancel(r, u) removes all
commitments weaker than C(r, u) provided no C(s, v)
strictly stronger than C(r, u) holds; otherwise it is a
noop.

Accommodation From Release(r, u) and Cancel(r, u), in-
fer that each weaker C(s, v) has held before.

Notification Whenever a creditor learns of a condition that
features in the antecedent, it notifies the debtor, and
whenever a debtor learns of a condition that features
in the consequent, it notifies the creditor.

Priority If two agents may take conflicting actions, the pro-
tocol specifies ahead of time whose action has priority.

The principal result that follows from the above conditions
is that even when agents communicate asynchronously, they
would remain aligned with respect to their commitments
(assuming reliable in-order message delivery for every pair
of agents—easily supported by common infrastructure such
as reliable message queues).

3. COMMITMENT PATTERNS
We discuss three kinds of patterns. Business patterns

capture the meanings of business communications in terms
of commitments, enactment patterns specify when an agent
may enact a particular business communication, and seman-
tic antipatterns capture inappropriate patterns. All of our
examples are from the fan-selling domain (Table 2).

3.1 Business Patterns
Business patterns encode the common ways in which busi-

nesses engage each other. By representing business pat-
terns using Chopra and Singh’s framework, we can guarantee
alignment even for asynchronous enactments.

The messages of Table 3 correspond to elementary busi-
ness patterns. Here, Offer(x, y, r, u) means Create(x, y, r, u)
(the Generic Offer or GO pattern); CancelOffer(x, y, r, u)
means Cancel(x, y, r, u) (the Cancel Offer or CO pattern);
and RejectOffer(x, y, r, u) means Release(x, y, r, u) (the Re-
lease Offer or RO pattern). However, we can build upon
the basic primitives to build more complex business patterns

such as for updating, compensation, mutual commitment,
and so on. Below, we list some recurring business patterns.

• Basic Offer (BO)
Intent To set up a basic business transaction.
Motivation Captures a basic way of doing business.
Implementation BasicOffer(x, y, r, u) means Create(x, y, r, u)

where r and u are formulas over atoms (they contain
no statives).

Example BasicOffer(S,B, paid, fan)
Consequences For progress, the creditor should be ready

to bring about the antecedent.

• Nested Offer (NO)
Intent The debtor wants a commitment from the creditor

for something in return for something else.
Motivation To set up a richer (both parties are commit-

ted) and more flexible engagement.
Implementation NestedOffer(x, y, r, u) means

Create(x, y, created(y, x,>, r), u).
Example NestedOffer(S,B, paid, fan)
Consequences When the antecedent holds, both x and y

are unconditionally committed to u and r, respectively.
When that happens, each would gain some measure of
safety in acting first and discharging its commitment,
thus improving flexibility in enactment.

• Mutual Commitment Offer (MCO)
Intent Debtor should have the exact “reciprocal” commit-

ment from the creditor: if the creditor commits to u
for r, the debtor commits to r for u.

Motivation To set up a richer and more flexible engage-
ment, wherein both parties are committed.

Implementation MutualCommitmentOffer(x, y, r, u) means
Create(x, y, created(y, x, u, r), created(x, y, r, u))

Example MutualCommitmentOffer(S,B, paid, fan)
Consequences This pattern is less prone to violations than

Nested Offer, as only one party could possibly vio-
late its commitment.

• Business Transaction Identifiers (BTI)
Intent To enable an agent to distinguish distinct offers and

to relate commitments that coherently fall into the
same business transaction.

Motivation It is important (1) not to conflate distinct busi-
ness transactions, so that commitments from different
transactions do not interfere with each other, and (2)
preserve logical structure so the reasoning is sound.

Implementation Introduce identifiers in the antecedent,
propagating them as needed to the consequent.

Example Writing the identifier as the first parameter of a
proposition, C(S,B, paid(0), fan(0)) occurs in a differ-
ent transaction from C(S,B, paid(1), fan(1)).

Consequences We need a clear information model to make
sure the commitments pertaining to one transaction do
not involve the identifiers of another.

• Compensation (COM)
Intent To compensate the creditor in case of commitment

cancellation or violation by the debtor.
Motivation It is not known in advance whether a party will

fulfill its commitments; compensation commitments
provides some assurance to the creditor in case of vio-
lations.

Implementation Compensate(x, y, r, u, p) means
Create(x, y, violated(x, y, r, u), p).

477

Example Compensate(S,B, paid, fan, discount)
Consequences A commitment (even a compensation com-

mitment) should ideally be supported by compensa-
tion; however, at some level, the only recourse is esca-
lation to the surrounding business context—for exam-
ple, the local jurisdiction [12].

• Update (UP)
Intent To update a previously made offer.
Motivation Changing business environments may require

debtors to update their commitments.
Implementation Update(x, y, r, u, s, v) means

Cancel(x, y, r, u) and Create(x, y, s, v).
Example Update(S,B, paid$12, fan, paid$15, fan)
Consequences One must be careful in applying updates

since the creditor may not find the new commitment
an acceptable substitute for the old commitment.

• Release Incentive (RI)
Intent To enable the debtor to offer an incentive to the

creditor for releasing it from a commitment.
Motivation Due to changing business environments, it may

be more profitable for the debtor to offer an incentive
to the creditor for releasing it from an existing com-
mitment.

Implementation ReleaseIncentive(x, y, r, u, p) means
Create(x, y,¬u ∧ released(x, y, r, u), p) where p represents
the incentive. The conjunction in the antecedent is
necessary to handle the case where Declare(x, y, u) may
cross with Release(x, y, r, u): once u occurs, the debtor
is off the hook.

Example ReleaseIncentive(S,B,>, fan, discount)
Consequences The creditor may not take up the incen-

tive offer; the debtor may then consider canceling the
commitment unilaterally.

• Delegation Acceptance (DA)
Intent To set up the proper relationship between a delega-

tor and delegatee for effective delegations.
Motivation The debtor may delegate (viewed as a request)

a commitment to another party if it sees value in it;
however, the delegatee is not bound to accept the del-
egation.

Implementation DelegationAcceptance(x, y, z, r, u) means
Create(z, x, delegated(x, y, z, r, u), created(z, y, r, u));
delegated(x, y, z, r, u) captures the performance of the
delegation request.

Example DelegationAcceptance(S,B, S2, paid, fan)
Consequences The parties should set up additional no-

tifications, for example, when the delegatee has dis-
charged the commitment, for greater confidence.

• Redundancy (RED)
Intent To mitigate risk by assuring the creditor of service

by a backup agent in case things go awry.
Motivation A debtor can reduce the risk of violating its

commitments by introducing a backup.
Implementation Redundancy(x, y, z, r, u) means

Create(x, y, risk(x, y, r, u), created(z, y, r, u)) (x is promis-
ing backup service by z to y). Her, risk(x, y, r, u) is a
domain-specific predicate that holds when a commit-
ment is at risk of being violated.

Consequences This pattern presumes the backup agent
commits to accepting delegations from the debtor, for
example via Delegate Acceptance.

In the end, all of the above patterns are specializations
of the Generic Offer pattern, except Update which is a
composite pattern, and yet we are able to capture a rich set
of business patterns by appropriately changing the content
of the commitments.

3.2 Enactment Patterns
Whereas a business pattern describes the meaning of com-

munication, an enactment patterns describe the conditions
under which an agent should enact a business pattern, that
is, when to undertake the corresponding communication. In
general, enactment is agent-specific. Nonetheless, some be-
haviors are commonly observed in practice, for example, in
negotiation. A locus of such enactments may serve as the
basic agent skeleton. We highlight two enactment patterns
that are built upon the offer business patterns presented
earlier.

• Improved Offer
Intent To make improved offers via stronger commitments.
Motivation The creditor has not taken up an earlier offer.
When x makes the offer C(x, y, r, u); y has not taken up the

offer, that is, r does not hold. Then, xmakes a stronger
offer C(x, y, r′, u′) (recall strength from Section 2) in
order to entice y into the deal.

Consequences The debtor is committed more strongly;
ideally, it must make sure the stronger commitment
has at least some positive utility, even if diminished.
This pattern represents a concession.

• Counter Offer
Intent One party makes an offer to another, who responds

with a modified offer of its own.
Motivation Essential for negotiation.
When Let C(x, y, r, u) be the commitment corresponding

to the original offer. Making a counteroffer would
amount to creating the commitment C(y, x, u′, r′) such
that u′ ` u and r ` r′, in other words, if the con-
sequent is strengthened and the antecedent is weak-
ened. An alternative implementation includes doing
Release(x, y, r, u) in addition.

Consequences When u ≡ u′ and r ≡ r′, the counter offer
amounts to a mutual commitment.

3.3 Semantic Antipatterns
Below, we enhance Chopra and Singh’s framework with

semantic antipatterns—forms of representation and reason-
ing to be avoided because they conflict with the autonomy
of the participants or with a logical basis for commitments.

• Commit Another as Debtor
Intent An agent creates a commitment in which the debtor

is another agent.
Motivation To capture delegation, especially in situations

where the delegator is in a position of power of over
the delegatee.

Implementation The sender of Create(y, z, p, q) is x, thus
contravening Table 3.

Example Consider two sellers S and S2. S sends
Create(S2,B, paid, fan) to B.

Consequences A commitment represents a public under-
taking by the debtor. A special case is when x = z.
That is, x unilaterally makes itself the creditor.

Criteria Failed S2’s autonomy is not respected.

478

Alternative Apply delegation to achieve the desired busi-
ness relationship, based on prior commitments. In the
above example, S2 could have a standing commitment
with S to accept delegations. S can then send a del-
egate instruction to S2 upon which S2 commits to B.
See the Delegation Acceptance and Redundancy
business patterns in Section 3.1.

• Acked Commit
Intent A commitment may hold only when the creditor has

acknowledged its creation to the debtor. That is, the
creditor should accept the commitment [9].

Motivation A commitment should be set up only upon
the agreement of both parties. This is often based on
a misunderstanding of commitments: that the creditor
is committed to the antecedent.

Implementation Creditor acknowledges a create message.
Example The seller S enacts BasicOffer(S,B, paid, fan); how-

ever, the offer does not hold until the buyer B acknowl-
edges the offer.

Consequences It rules out unilateral commitment by the
debtor such as in a business offer or advertisement for
services.

Criteria Failed Autonomy (a debtor shouldn’t need a cred-
itor’s approval to create a commitment) and generality
(as it is unable to capture common scenarios).

Alternative Mutual Commitment Offer.

• Commitment Identifiers
Intent Gives a unique identifier to every commitment.
Motivation To distinguish transactions and to simplify rea-

soning about commitments in concurrent settings, e.g.,
in [5, 11].

Implementation Every commitment has an ID, as in
C(id, debtor, creditor, antecedent, consequent).

Example C(id0, S,B, paid, fan) and C(id1, S,B, paid, fan)
Consequences Reasoning about commitments breaks down.

For example, from C(x, y, r, u)∧C(x, y, r, v), one infers
C(x, y, r, u∧v). However, one cannot apply such an in-
ference to C(id0, x, y, r, u) ∧ C(id1, x, y, r, v). Further,
commitment operations must now explicitly refer to
the identifiers in addition to the logical content.

Criteria failed Generality, since general reasoning about
commitments breaks down.

Alternative Business Transaction Identifier.

4. PROTOCOL SPECIFICATION
We explain how the business patterns specified above may

be used by protocol designers.
Business protocols are often specified around a central ex-

change of goods, services, or monies. Although a simple
pattern such as Basic Offer is usually enough to capture
the exchange, typically participants want the protocols to
be robust in the following ways. Table 4 summarizes how
our business patterns support the robustness requirements.
Creditor Confidence (CC) Inspire confidence in the cred-

itor about the outcome of the interaction: e.g., Com-
pensation and Redundancy.

Debtor Confidence (DC) Inspire confidence in the debtor
by requiring commitments from other parties: e.g.,
Nested Offer, Mutual Commitment Offer, and
Delegation Acceptance.

Progress (P) Ensure liveness by requiring the involved par-
ties to act or risk being out of compliance, e.g., Nested

Offer and Compensation (once a violation happens).
Mitigation (M) Mitigate risk for the debtor of a commit-

ment by helping it avoid noncompliance, e.g., Release
Incentive and Delegation Acceptance.

Table 4: Business patterns and robustness.

CC DC P M

NO – Yes Yes –
MCO – Yes Yes –
COM Yes – Yes –
UP – – – Yes
RI Yes – – Yes
DA Yes Yes – –
RED Yes – – Yes

A bundle of business patterns is a reusable method for
addressing certain requirements. For example, the method
〈MCO,COM〉 addresses the requirements of creditor and
debtor confidence; 〈MCO,COM,DA〉 does the same job
better; 〈MCO,COM,DA,RED〉 fares even better. Alterna-
tively, a protocol designer could choose the method 〈NO,RI〉
in order to support progress as well as mitigation. In essence,
the patterns can be grouped according to the required level
of robustness.

However, in selecting a method, a protocol designer would
take into account not only the robustness requirements, but
also the intended organizational setting. The resources of
the organization and its policies would affect the method se-
lected. For example, a fan seller ModernFans might not want
to use delegation as a mitigation strategy for competitive
reasons. It might also want to makes offers which its cus-
tomers may take advantage of directly by making payments;
in such a case, ModernFans would select a method that in-
cludes BO instead of NO or MCO. Further, the more ro-
bust a method the more computational resources the agents
would need to devote during enactments—another reason a
less robust method may be selected. In general, a proto-
col designer must make judgments about robustness versus
organizational policies and resource usage.

5. CASE STUDY
We now apply the patterns to the Extended Contract Net

Protocol (xCNP) formalized by Vokř́ınek et al. [15]. xCNP
involves two roles: contractor and contractee. Vokř́ınek et
al.’s extensions enable the negotiation of penalties in case
one of the parties is unable to fulfill its end of the bargain.
The xCNP protocol has three distinct phases: contract for-
mation (similar to the traditional CNP), contract decom-
mitment (negotiation of penalties in case one of the parties
wants out, that is, before the actual violation of the con-
tract), and contract resolution (negotiation of penalties in
case of an actual violation).

Vokř́ınek et al. formalize xCNP in a procedural manner via
a state machine (Figure 2). Many enactments are possible.
For example, a contract may be reached or a penalty may
be successfully negotiated; the parties could negotiate back
and forth many times before reaching an agreement; they
could fail to arrive at an initial contract; one of them could
propose decommitment and then take back the proposal,
and so on.

479

Table 5: Commitments used to model an xCNP-like setting.

Label D C Antecedent Consequent

pr cte ctr created(ctr, cte, built(0), paid(0)) created(cte, ctr, paid(0), built(0))
co ctr cte created(cte, ctr, paid(0), built(0) ∧furnished(0)) created(ctr, cte, built(0) ∧ furnished(0), paid(0))
cv cte ctr created(ctr, cte, built(0) ∧ furnished(0),

paid(0)) ∧ created(ctr, cte,
violated(ctr, cte,>, paid(0)), penalty(0))

created(cte, ctr, paid(0), built(0) ∧ furnished(0))

cvs cte ctr created(ctr, cte, built(0) ∧ furnished(0)
∧driveway(0), paid(0)) ∧ created(ctr, cte,
violated(ctr, cte,>, paid(0)), penalty(0))

created(cte, ctr, paid(0), built(0) ∧ furnished(0)∧
driveway(0))

py ctr cte built(0) ∧ furnished(0) ∧ driveway(0) paid(0)
vio ctr cte violated(ctr, cte,>, paid(0)) penalty(0)
ta cte ctr paid(0) built(0) ∧ furnished(0) ∧ driveway(0)
in ctr cte ¬paid(0) ∧ released(ctr, cte,>, paid(0)) released(cte, ctr,>, built(0) ∧ furnished(0)∧

driveway(0)) ∧ expensesPlusTen(0)
inR ctr cte > expensesPlusTen(0)

Figure 2: The xCNP protocol [15]. I and R refer to the contractor (ctr) and the contractee (cte), respectively.

5.1 Applying our Approach
We replace the operational model of xCNP with a model

based on the appropriate business patterns.
• xCNP emphasizes the synchronizing agree-confirm op-

erational pattern for arriving at any outcome: in con-
tract formation (after one party agrees to a proposal,
the other must confirm it), in penalty negotiation, and
so on. We instead use Mutual Commitment Offer
(MCO) or Nested Offer (NO).
• In order to enable parties to get out of their commit-

ment, xCNP supports decommitment. In our frame-
work, Release Incentive (RI) captures decommit-
ment: the commitment is not yet violated, and the
debtor is asking to be released by the creditor in return

for a penalty (incentive from the creditor’s point of
view). An alternative set of patterns for implementing
decommitment consists of Cancel Offer (CO) and
Compensation (COM, as proposing a penalty for the
cancellation).
• xCNP supports penalties for violation to capture con-

tract resolution. We can instead use Compensation.
Thus, to capture a contract protocol, one can choose from

the following business pattern methods.
Method 1. 〈NO,RI,COM〉
Method 2. 〈MCO,RI,COM〉
Method 3. 〈NO,CO,COM〉
Method 4. 〈MCO,CO,COM〉

As stated earlier, the choice of the method depends not

480

only upon the robustness criteria but also upon organiza-
tional requirements. For example, Method 2 is more robust
than Method 4 because cancellation is in effect a violation.
However, a business partner could still choose Method 4 if
it did not care about violations as much as it cared about
immediacy (in the sense that it does not have to wait to be
released by the other party).

The four methods above are just samples; in general, de-
signers could come up with more patterns and methods that
meet various requirements.

5.2 Enactment
Table 5 lists the commitments used in xCNP; nameU is the

unconditional commitment resulting from name. Figure 3
shows an enactment of the contract formation stage using
Method 2. The scenario is one where a contractor issues a
CFP for an office block construction. Let’s consider Figure 3
step by step.

Figure 3: Method 2: Contract formation enactment.

1. Contractor ctr applies the Declare pattern in sending
the CFP.

2. Contractee cte enacts the MCO pattern in response
(to create pr): essentially the contractee will do built
in return for paid.

3. ctr does a Counter Offer in response (to create co):
in addition to built, the contractor also wants furnished.

4. cte does a Counter Offer in response (to create cv):
the contractee is ready to do built and furnished for
paid, but wants contractor ctr to commit to paying a
penalty in case ctr cannot pay for the services rendered.

5. ctr applies Reject Offer in response.
6. cte then applies Improved Offer: it sweetens the

offer by throwing in driveway.
7. ctr then creates the necessary commitments using the

Basic Offer pattern; presumably the contractor is
happy with the improved offer.

8. cte also creates the necessary commitments.
Figure 4 shows an enactment of the contract decommit-

ment stage using Method 2. The figure begins from where
the interaction has progressed so the commitments py and

ta hold. Let’s look at Figure 4 step by step.

Figure 4: Method 2: Decommitment enactment.

• ctr applies the Release Incentive pattern (to create
in): if cte releases it from pyU and payment has not
yet happened, ctr will release cte from taU and reim-
burse cte to the extent of 110% of the expenses cte has
already incurred.
• In response, cte releases it from pyU .
• In response, ctr releases cte from taU . At this point,

inR holds: ctr must still pay cte 110% of the expenses.

5.3 Observations and Conclusions
xCNP, as formalized by Vokř́ınek et al., does not con-

sider the meanings of interactions. For example, it does
not formalize what it means to decommit. By contrast, we
formalized decommitment via two alternative patterns that
have different ramifications for meeting organizational re-
quirements. In addition, one of the alternatives turned out
to be a composite pattern (Cancel Offer and Compensa-
tion). Operational formalizations miss out on such nuances.

We showed four alternative methods that model the en-
hancements xCNP claims over the traditional CNP. We gave
an example requirement of what might drive a protocol de-
signer to choose one method over another. Since our meth-
ods are meaning-based, it is natural for a designer to select
among them than from among the same number of alterna-
tive operational formalizations of xCNP.

All our methods draw from the patterns we introduced
earlier, which themselves draw from the basic framework in
[2]. Thus business-level interoperability is guaranteed even
when agents enact the patterns asynchronously. By con-
trast, Vokř́ınek et al.’s xCNP formalization is both over-
specified and under-specified. It is over-specified because it
is highly synchronous and enforces rigid enactments, such
as via the agree-confirm pattern for arriving at any out-
come. It is under-specified in net effect because it cannot
capture enactments that would be natural. For example,
both the contractor and contractee (I and R, respectively
in Figure 2) may act concurrently by sending CFP and
IMPOSE PROPOSAL, respectively. Although these tran-
sitions are allowed, the resulting state is not captured in the
formalization. A similar situation ensues when, after seal-
ing the contract, both parties act concurrently in order to
decommit. In general, it is difficult to capture all possible
executions paths via operational methods because of their
lower level of abstraction.

One could try to repair Vokř́ınek et al.’s formalization by
inserting additional enactment paths to address its rigid-
ity and insert additional synchronizations to address mes-
sages crossing in transit (the latter would increase rigidity).

481

However, such a formalization would be overly complex, un-
wieldy to maintain, and difficult both for designers and end
users to understand.

In conclusion, when the business meanings of interactions
are made explicit, (1) designers gain in flexibility in selecting
from a range of possible specifications, that is, the methods,
and (2) agents gain in flexibility in enacting the specified
system because they can reason about meanings and select
among alternative courses of action.

6. DISCUSSION
Method engineering is an expanding area of SE. Tradi-

tionally, method engineering considers how to engineer and
choose among methods in the large, such as Agile or Scrum
[10], with selection based on the structure of the given soft-
ware development organization. In contrast with existing
work, we observe that a (modeling) method could be under-
stood in terms of the families of interactions that we wish
to support among agents, such as the partners in business
processes. We too are concerned with organizations, but
emphasize the organization of the business partners during
enactment as well as the contextual organization in which
the business process takes place. We envisage that suitable
methods would be engineered based on features of such orga-
nizations as well as the flexibility supported by the business
partners’ agents. And designers who apply selected meth-
ods would create models of interaction that naturally meet
those criteria.

Our approach to patterns is layered: method over busi-
ness over semantic patterns. Lind and Goldkuhl [7] propose
a layered approach to business modeling starting with busi-
ness actions and building up to transactions; however, they
overlook the meanings of the business actions themselves.

Conceptually any protocol, no matter how specified, is a
reusable pattern of interaction. Existing approaches for pro-
tocol composition, e.g., [8, 14], focus on procedural aspects,
which though valuable cannot substitute for business mean-
ings. Singh et al. [12] motivate some commitment-based con-
nector patterns, including multiparty ones. However, they
do not consider the challenges of distributed enactment.

Traditionally, researchers have used action logics for com-
mitment protocol specification, for example, as in [6]. Chopra
and Singh [1] support the application of business patterns,
such as for Return and Refund, to protocols specified in
an action logic. However, these approaches assume syn-
chronous communication and, further, freely mix meaning
axioms along with operational constraints such as for mes-
sage ordering. By contrast, our patterns are purely meaning-
based, and they can be enacted asynchronously.

Wang et al. [16] annotate each commitment with types
depending on the relative order in which its antecedent and
consequent ought to be satisfied. For example, they anno-
tate C(merchant, customer, payment, refund) strictly-ordered :
payment must be made before the refund can be made. How-
ever, payment-before-refund can be an enactment policy—a
choice—on the part of the merchant; the ordering is not nec-
essarily an issue of commitment specification. Annotating
commitments as Wang et al. do unduly limits flexibility dur-
ing enactment. In general, it is important to sort out the
issues of agent specification from those of protocol specifica-
tion [3].

Future directions include coming up a rich taxonomy of re-
quirements that pertain to interactions, and providing tool-

based support to designers for picking from among the meth-
ods in a repository.

Telang and Singh [13] propose a metamodel in which to
express cross-organizational business models that includes
a set of modeling patterns. They formalize commitments
in a simplified temporal semantics assuming synchrony and
show how to verify low-level protocols expressed in sequence
diagrams with respect to the business models. It would be
interesting to reconcile our approach with theirs.

Acknowledgments
We thank the reviewers for their helpful comments. Chopra
was supported by a Marie Curie Fellowship.

7. REFERENCES
[1] A. K. Chopra, M. P. Singh. Contextualizing

commitment protocols. AAMAS, pp. 1345–1352, 2006.

[2] A. K. Chopra, M. P. Singh. Multiagent commitment
alignment. AAMAS, pp. 937–944, 2009.

[3] A. K. Chopra and F. Dalpiaz and P. Giorgini and
J. Mylopoulos. Reasoning about agents and protocols
via goals and commitments. AAMAS, pp. 457–464,
2010.

[4] N. Desai, A. K. Chopra, M. Arrott, B. Specht, M. P.
Singh. Engineering foreign exchange processes via
commitment protocols. IEEE SCC, pp. 514–521, 2007.

[5] N. Fornara, M. Colombetti. Operational specification
of a commitment-based agent communication
language. AAMAS, pp. 535–542, 2002.

[6] L. Giordano, A. Martelli, C. Schwind. Specifying and
verifying interaction protocols in a temporal action
logic. J. Applied Logic, 5(2):214–234, 2007.

[7] M. Lind, G. Goldkuhl. The constituents of business
interaction—generic layered patterns. Data &
Knowledge Engineering, 47(3):327–348, 2003.

[8] H. Mazouzi, A. E. F. Seghrouchni, S. Haddad. Open
protocol design for complex interactions in multi-agent
systems. AAMAS, pp. 517–526, 2002.

[9] P. McBurney, S. Parsons. Posit spaces: A performative
model of e-commerce. AAMAS, pp. 624–631, 2003.

[10] A. Qumer, B. Henderson-Sellers. An evaluation of the
degree of agility in six agile methods and its
applicability for method engineering. Information and
Software Technology, 50(4):280–295, 2008.

[11] M. Rovatsos. Dynamic semantics for agent
communication languages. AAMAS, pp. 1–8, 2007.

[12] M. P. Singh, A. K. Chopra, N. Desai.
Commitment-based service-oriented architecture.
IEEE Computer, 42(11):72–79, 2009.

[13] P. R. Telang and M. P. Singh. Specifying and verifying
cross-organizational business models. IEEE Trans.
Services Comput., 4, 2011.

[14] B. Vitteau, M.-P. Huget. Modularity in interaction
protocols. Proc. ACL, LNCS 2922, pp. 291–309, 2004.

[15] J. Vokř́ınek, J. B́ıba, J. Hod́ık, J. Vyb́ıhal,
M. Pěchouček. Competitive contract net protocol.
SOFSEM: Theory and Practice of Computer Science,
LNCS 4362, pp. 656–668, 2007.

[16] M. Wang, K. Ramamohanarao, J. Chen. Reasoning
intra-dependency in commitments for robust
scheduling. AAMAS, pp. 953–960, 2009.

482

