
Cognitive Policy Learner: Biasing Winning or Losing
Strategies

Dominik Dahlem
SENSEable City Laboratory
Massachusetts Institute of

Technology
Cambridge, USA

dahlem@mit.edu

Jim Dowling
Computer Systems Laboratory
Swedish Institute of Computer

Science
Stockholm, Sweden

jim.dowling@sics.se

William Harrison
School of Computer Science

and Statistics
Trinity College Dublin

Dublin, Ireland
bill.harrison@cs.tcd.ie

ABSTRACT
In continuous learning settings stochastic stable policies are often
necessary to ensure that agents continuously adapt to dynamic en-
vironments. The choice of the decentralised learning system and
the employed policy plays an important role in the optimisation
task. For example, a policy that exhibits fluctuations may also in-
troduce non-linear effects which other agents in the environment
may not be able to cope with and even amplify these effects. In
dynamic and unpredictable multiagent environments these oscilla-
tions may introduce instabilities. In this paper, we take inspiration
from the limbic system to introduce an extension to the weighted
policy learner, where agents evaluate rewards as either positive or
negative feedback, depending on how they deviate from average
expected rewards. Agents have positive and negative biases, where
a bias either magnifies or depresses a positive or negative feedback
signal. To contain the non-linear effects of biased rewards, we in-
corporate a decaying memory of past positive and negative feed-
back signals to provide a smoother gradient update on the proba-
bility simplex, spreading out the effect of the feedback signal over
time. By splitting the feedback signal, more leverage on the win
or learn fast (WoLF) principle is possible. The cognitive policy
learner is evaluated using a small queueing network and compared
with the fair action and weighted policy learner. Emphasis is placed
on analysing the dynamics of the learning algorithms with respect
to the stability of the queueing network and the overall queueing
performance.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Multiagent Reinforcement Learning, Stochastic Policies

1. INTRODUCTION
Multiagent Reinforcement Learning (MARL) techniques have

been successfully applied to a number of domains, ranging from
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general sum games [12, 14] to application areas such as packet rout-
ing [18], robot control [15], and resource allocation [20, 21]. A the-
oretical framework for sequential decision and multiagent problem
settings is provided by the formalisms of the decentralised Markov
Decision Process (DEC-MDP) [5, 10]. Planning-based solution
methods have been devised to solve these models offline. However,
their complexity increases dramatically if no reward or transition
model is available or the number of agents goes beyond small sce-
narios. In contrast, online approximate solutions have been shown
to be useful in solving DEC-MDP problems [25]. Their central
idea is that models of learning and memory are continuously up-
dated and incorporated into a trial-and-error interaction within the
agent’s local context. Agents learn using only local information,
but they should support near optimal global decision making. In
unison, all agents contribute to the global goal of optimising some
system objective. Simultaneous and independent interactions, how-
ever, pose a challenge to multiagent systems, because they are non-
deterministic, may have non-linear effects, and may lead to slow
convergence characteristics or even diverge. Some research di-
rections tackle these difficulties by modelling the other agents in
the environment [9] or by providing a mechanism to communicate
feedback of parallel optimisation processes underway in the envi-
ronment [10, 19].

Additionally, the modelling assumptions of DEC-MDP often need
to be extended to capture the application specific constraints. For
example, for packet routing or task allocation networks, the ser-
vice stations or nodes have limited capacity to service requests and
limited resources to store waiting tasks. Networked systems ex-
hibit a level of complexity that is very challenging to deal with. In
the absence of direct communication links between nodes sharing a
common resource, coordination is difficult to achieve to optimally
utilise this common resource. For example, consider the queue-
ing network presented in Figure 1 which is used for all evaluation
scenarios. Both agents (nodes 6 and 7) share a common resource
(node 4) and may observe that the common resource offers enough
capacity to service their individual requests. As such, both agents
may decide to utilise this resource at the same time causing po-
tential congestion. Under certain conditions, this may lead to fluc-
tuating performance that may cascade through the network. Con-
sequently, autonomous agents need to mitigate the occurrence of
cascades (non-linear effects) and adapt quickly to changing condi-
tions.

In this paper, we introduce two new features to the weighted pol-
icy learner: an inherent bias that magnifies or depresses rewards
depending on how far they diverge from the average expected re-
ward for different actions in that state, and, secondly, a transient
memory of recent rewards for actions that smooth out the current
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Figure 1: Queueing Network

reward. Both of these features dampen cascading effects of large
changes in rewards at key nodes, preventing system hysteresis, but
still enabling agents to converge to a stable stochastic policy. More-
over, the cognitive policy learner offers greater control over the ex-
tent of the win or learn fast strategy by interpreting the positive and
negative feedback signals separately.

We evaluate the cognitive policy learner using a small queueing
network given in Figure 1 and compare it with the fair action and
weighted policy learner. We investigate whether modulating the
strength of feedback signals can have a stabilising impact on the
learning system. Emphasis is given to analysing the dynamics of
the learning algorithms with respect to the stability of the queue-
ing network and the overall queueing performance. Our results
show improved queueing performance compared to the fair action
learner, and similar queueing performance to the weighted pol-
icy learner. However, our results suggest that our cognitive policy
learner yields a more stable multiagent learning system compared
to the weighted policy learner, as it has a significantly lower to-
tal mean-squared training error for the SARSA(0) steepest-descent
gradient update.

2. BACKGROUND
This section provides the background to the collaborative multi-

agent reinforcement learning environment for queueing networks.
We assume that the queueing network is given as a directed acyclic
graph, which implies that all interactions between the agents are
directed and do not form any cycles. Similar in concept to the col-
lective intelligence framework of Wolpert et al. [23], a subworld,
ψi, constitutes a number of queueing agents that together com-
plete a task for agent i. Each agent can be viewed as though it is
striving to maximise its own reward function with the consequence
of improving the performance of the subworld as a whole. The
engineering discipline is based on division of labour, where the
system is sub-divided into smaller parts. The solution of the de-
centralised optimisation problem is brought about in a bottom-up
fashion. More formally, a subworld can be defined as

DEFINITION 1 (SUBWORLD). A subworld,ψi, is a subgraph
of the queueing network comprising all agents j reachable from
agent i.

• The queueing network induces nested subworlds. At the leaf
nodes of the queueing network subworlds consist of empty
sets.

• A path, pi, in subworldψi represents a realisation of a local
queueing task assignment to agent i.

• Wi is a set of all possible paths in subworld ψi.

With the help of the subworld definition, the multiagent sequen-
tial decision problem can be formalised in a DEC-MDP given in
Definition 2.

DEFINITION 2. An n-agent continuous state DEC-MDP of a
queueing network is defined by a tuple M = 〈DAG, A, S, P, R〉,
where

• DAG is the directed acyclic graph prescribed by the agent’s
interactions. Each agent is represented as a vertex on the
graph and the arcs between the agents represent available
actions to the respective agents.

• A = A1 × · · · × An is the finite set of actions and is given
by the possible interactions.

• S = S1 × · · · × Sn is finite set of queueing network states,
which can be factored into local states Si for each agent i, in-
cluding queueing metrics such as delay, utilisation, or num-
ber of events in the queue.

• Pwi
= P {st+1 = s′ | st = s, ~at ∃pi ∈Wi} is the transition

probability of state s ′ for agent i when the actions ~a com-
prising path pi have been taken in state s.

• Rwi
= E {rt+1 | st = s, ~at ∃pi ∈Wi, st+1 = s′} is the ex-

pected value of the next reward for agent i when actions ~a
are taken in state s and transitioning to the next state s′.

It is important to note that a policy must exist for which the ag-
gregated arrival rates at each node of the queueing network do not
yield unstable queues. More specifically, this implies that solving
the traffic equations

λ = λ0(I−Q)
−1, (1)

where λ0 is the vector of external Poisson arrival rates for each
node in the network andQ specifies the transition probabilities de-
rived from the policy, requires that the stability criterion, λi

µi
< 1,

holds for each node. Here, µ is the vector of exponential service
rates, which is considered fixed and represents the nodes’ capability
to service incoming requests.

Following [25], each agent observes local reward signals, which
are given as the negative task processing time. Longer task com-
pletion times are less desirable, which makes this reward function a
natural choice. This includes all local processing times of the task
at each service station (agent) where no communication delay is
assumed. Then the value function for a local policy πi is defined
with respect to the average expected reward as:

ρi(πi) = lim
N→∞

1
N

E

[
N−1∑
t=0

rti | πi

]
, (2)

where rti is the observed reward at time t and it depends on
the global states of the queueing network. However, unlike [25],
our model cannot be reformulated into an average-reward factored
DEC-MDP, because the rewards received by each agent are not in-
dependent, that is the global reward is not equal to the sum of the
local rewards. Noting that the reward is the response time of the
completion of a local task, one can informally see that a reward
can only be given when the local task is completed. An external
request for a task entering the system at agent i yields an execu-
tion path pi ∈ Wi through this agent’s subworld ψi. Each agent
along this path maximises its own reward function forming their re-
spective subworlds. Consequently, since the rewards are computed
based on completion times of local tasks a reward relationship of
r1 < r2 < · · · < ri is established, so each ri is the negative value
of the response time of the local task ti.

602



This reward structure is said to be global, because it incorporates
the rewards of all agents involved in completing a task. More im-
portantly, the reward function has optimal substructure. This means
that if we take the negative task completion times as rewards, the
credit given to a fulfilled task is apportioned fairly among the agents
involved in the completed task. This yields a cooperative multia-
gent system, as distinct from local reward functions that encourages
competitive behaviour among selfish agents. An advantage of this
reward structure is that no communication is required to correlate
rewards and apportion the reward fairly.

Therefore the agents’ reward functions are not mutually indepen-
dent and offline planning approaches are more difficult to achieve.
Moreover, the lack of an explicit reward and transition model in-
creases the complexity of solving such a system and consequently
is only feasible for the most simple cases. Online approaches, how-
ever, offer a scalable and approximate alternative. Here, we use
a standard backpropagation feedforward neural network with one
hidden layer on each arc of the task network to estimate the Q-
values for each action given a state vector [16]. The temporal dif-
ference scheme SARSA(0) can then be expressed as the general
gradient-descent update rule for neural network training as

∆ωt+1 = α[υt+1 −Q(st,at)]∇ωtQ(st,at) + η∆ωt, (3)
υt = rt + λQ(st,at), (4)

where η is a constant representing the momentum, which de-
termines the effect of past changes to the weight vector, ω, and
∇ωtQ(st,at) is the vector of partial derivatives of the value func-
tion Q(st,at) with respect to the weight vector ωt. The action-
value estimation is updated every time a task in the queueing net-
work is completed. That means, that all value functions of all arcs
in the queueing network that were involved in forwarding a re-
quest to the next sub-task will be updated according to ωt+1 =
ωt + ∆ωt+1. The optimal action-value function Q∗ is estimated
with a parametric function approximator,Qω, whereω is the vec-
tor of weights as given above. The neural network function approx-
imator is instantiated with one hidden layer and 10 hidden neurons.
The agents take only local information into account to train the Q-
value function. In all evaluation scenarios of this paper, the delay
ŵi in the local queue forms the input to the neural network. The
delay is calculated as the difference between the time of arrival of
a task at a node in the queueing network and the time of schedul-
ing the task. The state vector can easily be extended with other
queueing metrics, such as current utilisation or the number of task
assignments waiting to be scheduled. The queueing discipline is
first-in-first-out. This means that as the node is processing a task
all tasks arriving at the same time are put into a waiting queue. As
the node finishes processing tasks, tasks in the waiting queue are
dequeued on a first come, first served basis.

3. RELATED WORK
Multiagent reinforcement learning has seen significant contribu-

tions in packet routing [8, 18, 22, 23]. Q-routing was one of the
first multiagent approaches applied to routing [8]. Q-routing by
itself has its roots in the Bellman-Ford shortest path routing algo-
rithm [4]. The original Q-learning algorithm has routing perfor-
mance comparable to the Bellman-Ford algorithm under low load.
However, since Q-routing uses estimates of the delivery time of a
packet, it tends to congest paths if a better performing link has been
over-estimated. This problem persists, because Q-routing is a de-
terministic protocol that always chooses the best performing link
to deliver a packet. An attempt to mitigate choosing sub-optimal
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Figure 2: Mean Response Time versus Utilisation

paths communication between adjacent nodes is established to up-
date estimates before decisions are made. It turns out, however, that
high-load scenarios result in fluctuations with routing performance
worse off than in the basic Q-learning algorithm. This result can
be reconciled with stochastic policies that adjust mixed strategies
with continuously adapting agents.

This can be readily understood by studying the sensitivities of
queueing metrics with respect to the utilisation of a single queue.
Little’s theorem states that the long-term average number of events
in a stable queue is equal to the long-term average arrival rate mul-
tiplied by the long-term average time an event spends in the system
[6]. Based on this theorem, the response time versus the utilisation
can be examined, W =

1/µ
1−ρ

, where ρ = µ
λ

is the utilisation. As-
suming µ = 1 and varying the utilisation rate, the response time
has two regimes as shown in Figure 2. For utilisation rates below
∼ 70% the response time grows linearly. But for higher utilisation
rates the response time has an exponential growth. So, if greedy
link selection is employed, sub-optimal decisions have a dramatic
impact if the queue is in the sensitive regime. This is why the fluc-
tuations are observed with the extended Q-routing algorithm de-
scribed above.

Tao et al. introduced a multiagent, partially observable Markov
Decision Process for packet routing. Each node in the network is
parameterised by a real-valued vector for each destination/outgoing
link pair [18]. This vector is adjusted in order to ascend the gradi-
ent of the expected long-term average reward for all nodes. The
rewards are computed at the destinations of the packets and broad-
cast into the network. The probability of selecting a link is cal-
culated according to the Gibbs distribution using this vector. This
approach is very similar to the application of collective intelligence
(COIN) for packet routing [23]. Tumer and Wolpert mathemati-
cally formalised collective intelligence solutions and proved that
“Tragedy of the Commons” does not exist under certain condi-
tions [19]. These are that the environment can be factored into
sub-worlds, which encompass all nodes that share the same des-
tination. The reward is also computed at the destinations and is
broadcast in its own sub-world. Each agent maximising its long-
term average reward also leads to maximising the global reward.
In an extended study, Wolpert and Tumer show that COIN-based
models for network routing almost always avoid the Braess’ para-
dox [22]. Braess’ paradox states that selfish routing behaviour on
a network can result in a lower throughput when additional capac-
ity through a new edge in the network is introduced. In particular,
the ideal shortest path algorithm introduced side-effects that lead
to the observation of the Braess’ paradox. With a COIN-based ap-
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proach, Braess’ paradox can almost always be avoided while at the
same time exhibiting significantly improved global throughput per-
formance.

In highly dynamic and large environments modelling other agents
or extra communication effort becomes prohibitively expensive.
Direct policy learning algorithms are a promising alternative, be-
cause they align with the expected reward for the actions. A direct
policy called Fair Action Learning (FAL) is presented in [24]. FAL
approximates the policy gradient of each state-action pair using the
difference between the expectedQ-value for the state and its actual
Q-value. As such it learns a stochastic policy that increases the
probability of actions receiving a higher reward then the current
average. Consequently, FAL will converge to a fair policy reflect-
ing the expected reward for all actions and states. However, if one
action is always more favourable than the other ones, FAL will con-
verge to a deterministic policy, which is not always desirable.

The weighted policy learner (WPL) addresses this issue of ensur-
ing that all actions have a minimum probability of being selected [1,
2]. The WPL algorithm was also designed with the need of quickly
converging to a stable stochastic policy. This is achieved by per-
forming a gradient ascent towards a stable policy and slowing down
learning gradually for as long as the gradient does not change direc-
tion and learn fastest when the gradient changes direction. This pol-
icy ensures that no action probabilities converge to a deterministic
policy using a euclidean projection onto the probabilistic simplex,
where each probability is greater than a given value ε. Mathemati-
cally, this projection is equivalent to solving a constrained optimi-
sation problem for which closed-form and efficient solutions exist
whose complexity are linear in time [11]. This is advantageous
in settings where agents have a large number of actions. The eu-
clidean projection is given as ΠX(x) = arg minx′:valid(x′)(x − x′),
which returns a policy that is closest to x and satisfies the con-
straints that it sums to 1 and action probabilities are greater than a
given parameter ε. The weighted policy learning (WPL) algorithm
has been applied to distributed task allocation, a similar setting as
described in this article, where stochastic stable policies are desir-
able [2].

Both FAL and WPL use the expected Q-value for the state and
its actual Q-value to calculate the gradient. This is in contrast to
“Win or Learn Fast” (WoLF) algorithms, such as Generalised In-
finitesimal Gradient Ascent WoLF (GIGA-WoLF) [7], which use
approximations to determine when an agent is moving towards or
away from a Nash Equilibrium.

4. COGNITIVE POLICY LEARNER
This section introduces a policy learning algorithm that is in-

spired by the limbic system of the brain. There are two basic con-
cepts underlying the cognitive policy learner: firstly, an inherent
bias that magnifies or depresses rewards depending on how far they
diverge from the average expected reward for different actions in
that state, and, secondly, a transient memory of recent rewards for
that action that smooth out the current reward. Rewards are cate-
gorized as either positive or negative, depending on whether they
are higher or lower than the average expected reward, respectively.
Both positive and negative rewards are scaled by the amount they
differ from the average expected reward and a fixed bias called the
amplitude, A+/−. A+ scales positive rewards, while A− scales
negative rewards. In addition to biases, a transient memory model
stores an accrued sum of recent positive rewards, c+(a), and recent
negative rewards, c−(a). Both c+/−(a) are decayed over time at
a configurable rate of decay, r+/−. To give an example, this en-
ables us to define a reward model that amplifies positive rewards
and spreads out the assignment of the reward over time. So, a

positive reward may persist for longer than the current time step.
Additionally, the factor for the amplitude can be used to interpret
the intensity of the positive or negative feedback signal. For ex-
ample, by assigning an amplitude twice as high to the positive sig-
nal compared to the negative signal, positive signals have a larger
impact on the update step on the probabilistic simplex than neg-
ative ones. This setting embodies some notion of risk aversion,
because punishment does not induce a rapid update of one’s strat-
egy to avoid similar negative experiences. While, there might be
situations favouring such a setting, it is more intuitive and in fact
more natural to have risk-averse agents. Hence the win or learn fast
strategies.

CPL is presented in Algorithm 1. The basic principle is similar
to the weighted policy learner. Before conducting the update on the
policy simplex, the memory for each signal is decayed, and the new
signal is multiplied by the amplitude and added to the decayed sig-
nal. The memory signals are bounded, i.e., 0 < c+(a) 6 s(a)max
and s(a)min 6 c+(a) < 0, where s(a)min/max are the minimum
negative and maximum positive observed feedback signal. This
means that the accrued feedback signals cannot attain values higher
than the single strongest component of the feedback signal. The
resultant positive and negative signals are added together, giving
∆(a), and the vector of all such signals for all actions, ∆, is used
to proceed with the policy projection routine π ← ΠX(π + ζ∆). ζ
denotes the update rate also used in FAL and WPL.

Algorithm 1: CPL: Cognitive Policy Learner
Input: Q(s,a), the expected reward for executing action a in

state s
Input: c+(a) & c−(a), the accrued reward/punishment signal

for action a
Input: A+/− & r+/−, the amplitude and decay rate for the

respective feedback signals

Q̄ =
∑
a∈A π(a)Q(s,a)

foreach action a ∈ A do
c+(a)← c+(a) ∗ er+t

c−(a)← c−(a) ∗ er−t

}
Decay

s(a)← Q(s,a) − Q̄
if s(a) > 0 then c+(a)← c+(a) +A+ ∗ s(a)
else c−(a)← c−(a) +A− ∗ s(a)
∆(a)← max (c−(a), s(a)min) + min (c+(a), s(a)max)

end
π← ΠX(π+ ζ∆)
Output: A new policy π
Output: Updated reward/punishment signals c+(a) & c−(a)

The amplitude parameter can be tuned in four different ways to
modulate the effects of the positive and negative feedback signals:

1. A+ > A−, r+ > r−: Positive feedback signals are ampli-
fied more than negative ones. Also, accrued positive rewards
decay at a slower rate.

2. A+ > A−, r+ < r−: Positive feedback signals are amplified
more than negative ones. In contrast to the previous case,
accrued negative rewards decay at a slower rate.

3. A+ < A−, r+ > r−: Negative feedback signals are ampli-
fied more than positive ones. Also, accrued negative rewards
decay at a slower rate.

604



4. A+ < A−, r+ < r−: Negative feedback signals are ampli-
fied more than negative ones. In contrast to the previous case,
accrued positive rewards decay at a slower rate.

If both decay rates are set to −∞ and A+ = A− then the fair
action learner is recovered. If A+ < A−, then the cognitive pol-
icy learner resembles the effects of the weighted policy learner
with a win or learn fast strategy without taking the accrued re-
ward/punishment signals into account.

5. EVALUATION
We evaluate the cognitive policy learner using a small queueing

network given in Figure 1. The respective external Poisson arrival,
λ0, and Exponential service rates, µ, are given in Table 1. The
network represents three decision makers, nodes 4, 6, and 7. Each
node’s objective is to optimise the routing decisions of the tasks
based on the negative completion times. Node 4 experiences neigh-
bours 1 and 2 with different external arrival and service rates. Node
1 has a lower intrinsic utilisation than node 2 and consequently,
node 4 needs to learn a policy that balances this difference such
that the reward is maximised, or the task completion times are min-
imised in the long run. Both nodes 6 and 7 rely on the assignment
of tasks given to node 4. Due to the reward functions having op-
timal substructure, the queueing performances of nodes 6 and 7
improve if node 4 learns an optimal policy. Node 7 has a higher
external arrival rate of tasks and therefore receives a higher number
of feedback signals from its task assignments than node 6. This
implies that node 7 may be faster in recognising deteriorating per-
formances than any of its neighbours. Both nodes share a common
resource (node 4) and have each a private resource (node 3 and 5
respectively). Because node 3 has a much lower intrinsic utilisation
than node 5, node 6 may be the first to utilise this resource in case
node 4 deteriorates.

Table 1: Arrival and Service Rates
Node 1 2 3 4 5 6 7
λ 0.33 0.51 0.04 0.11 0.21 0.32 0.51

µ 0.68 0.9 0.48 0.76 0.58 0.55 0.55

The initial policy assumes uniformly random probabilities and
three policy learning algorithms are evaluated including CPL, the
fair action learner (FAL) [24] and the weighted policy learner (WPL)
[1]. The underlying euclidean projection is the same for all three al-
gorithms to ensure that action probabilities do not attain values less
than a specified parameter ε = 0.05. Each algorithm was individ-
ually optimised within the range of parameters α ∈ [0.0001; 0.1],
λ ∈ [0.01; 0.9], η ∈ [0.01; 0.5], ζ ∈ [0.1; 0.0001] for both FAL
and WPL and additionally A+ ∈ [0.01; 2.0], A− ∈ [0.01; 2.0],
r+ ∈ [−20.0; −0.01], r− ∈ [−20.0; −0.01] for CPL using Gaus-
sian Process Regression [3, 10, 17]. The results of this global opti-
misation are summarised in the following Table 2.

In all three algorithms the learning rate, discount factor, and
the momentum for the SARSA(0) gradient-update descent (Equa-
tion 3) are 0.1, 0.9 and 0.5 respectively. The update factor on the
policy simplex, ζ, is low for FAL and high for WPL and CPL. The
optimal parameters for the cognitive policy learner resemble the
win or learn fast strategy, because both the amplitude for the nega-
tive signal is higher and the decay rate slower. This means that the
memory for negative signals persists for a longer period of time.
This result is interesting in that the global simulation optimisation
technique found optimal values for CPL that reflect risk-aversion.

Table 2: Optimal Learning Parameters
FAL WPL CPL

α 0.1 0.1 0.1

λ 0.9 0.9 0.9

η 0.5 0.5 0.5

ζ 0.0001 0.1 0.1

A+ 1.76

A− 2.0

r+ −1.7

r− −4.55

The analysis of the performance and the dynamics of the differ-
ent algorithms are based on at least 10 replications of simulation
runs using the optimal parameters. These simulation runs are also
controlled to be within 90% confidence intervals with a relative er-
ror of 10% [13].

Figures 3 and 4 present the queueing results with respect to mean
utilisation of the queueing network and total average delay in the
queues. The delay measures the time a task waits in the queue until
it can be serviced, since each node in the queueing network can
only process one task at a time.

0 50,000 100,000

0.4

0.5

0.6

0.7

Time

ρ

FAL
WPL
CPL

Figure 3: Utilisation

Both utilisation and delay are inferior for the fair action learner,
while WPL and CPL show similar queueing performance. The util-
isation and the 95% confidence interval half-widths for WPL and
CPL respectively are 73.3%(±0.0009) and 72.8%(±0.0009).

Figure 5 shows the percentage of unstable nodes across the repli-
cations in order to illustrate the dynamics of WPL and CPL in the
steady state using Equation 1. An unstable queue is defined as hav-
ing a utilisation rate larger than 100% in the steady state. Intu-
itively, unstable queues show a behaviour of processing the tasks
slower than they arrive, which leads to a growing waiting queue.

This calculation is equivalent of assuming the current policy to
be fixed. FAL does not yield unstable queues at any given time and
is, therefore, not shown in this plot. Nodes 1 and 4 show similar
values for the percentage of unstable queues (23% and 8% respec-
tively). But the percentage of unstable queues is increased for CPL
for nodes 2 and 5 (2.5 and 9 percentage points higher). This may
be explained by the fact that both their respective alternative paths
have a lower intrinsic utilisation and since CPL has an accrued
memory of the feedback signals, it is slower to adapt to rapidly
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Figure 5: Stability of the Queues

The dynamics of queueing performance measures can be cap-
tured in several ways. The first metric we use is based on the ma-
trix of routing probabilities Q derived from the employed policy.
The following quantity captures learning as distinct from random
behaviour, where uniformly random decisions manifest themselves
in all outgoing links, deg+(·), in the network having equal proba-
bilities of being selected. The distance measure from random be-
haviour is denoted as

dn = ‖Q(n) −Qr(n)‖1, ∀ n ∈ V & deg+(n) > 0, (5)

where ‖·‖1 is the `1-norm of a vector, i.e., ‖a‖1 =
∑n
i=1|ai| and

Qrnj = 1
deg+(n)

is the probability of taking a uniformly random
action for all actions j available to n. The probability of taking ac-
tions Q(n) is derived from the employed policy. This measure is
bounded by dn = 0, if the action selection probabilities are uni-
formly random, and sup{dn} = 2 for deterministic action selection
as deg+(n)→∞. Also, dn = 0, n ∈ V & deg+(n) = 1.

This metric does not make any qualitative statement about learn-
ing behaviour, because it cannot be ruled out that uniformly random
behaviour is actually the best policy. Instead it gives an indication
of how distinctive the learnt policies are.

Figure 6 shows the result for this metric. FAL learns the least
distinctive policies in the queueing network, which means that the

policy updates are very close to the initial policy configuration of
uniformly random decisions. Additionally, the policy gradient up-
date factor, ζ, for FAL is low, suggesting that FAL prefers small
incremental changes to the policy. CPL in turn learns the most
distinctive policies. These results show that temporarily unstable
queues in the steady state lead to a higher throughput in the algo-
rithms considered in this evaluation.
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Figure 6: Distance from Uniformly Random Decision Policies

In order to quantify the level of distinctiveness of the policies
we evaluate the ownership of node 4. The ownership metric is cal-
culated as the normalised fourth column of the routing matrix Q,
where nodes 6 and 7 are the only predecessors. Figure 7 depicts
this evolution of ownership. In all cases node 6 directs most of
its tasks towards node 3, while node 7 directs most of its tasks to-
wards node 4. Since node 7 also has a higher arrival rate with the
same service rate compared to node 6, node 7 dominates node 4.
This plot also mirrors our previous result that CPL learns more dis-
tinctive policies, i.e., the spread between nodes 6 and 7 is higher
for CPL. Importantly, FAL exhibits barely any fluctuations in its
learning dynamics. This shows that FAL learns a stochastic stable
policy, while WPL and CPL learn stochastic unstable policies. An
interesting result, however, is that this instability (which exists only
in the steady state) yields a better performing system as a whole.
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Figure 7: Ownership of Node 4

In order to understand the extent of the fluctuations, the coeffi-
cient of variation of the Q-value estimation is calculated based on
a buffer of the last 100 Q-value estimations:
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cυ(Q) =
σQ

µQ
. (6)

Figure 8 shows the densities of the coefficient of variation for
each decision making node individually. Intuitively, one would as-
sume that the coefficient of variation scales with the height of the
queueing network, i.e., the least dependent node (here node 4) has
lower values than the nodes that depend on it. Interestingly, this is
only observed for FAL, which can be interpreted as FAL’s learning
dynamics results in cascading effects. Because of this behaviour,
FAL learns the least distinctive policies and also performs poorly
compared to WPL and CPL. Because the values for the coefficient
of variation are significantly higher than the ones with WPL and
CPL, the densities are left out of Figure 8.

WPL and CPL on the other hand do not exhibit cascading effects.
In fact, the fluctuations observed for those algorithms appear to
have a stabilising impact on the learning dynamics. For all nodes,
the absolute value of the coefficient of variation is slightly higher
for CPL compared to WPL.

Figure 9 presents the total mean-squared error of the loss func-
tion of the neural network excluding FAL, because it is significantly
higher than WPL and CPL again. This plot suggests that the CPL
algorithm yields a more stable reinforcement learning system than
WPL as its total mean-squared error is significantly lower.
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Figure 9: Neural Network Error

To summarise the results, FAL has inferior queueing performance
than WPL and CPL. FAL also learns the least distinctive policies,
which may be attributed to the large fluctuations in the coefficient
of variation of the Q-value estimation. These fluctuations lead to
cascading effects in the fair action learner and therefore this pol-
icy is not a good candidate for autonomous agents in queueing
networks. Instead, both WPL and CPL learn stochastic unstable
policies with respect to the instantaneous steady state distribution.
However, these instabilities only persist temporarily with agents
continuously adapting to the changing conditions in the queueing
environment. In fact, these instabilities do not exhibit cascading
effects. The coefficients of variation are approximately normally
distributed with a slight skewness towards the left. This is in con-
trast to the distribution for FAL, which has a long tail representing
rare events. In multiagent systems behaviours that can be char-
acterised by long-tailed distributions introduce challenges for the
other agents to adapt accordingly.

Finally, the mean-squared error of the neural network is the low-
est for the CPL algorithm, which implies more stable reinforcement
learning updates. However, the structure of the neural network is

considered fixed in this paper. Optimising with respect to the neu-
ral network structure itself may be one way of reducing the mean-
squared error for both FAL and WPL.

6. CONCLUSION AND FUTURE WORK
This paper investigated an extension to the weighted policy learner

which modulates the strength of positive and negative feedback.
The cognitive policy learner is inspired by the limbic system of the
brain. The feedback signal is split into two parts, positive and neg-
ative, with respect to the current estimate of the Q-value function.
Each signal is given free parameters to model an amplitude and
a decay factor. This way the win or learn fast strategy obtains a
higher level of control in terms of the updates on the probabilistic
simplex. We showed that the cognitive policy learner performs as
well as the weighted policy learner.

The empirical investigation of a small queueing network also
revealed that the fair action learner exhibits cascading effects in
the queueing network. This means that deteriorating performance
closer to the leaf nodes of the network has a detrimental impact on
the queueing performance of the other nodes dependent on them.
This behaviour was not observed with the weighted and cognitive
policy learners where the variations of the Q-value estimation is
much better behaved. Biasing a losing strategy and maintaining
a transient memory of received rewards and punishments results
in a more stable multiagent learning system, which was shown to
reduce the total mean-squared error of the SARSA(0) steepest de-
scent gradient update.

Future work will investigate more dynamic and larger queueing
settings. Also, the global optimisation of the simulation parameters
need to be analysed with respect to how sensitive the optimal values
are to small perturbations.
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