
Consensus Acceleration in Multiagent Systems
with the Chebyshev Semi-Iterative Method

R. L. G. Cavalcante
Fraunhofer Institute for Telecommunications,

Heinrich Hertz Institute /
Technische Universität Berlin

renato.cavalcante@hhi.fraunhofer.de

A. Rogers, N. R. Jennings
University of Southampton

School of Electronics and Computer Science
{acr,nrj}@ecs.soton.ac.uk

ABSTRACT
We consider the fundamental problem of reaching consensus in
multiagent systems. To date, the consensus problem has been
typically solved with decentralized algorithms based on graph
Laplacians. However, the convergence of these algorithms is
often too slow for many important multiagent applications,and
thus they are increasingly being combined with acceleration
methods. Unfortunately, state-of-the-art acceleration techniques
require parameters that can be optimally selected only if complete
information about the network topology is available, whichis rarely
the case in practice. We address this limitation by derivingtwo
novel acceleration methods that can deliver good performance even
if little information about the network is available. The first is
based on the Chebyshev semi-iterative method and maximizesthe
worst-case convergence speed given that only rough bounds on the
extremal eigenvalues of the network matrix are available. It can
be applied to systems where agents use unreliable communication
links, and its computational complexity is similar to thoseof simple
Laplacian-based methods. This algorithm requires synchronization
among agents, so we also propose an asynchronous version
that approximates the output of the synchronous algorithm.
Mathematical analysis and numerical simulations show thatthe
convergence speed of the proposed acceleration methods decrease
gracefully in scenarios where the sole use of Laplacian-based
methods is known to be impractical.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent systems

General Terms
Algorithms, Theory

Keywords
Decentralized control, collective dynamics, consensus

1. INTRODUCTION
Reaching agreement (or consensus) between physically distributed
agents is one of the fundamental requirements of many
multiagent applications including target localization [1], distributed

Cite as: Consensus Acceleration in Multiagent Systems with the
Chebyshev Semi-Iterative Method, R. L. G. Cavalcante, A. Rogers, and
N. R. Jennings,Proc. of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and
Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 165-172.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

coordination of large swarms of robots [2], distributed control of
modular robotic actuators [3], and others [4]. Typically, such
approaches require the agents to update a local estimate of an
environmental or control parameter, by iteratively communicating
with a few local neighbors, such that the estimates of all agents
converge to the same value. For example, in [3] a modular robotic
setting is described in which agents controlling decentralized
modular actuators must reach consensus on the height of their
actuators in order to ensure that a platform is kept level. Each agent
can only infer (indirectly) the height of its neighbors, so only local
control laws can be used, and the agents must reliably converge to
a consensus height. Likewise, in one of the steps of the algorithm
in [1], agents with individual estimates of the location of atarget,
iteratively exchange and update these estimates, with the intent that
the estimates of all the agents converge to that which would have
been reached had they been able to report their initial estimate to a
center which could fuse them by taking their average.

To date, consensus problems of the type described above, have
typically been solved with classic decentralized iterative algorithms
based on graph Laplacians [2–5] and other related techniques
that differ in the choice of the network matrices [6, 7]. In
these consensus algorithms, every agent produces a sequence of
estimates using a simple two-step approach that can be briefly
described as follows. First, agents exchange estimates locally with
their neighbors. Then each agent updates its current estimate by
taking a weighted average of all estimates to which it has access,
and the process repeats. As described above, the intent is that
the estimates of all the agents converge to that which would have
been reached had the average of the agents’ initial estimates been
taken. Unfortunately, however, it has been recently shown that the
convergence of these classic iterative algorithms is oftentoo slow
in applications where agents have to agree on initial estimates that
have a strong correlation with the agents’ positions [2]. Typical
scenarios in which this occurs are sensor networks and robotic
swarms because the phenomena being measured are often functions
of the agents’ positions. In more detail, when the initial estimates
are spatially correlated, the number of iterations required by
Laplacian-based methods to compute the average consensus value
with good accuracy can grow proportionally with the square of the
network diameter [2]. This fact renders such methods impractical
in large scale multiagent systems with sparse communication.

The convergence of these Laplacian-based algorithms can be
greatly improved with acceleration techniques that filter the output
[8–10]. In particular, efficient two-tap filters have been proposed
for systems where agents communicate both synchronously [10]
and asynchronously [8]. However, these algorithms typically have
a free parameter that has to be chosen by the agents. Such heuristic
choices of parameters can be avoided with the optimal polynomial

165

filtering approach proposed in [9]. Unfortunately, this approach
requires precise knowledge of the mean value of the network
matrix, which again is unlikely to be available in many multiagent
systems. In addition, this method is only stable in systems where
the communication links are fairly reliable.

Thus, to address the above shortcomings and to make Laplacian-
based methods practical in the multiagent scenarios described
earlier, we propose low-complexity acceleration methods based
on digital filters that require little information about thenetwork
topology and are robust against unreliable communication links. In
more detail, the main contributions of this study are as follows:
• We derive a novel acceleration method namedsynchronous

semi-iterative consensus. This algorithm filters the output of
classic consensus algorithms with a polynomial filter that is optimal
in the sense of maximizing the worst-case mean convergence
speed when the network topology is unknown. Unlike recent
acceleration techniques [9], the proposed algorithm only requires
rough upper and lower bounds on the extremal eigenvalues of
the network matrix (first order statistics is not necessary), and it
is amenable to an efficient recursive implementation. Compared
to other state-of-the-art acceleration techniques, such as those in
[8, 10], our synchronous semi-iterative consensus algorithm has
better convergence properties in many practical scenarios, the same
communication requirements, and roughly the same computational
complexity.
• To handle scenarios where synchronization among agents

is not possible, we further extend our approach to devise
an asynchronous algorithm, namedasynchronous semi-iterative
consensus, that approximates the output of the proposed
synchronous algorithm. This asynchronous algorithm has a strong
connection with those in [8,10], but it does not require heuristics for
parameter tuning in real applications where the network topology
is largely unknown. All parameters of our algorithm are readily
obtained from rough upper and lower bounds of the extremal
eigenvalues of the unknown network matrix.

The paper is divided as follows. Sect. 2 reviews classic
consensus algorithms based on graph Laplacians and other similar
approaches. Sect. 3 shows the two novel acceleration schemes.
Numerical simulations in Sect. 4 evaluate the proposed methods
in scenarios where Laplacian-based methods are impractical.

2. PROBLEM STATEMENT
We start by briefly introducing our notation. In particular,vectors
are written in lower-case, bold typeface, and matrices are written
in upper-case, bold typeface. Unless otherwise stated, vectors are
assumed to be column vectors. For every vectorv ∈ RN , we define
the norm ofv by ‖v‖ :=

√
vTv, where(·)T denotes the transpose

operation. The vector of ones is denoted by1, and its dimension
is clear from the specific context. The element of thekth row and
thejth column of a matrixX ∈ RM×N is denoted by[X]kj . The
eigenvalues of a symmetric matrixX ∈ RN×N are denoted by
λ1(X), . . . , λN (X). By D := diag(λ1, . . . , λN), we denote a
diagonal matrixD ∈ RN×N havingλ1, . . . , λN as the entries on
its main diagonal.

We now turn to the problem formulation. In this study we
assume that the multiagent system forms a network represented
by a connected undirected graphG = {N , E}, whereN =
{1, . . . , N} is the set of agents,E ⊂ { {k, j} | k, j ∈ N} is the
edge set, and the edge{k, j} ∈ E is an unordered pair of agents.
For convenience, here we assume that{k, k} ∈ E . Initially, at
time i = 0, each agentk reports a valuexk[0] ∈ R, and we are
interested in iterative algorithms that produce, in every agentk ∈
N , sequences{xk[i]} converging toxav := 1/N

∑

k∈N xk[0],

the average of the initial values reported by the agents.
To be truly decentralized, the algorithms of interest should

respect the network topology, i.e., at time instanti ∈ N, each agent
k should exchange information only with its neighborsNk :=
{j ∈ N | {j, k} ∈ E}. In particular, classic algorithms having
this desired feature take the form:

xk[i + 1] =
∑

j∈Nk

[W [i]]kjxj [i], k ∈ N , i ∈ N, (1)

or, more compactly,

x[i + 1] = W [i]x[i], i ∈ N, (2)

wherex[i] := [x1[i] . . . xN [i]]T ∈ RN , W [i] ∈ RN×N is
a properly selected sequence of (symmetric) matrices,[W [i]]kj

is the weight associated with the edge{k, j} at time i, and
[W [i]]kj = 0 if {i, j} /∈ E . To reach consensus, agents can
compute the weights[W [i]]kj in many different ways according
to the desired characteristics of the system. In particular, if the
network is deterministic, agents only know the local topology, and
links are reliable, agents can use simple Laplacian-based methods
to compute locally the weights [2, 4]. When links are unreliable,
weights can be computed with the method in [5]. In systems where
the network topology is known before deployment and links are
deterministic, the approach in [6] can be used to compute a fixed
matrix W = W [i] that gives better convergence than simple
heuristics based on graph Laplacians. In systems where agents
operate asynchronously and do not know their neighbors, gossip
consensus algorithms [7] can be used to determine the weights.

Hereafter, we do not use a specific method to compute the
weights[W [i]]kj , and, for maximum generality, we only assume
that the matricesW [i] satisfy the following properties:

ASSUMPTION 1. (Properties ofW [i]:)
1. The matricesW [i] (i ∈ N) in (2) are i.i.d. random1 matrices

with [W [i]]jk = 0 if {j, k} /∈ G.
2. Each matrixW [i] is symmetric and satisfiesW [i]1 = 1

(henceW [i] is a doubly stochastic matrix).
3. ‖E[W [i]T W [i]] − 1/N11T ‖2 < 1 (and ‖W −

1/N11T ‖2 < 1, whereW := E[W [i]] denotes the mean of
W [i]).

The above properties are sufficient conditions to guarantee
that x[i] in (2) converges toxav1 ∈ RN in both the mean
sense and the mean square sense [7], i.e.,limi→∞ E[x[i]] =
xav1 and limi→∞ E[‖x[i] − xav1‖2] = 0. Unfortunately,
irrespective of the method being used for the computation of
the weights[W [i]]kj , when agents only have local information
about the network topology, consensus algorithms solely based
on the iteration in (2) are typically slow. In particular, when the
initial values reported by agents have a strong correlationwith
their locations, Laplacian-based methods have been shown to be
impractical in large multiagent systems because the convergence
speed scales badly with the network diameter [2]. To addressthis
serious drawback of consensus algorithms based on (2), we develop
an acceleration technique that improves the convergence ofx[i] in
the mean sense. Before deriving the proposed method, we first
review convergence properties of (2).

By the i.i.d. assumption of the symmetric matricesW [i] (i ∈
N), we have thatE[W [i]] is a time-invariant symmetric matrix
(E[W [i]] = W for all i ∈ N). Let the eigenvalue decomposition

1In this study, we use the same notation for random variables and
their realizations. The interpretation that should be applied is clear
from the context.

166

of W be given byQΛQT = W , where q1, . . . , qN are
the columns ofQ, and Λ := diag

(

λ1(W), . . . , λN (W)
)

with eigenvalues arranged in non-increasing order of magnitude:
|λ1(W)| ≥ . . . ≥ |λN(W)|. Note that, also from Assumption 1,
we have thatq1 = (1/

√
N)1 and that1 = λ1(W) > |λj(W)|

for j = 2, . . . , N . With these definitions, we deduce:

E[x[i]] = (W)i
x[0] = QΛi

Q
T
x[0]

= [(1/
√

N)1 q2 . . . qN]

· diag(1, (λ2(W))i, . . . , (λN(W))i)

· [(1/
√

N)1 q2 . . . qN]Tx[0]. (3)

Therefore, by|λj(W)| < 1 for j = 2, . . . , N , we conclude
that limi→∞ E[x[i]] = (1/N)11Tx[0] = xav1 and that the
slowest mode of convergence of (3) is given byλ2(W) (by taking
powers, the eigenvaluesλj(W) (j = 3, . . . , N) do not decay
slower to zero thanλ2(W)). Thus, the iteration in (2) can be
particularly slow ifλ2(W) is close to one and the vectorx[0] has
a nonzero projection onto the subspace spanned by the eigenvector
corresponding toλ2(W).

3. THE ACCELERATION ALGORITHM
In this section, we derive our novel algorithms and compare them
with existing methods. We start by revisiting polynomial filters.

3.1 Polynomial Filtering
In our proposed method, we improve the convergence of (2) (in
the mean sense) by using polynomial filters. The idea is similar to
that proposed in [9], but the size of the filters that we use increase
with the number of iterations. Later in this section we show that
this is amenable to implementations with very low computational
complexity and memory requirements. In addition, our method is
optimal in a well defined sense (c.f. (7)) even if little information
aboutW [i] in (2) is available.

In more detail, each agentk improves its local estimate ofxav

by filteringxk[i] obtained with (1):

yk[i] =
i

∑

n=0

γ[i, n]xk[n], k ∈ N , (4)

whereγ[i, n] ∈ R (i ∈ N, n = 0, . . . , i) arescalars to be designed
(common to all agents), andyk[i] is the improved estimate ofxav

at timei in agentk. Stackingy1[i], . . . , yN [i] in a vectory[i] :=
[y1[i] . . . yN [i]]T , we can rewrite (4) equivalently as

y[i] =

i
∑

n=0

γ[i, n]x[n]. (5)

Combining (3) and (5) and using Assumption 1, we can compute
the mean value ofy[i]:

E[y[i]] =
i

∑

n=0

γ[i, n](W)n
x[0]

= Q diag
(

pi(1), pi(λ2(W)) . . . , pi(λN(W))
)

Q
T
x[0],

= [(1/
√

N)1 q2 . . . qN]

· diag
(

pi(1), pi(λ2(W)), . . . , pi(λN (W))
)

· [(1/
√

N)1 q2 . . . qN]Tx[0], (6)

wherepi(x) is the polynomialpi(x) :=
∑i

n=0 γ[i, n]xn at timei.
Now we need to choose a polynomialpi that makes (6) a potentially
better estimate ofxav1 than (3).

3.2 The Synchronous Consensus Algorithm
By comparing (3) with (6), the slowest mode of convergence of
E[y[i]] to xav1 is faster than that ofE[x[i]] if the polynomialspi

satisfy the following properties: (see also [9], which, unlike the
proposed method, use filters of short length.)

P1) pi(1) = 1 and

P2) maxj∈{2,...,N} |pi(λj(W))| < |λ2(W)|i.
Therefore, at each timei, we conclude that we should find

polynomials such thatpi(1) = 1 and that|pi(λj(W))| is as
close to zero as possible for allj ∈ {2, . . . , N} and all i ∈ N.
Unfortunately, finding an ideal polynomial having roots atλ2(W),
...,λN (W) (for i ≥ N−1) would require global information about
the network in every agent. To avoid this unrealistic requirement,
we assume that the eigenvaluesλ2(W), ...,λN (W) belong to the
interval [α, β], but their exact values are unknown. (Assumption 1
guarantees−1 < α, β < 1, and the bounds can be obtained from
typical application scenarios; see Sect. 4.) With this assumption, a
reasonable choice forpi is the normalized polynomialpi(1) = 1
of degreei least deviating from zero on the interval[α, β] (see
also [11], [12, Sect. 10.1.5]). We can expect that such a polynomial
would satisfy properties P1) and P2) above without knowledge of
λj(W) (j = 2, . . . , N). More formally, at timei we use the
polynomial:

p⋆
i ∈ arg min

p∈Si

{ max
α≤x≤β

|p(x)|}, (7)

whereSi is the set of polynomials of degreei normalized to satisfy
pi(1) = 1. The polynomial in (7), which has been typically used
to accelerate the convergence of iterative methods solvingsystems
of linear equations, is unique and given by [11], [12, Sect. 10.1.5]:

p⋆
i (x) =

ci

(

−1 + 2
x− α

β − α

)

ci (µ)
,

where

µ := 1 + 2
1− β

β − α
(8)

andci is the Chebyshev polynomial of degreei

ci(x) =

{

cos(i cos−1 x), |x| ≤ 1, i ∈ N,

cosh(i cosh−1 x), |x| > 1, i ∈ N.

Chebyshev polynomials can be generated with the recursion
cm+1(x) = 2xcm(x) − cm−1(x) (c0(x) = 1 andc1(x) = x),
so, similarly to the original Chebyshev acceleration algorithm [11],
[12, Sect. 10.1.5], we can equivalently computeE[y[i]] (with the
polynomial (7)) in the recursive form:

E[y[i + 1]]

= ωi+1[(1− κ)I + κW]E[y[i]] + (1− ωi+1)E[y[i− 1]],
(9)

whereE[y[1]] = [(1 − κ)I + κW]x[0], y[0] = x[0], κ :=
2/(2− α− β), and

ωi+1 =
1

1− ωi

4µ2

, i ≥ 2, ω1 = 1, ω2 =
2µ2

2µ2 − 1
. (10)

Unfortunately, unlessW [i] is a constant matrix, the recursion
in (9) cannot be implemented in a multiagent system becauseW is

167

not available. Therefore, we replace expectations by sample values,
and we obtain the following algorithm, which can be implemented
in multiagent systems because the iteration in (1) (or, equivalently,
(2)) can be readily implemented (using local computation ofthe
resulting matrix-vector multiplications):

ALGORITHM 1. (Synchronous Semi-Iterative Consensus
Algorithm)

z[i + 1] = ωi+1 [(1− κ)I + κW [i]] z[i] + (1− ωi+1)z[i− 1],
(11)

wherez[1] = [(1− κ)I − κW [0]]x[0] andz[0] = x[0].

The proposition below shows that some convergence properties
of the original Chebyshev algorithm are retained, even though we
replaced expectations by sample values.

PROPOSITION 1. (Properties of the Synchronous
Semi-Iterative Consensus Algorithm)

Assume the conditions in Assumption 1. Then, the algorithm in
(11) satisfies the following:

a) The algorithm is average preserving, i.e.,(1/N)1Tz[i] =
(1/N)1Tx[0] = xav for everyi ∈ N.

b) In the mean sense, the convergence ofz[i] is identical to
that of y[i] in (5) with γ[i, n] chosen as the coefficients of the
optimal polynomial in the sense of (7). In other words,E[z[i]] =
E[y[i]]. Furthermore, ifα and β are such that−1 < α ≤
minj∈{2,...,N} λj(W) ≤ maxj∈{2,...,N} λj(W) ≤ β < 1, then

‖E[z[i]]− xav1‖ ≤ ‖x[0]‖
ci (µ)

, (12)

which shows that limi→∞ E[z[i]] = xav1 because
limi→∞ ci (µ) = ∞.

PROOF. In the following, for notational convenience, we define:
M [i] := [(1− κ)I − κW [i]] andM := [(1− κ)I − κW].

(a) By 1TW [i] = 1T , we can check that

1T
M [i] = [(1− κ)1T

I − κ1T
W [i]] = 1T ,

and the result follows by induction. More precisely, note that
1Tz[0] = 1Tx[0] = Nxav and that1Tz[1] = 1TM [0]x[0] =
N xav. Now, by assuming1Tz[i] = Nxav and1Tz[i − 1] =
Nxav, we obtain

1T
z[i + 1] = ωi+11

T
M [i]z[i] + (1− ωi+1)1

T
z[i− 1]

= ωi+1Nxav + (1− ωi+1)Nxav = Nxav,

which concludes the proof of (a).
(b) The proof can be informally shown as follows. From the i.i.d.

assumption of the matricesW [i], we have thatz[i] is independent
of W [i], and thusz[i] is also independent ofM [i]. Now, apply the
expectation operator in both sides of (11) to obtain

E[z[i + 1]] = ωi+1ME[z[i]] + (1− ωi+1)E[z[i− 1]] (13)

whereE[z[1]] = Mx[0] andE[z[0]] = x[0], and we conclude
that E[z[i]] = E[y[i]] for every i ∈ N (see (9)), and thus (13)
is equivalent to (6) withy[i] replaced byz[i] and withpi being
the optimal polynomial in (7). Subtractxav1 = (1/N)11Tx[0]
from both sides of (6) and use the facts that|p⋆

i (λ)| ≤ 1/|ci(µ)|
(α ≤ λ ≤ β) and that‖Ab‖2 ≤ ‖A‖2 ‖b‖2 for any matrixA and
vectorb of compatible sizes [12] to obtain (12).

Intuitively, Proposition 1 shows that our algorithm (with properly
selected parametersα and β) is guaranteed to converge in the
mean sense, and the convergence in the mean is typically faster

than that of the original scheme in (2). Unfortunately, unless
the matrixW [i] is a constant matrix, the results in Proposition 1
are not enough to guarantee stability. In particular, Proposition 1
does not guarantee mean-square convergence, but this problem is
also present in existing acceleration techniques that consider time-
varying network matrices [8, 9]. However, in Sect. 4 we show that
our method is robust in many practical scenarios. In addition, note
that Proposition 1(a) holds even if the algorithm diverges (which
could be the case when the parameterα is overestimated), so it
can be useful to devise hybrid schemes with stronger convergence
guarantees, but such methods are not investigated here.

3.3 The Asynchronous Consensus Algorithm
A potential limitation of Algorithm 1 is that agents should know
the time instanti to computeωi. In some systems, such as those
with agents communicating via network gossiping [7], knowing
precisely the time index may not be possible. This fact renders
Algorithm 1 impractical, and, to address this limitation, we propose
an asynchronous semi-iterative consensus algorithm that is based
on the following observation:

FACT 1. [11] [12, p. 517] (On the convergence ofωi)
Letωi be as in (10) and−1 < α < β < 1. Then, fori > 1, ωi

satisfies the following properties: i)1 < ωi < 2, ii) ωi is strictly
decreasing, and iii)

lim
i→∞

ωi =
2

1 +
√

1− 1/µ2
=: ω∞. (14)

Since ωi is convergent (and the asymptotic convergence is
usually fast), we can try to approximate the output of Algorithm
1 by fixing ωi to ω∞, the limit in (14). The resulting algorithm is
formally presented below.

ALGORITHM 2. (Asynchronous semi-iterative consensus
algorithm)

z[i + 1] = ω∞ [(1− κ)I + κW [i]] z[i] + (1− ω∞)z[i− 1],
(15)

wherez[1] = [(1− κ)I − κW [0]]x[0] andz[0] = x[0].

It is not difficult to show that that Algorithm 2 is also average
preserving and converges in the mean sense toxav1.

3.4 Relation with Existing Methods
We now compare the proposed algorithms against the original
consensus algorithm with and without state-of-the-art acceleration
methods. We start by rewriting (11) in the equivalent form:

zk[i + 1] =
∑

j∈Nk

ωi+1 (1− κ + κ[W [i]]kj) zj [i]

+ (1− ωi+1)zk[i− 1], k ∈ N , (16)

wherezk[1] =
∑

j∈Nk
(1 − κ + κ[W [i]]kj)xj [0] and zk[0] =

xk[0]. (Note: Algorithm 2 is obtained by fixingωi in (16).)
From the above, we see that we need to keep two scalars in the

memory of each agent, instead of one as in the original consensus
algorithm in (1). In addition, in terms of local computation
complexity per agent, Algorithm 1 is slightly more complex
than the original consensus algorithm because (16) requires fewer
additional sums and multiplications per iteration as compared to
(1). However, the slightly higher computational complexity and
memory requirements of the proposed method can be ignored
because, in a real-world implementation with wireless links, agents
spend most energy and time with the information exchange rather

168

than computation [13]. If agents implement either (1) or (16), they
communicate with exactly the same neighbors and exchange the
same amount of information per iteration. However, to reachthe
desired solutionxav within a prescribed precision, the iteration in
(16) typically requires fewer iterations than the scheme in(1). As
a result, the proposed methods can lead to great time and energy
savings (because less information must be exchanged).

From the equivalence betweenE[z[i]] andE[y[i]] in (9) (or (6)),
which is proved in Proposition 1(b), Algorithm 1 is applyinga long
polynomial filter that is optimal in a well defined sense and that
uses all estimatesz[0], z[1], . . ., even though its implementation
only requiresz[i] and z[i − 1]. This is in stark contrast with
the implementation of the two algorithms in [9], both of which
typically use short filters of fixed length and keep in the memory
of each agent more than two samples of the sequence of estimates
of xav. One of the algorithms in [9] uses filters based on an
intuitive approach that lacks an optimality criterion. Theother
approach in [9] uses filters optimal in a well defined sense, but it
requires precise knowledge of the eigenvalues ofW , which is an
information not required by our approaches.

We can also relate our approaches with the two-register
algorithms in [8, 10]. Assume thatα = −β with β > 0, in which
caseκ = 1. Therefore, (16) reduces to:

zk[i + 1] =
∑

j∈Nk

ωi+1[W [i]]kjzj [i] + (1− ωi+1)zk[i− 1],

k ∈ N , (17)

wherezk[0] andzk[1] are as in (16). As a result, the approaches
in [8, Eq. (9)] and [10, Eq. (28)] (this last by also fixing the
matrix W [i]) are recovered if we fixωi to any number in the
interval (1, 2). Fixing ωi was also the approach used to derive
Algorithm 2, which is an algorithm that gives strong arguments
to useωi = ω∞ and not arbitrary values within the range(1, 2)
(provided that the upper boundβ is available). Note that we can
also argue that fixingω∞ to an arbitrary value within the range
(1, 2) is equivalent to making an arbitrary choice ofβ. More
precisely, givenω∞ ∈ (1, 2) andα = −β (which was used to
derive (17)), we can use (14) to calculate the value ofβ that results
in such a choice ofω∞. In the next section we show that the choice
α = −β can be too pessimistic in many cases, and, as a result, the
acceleration capabilities of the algorithm can be reduced.

A less strict reader could also argue that Algorithm 2 in its full
generality is also equivalent to the algorithms in [8, Eq. (9)] and
[10, Eq. (28)] withW [i] replaced by(1− κ)I − κW [i]. In such
a case, these existing algorithms are accelerating the consensus
algorithmx[i+1] = ((1−κ)I−κW [i])x[i] and not the iteration
in (2). Algorithm 2 shows how to chooseκ (andω∞) when bounds
on the eigenvalues are available.

4. EMPIRICAL EVALUATION
We now show the superiority of our proposed algorithms over
existing methods, and we also evaluate the stability of the proposed
algorithms in practical scenarios.In particular, as in [2], we place
N agents uniformly at random in a square of unit area, and then we
connect agents within distanced =

√

log(N)/N from each other
(unless otherwise stated), which is a distance that guarantees that
the resulting graphG = (N , E) is connected with high probability
[14]. We discard graphs not fully connected. In all simulations,
each agentk initially reports valuesxk[0] = 50

√
2 · ‖[Xk Yk]T ‖+

nk, wherenk is a sample of a Gaussian random variable with mean

zero and unit variance,2 andXk andYk are the Euclidean spatial
coordinates of agentk in the unit grid. (Note that agents start with
values strongly correlated with their positions as is common in the
multiagent systems described earlier [2].)

We consider cases where agents exchange information not
only with reliable communication links, but also with unreliable
communication links because practical algorithms should be robust
against link failures (a common occurrence in wireless links owing
to the presence of jammers, obstacles, etc.). Therefore, for each
scenario, the following network matricesW [i] are used:

• (Reliable links.) For simulations using reliable links, we set
the network matrix toW [i] = I − ǫL (i ∈ N), whereL is
the Laplacian matrix of the graphG and ǫ > 0 is a properly
selected scalar that guarantees thatW [i] satisfies the conditions in
Assumption 1.3 In particular, in this study we setǫ = 0.05 because
it guaranteed the conditions in Assumption 1 in all our simulations.
For a graphG = (N , E), the Laplacian matrixL ∈ RN×N is given
by L := D −A, whereD := diag(|N1| − 1, . . . , |NN | − 1) is
the degree matrix (| · | denotes the cardinality of a set) andA is the

adjacency matrix [2, 4][A]kj =

{

1, if {k, j} ∈ E and k 6= j

0, otherwise.

• (Unreliable links.) For this scenario, we use the model of
unreliable links proposed in [5]. In more detail, we start with a
connected graphG = (N , E) obtained as described above. At each
time instanti, we copy all edges fromE to a new edge setE [i],
and then we remove with probabilityp each edge{k, j} (k 6= j)
from E [i]. The edge setE [i] defines a new graphG[i] = (N , E [i]),
and we useW [i] = I − ǫL[i], whereL[i] is the Laplacian matrix
associated withG[i] = (N , E [i]). The physical interpretation of
this model is that communication links, each of which corresponds
to an edge inE , can fail with probabilityp. As in the case with
reliable links, we chose the valueǫ = 0.05.

All acceleration methods in this section use the matricesW [i]
described above. For convenience, we use the acronyms SSCA
for the synchronous semi-iterative consensus algorithm and ASCA
for the asynchronous semi-iterative consensus algorithm.The
proposed acceleration schemes are compared with Laplacian-
based methods without acceleration [2, 5] and with the following
acceleration techniques:

• The two-register eigenvalue shaping filter (ESF) in [10] (which
is also the algorithm in [8] when the matricesW [i] are designed
for consensus via network gossiping). We showed in the discussion
after (17) that this algorithm is equivalent to Algorithm 2 with α =
−β andω∞ ∈ (1, 2). Our results are useful to help with the choice
of ω∞ when an upper bound on the second largest eigenvalue of
the network matrix is available.

• The optimal short-length polynomial filtering in [9] (algorithm
denominated “polynomial” in the figures).This algorithm uses
more information than that available to the proposed schemes and
the ESF acceleration method.

As in [8, 9], the performance metric of interest is the (absolute)
squared error‖o[i] − xav1‖2, whereo[i] ∈ RN is the output of a
given consensus algorithm at timei (e.g.,o[i] = z[i] in the case
of our proposed acceleration schemes oro[i] = x[i] in the case
of the original consensus algorithm in (2)). In simulationswhere
the network matrix is deterministic, all algorithms are guaranteed

2The samplesnk are different in different runs of the simulation
3The matricesW [i] are fixed and deterministic in this scenario, so
we can simply ignore the expectation operator in Assumption1.

169

to converge if the eigenvalues of the network matrix (exceptfor
the eigenvalue 1) fall into the interval[α, β]. Therefore, we
plot the average squared error performance of the algorithms in
such scenarios. However, unless otherwise stated, we show the
(sample) 99th-percentile squared error performance when bounds
on the eigenvalues are not exactly known. By plotting percentile
curves, we identify algorithms that consistently provide good
performance, and we also give less emphasis to rare situations
where acceleration algorithms may not converge (see also the
discussion after Proposition 1). Sample average and percentile
curves are calculated from the results of 1,000 simulations, each
of which use different initial conditions.

4.1 Networks with Reliable Links
Having described the basic setup of the simulations, we now
study the performance of the algorithms in specific settings. We
begin with an ideal scenario where the topology is fixed, links are
reliable, and the minimum and second largest eigenvalues ofthe
network matrix are precisely known. This scenario is usefulto
show the maximum acceleration gain that can be achieved with
the algorithms because the minimum and second largest eigenvalue
are simple to compute. The network under consideration is
depicted in Fig. 1. For simplicity, denoteW := W [i]
(because in this scenario the network matrices are fixed and
deterministic),λmax := maxj∈{2,...,N} λj(W) (λmax > 0 in
all our simulations), andλmin = minj∈{2,...,N} λj(W). We use
the following parameters for the proposed acceleration schemes:
SSCA (α = λmin, β = λmax) and ASCA (α = λmin, β = λmax).
The parameterc in [10, Eq. (28)] is set toc = 1− ω∞, whereω∞
is computed according to (14) withβ = −α = λmax (see the
discussion after (17) for the justification of this choice).Note that
the ESF algorithm is basically the ASCA algorithm withβ = −α.
We use filters of length eight for the method in [9] (this valueis
also used in [9]). Fig. 2 shows the performance of the algorithms.

As thoroughly discussed in [2], Laplacian-based algorithms have
poor performance if the initial values reported by agents have
a strong correlation with their positions, and this fact is indeed
observed in Fig. 2. However, dramatic performance gains canbe
obtained by combining Laplacian-based methods with acceleration
techniques. In particular, the SSCA and ASCA algorithms are
able to provide in every agent values extremely close toxav

in very few iterations (as compared to the network size). The
performance of the asynchronous algorithm ASCA closely follows
that of its synchronous counterpart, the SSCA algorithm, which
is optimal in a well defined sense. This result is not surprising
because the asymptotic convergence ofωi is fast. The performance
advantage of the ASCA and SSCA algorithms over the ESF
algorithm is explained by the fact that the former two algorithms
use information about the lower bound on the eigenvalues of the
network matrix. In contrast, the ESF algorithm, a particular case of
the proposed method (see the discussion in Sect. 3.4), uses only
information about the second largest eigenvalue (in magnitude),
and the minimum eigenvalue is largely underestimated with the
conservative lower boundα = −β, which adversely affects
the performance. The polynomial filtering scheme in [9], which
requires precise knowledge ofW has performance comparable to
the ESF algorithm. However, note that the scheme in [9] requires
more information about the network matrixW and has higher
computation complexity than all other acceleration schemes. Its
performance is inferior to that of the SSCA and ASCA algorithms
because the proposed acceleration schemes are based on filters with
increasing length.

We now study the stability of our proposed schemes when upper

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coordinate X

C
oo

rd
in

at
e

Y

Figure 1: Network with 50 agents distributed uniformly at
random in a square with unit area. Agents are represented by
circles, and lines indicate communication links.

0 20 40 60 80 100
−200

−150

−100

−50

0

50

Iteration i

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 [d

B
]

Laplacian

Polynomial

SSCA

ASCA
ESF

Figure 2: Transient performance of the algorithms. Every run
of the simulation uses the topology in Fig 1.

and lower bounds of the eigenvalues of the network matrix are
imprecisely estimated. For visual clarity, we use the network in
Fig. 1 in all runs of the simulation, and we plot only results obtained
with the original Laplacian-based algorithm (for reference) and
the following versions of the SSCA algorithm:4 SSCA-under
(β = 0.9λmax, α = λmin) and SSCA-over (β = λmax, α =
λmin + 0.05). Note that SSCA-under underestimates the upper
bound, whereas SSCA-over overestimates the lower bound. Fig. 3
shows the performance of the algorithms.

From Fig. 3 it is clear that, for the proposed algorithms,
underestimating the upper bound is not so problematic as
overestimating the lower bound. In contrast, neither convergence
nor boundedness ofz[i] is guaranteed ifα is overestimated because
|p⋆

i (x)| grows fast outside[α, 1]. This last fact explains the
divergence of the SSCA-over algorithm.

In the simulations above, we have assumed exact knowledge of
λmax and λmin, which is rarely the case in practice. Therefore,

4We omit the performance curves of the asynchronous algorithms
because they are similar to those of the corresponding synchronous
algorithms.

170

0 20 40 60 80 100
0

50

100

150

200

250

Iteration i

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 [d

B
]

SSCA−under

SSCA−over

Laplacian

Figure 3: Stability of the algorithm with wrongly estimated
bounds. Every run of the simulation uses the topology in Fig.1.

to evaluate the algorithm in more practical settings, we consider a
scenario where the topology changes at every run of the simulation.
In such a case,α andβ should be set to appropriate values based
on likely bounds on the eigenvalues. Given that the proposed
algorithms are robust against underestimated upper bounds, we
can setβ to a value expected to be greater than|λ2(W [i])| with
fairly high probability. However, we should take a conservative
approach to choosingα because, as discussed above, overestimated
values can render the proposed algorithms unstable. By simulating
100,000 different networks with the geometric approach described
above,|λ2(W [i])| ≤ 0.994 occurred in less than 1.32% of the
simulations, so we chooseβ = 0.994 for both the SSCA and
ASCA algorithms because we do not need to be overly conservative
on the choice ofβ. As for the parameterα, we useα = −0.5
because eigenvalues less than−0.5 have not been observed in our
simulations. Therefore, we can expect that the proposed algorithms
using α = −0.5 converge with high probability. Fig. 4 shows
the 99th-percentile squared error performance of the algorithms
obtained by randomizing the network (and also the initial values
reported by the agents) at each run of the simulation. In this
figure, we once again set the parameterc in [10, Eq. (28)] to
c = 1−ω∞, whereω∞ was computed by using0.994 = β = −α.
We do not show the results of the polynomial filtering algorithm
in [9] because, as in Fig. 2, its performance is worse than that
obtained with other acceleration methods. In addition, it requires
precise information about the network matrix in every run ofthe
simulation, a very strong assumption in many multiagent systems.

With the settings in Fig. 4, the performance of Laplacian-based
consensus methods is also poor, and all acceleration methods can
greatly improve the convergence. The ASCA and SSCA algorithms
were stable in all runs of our simulations, which is not surprising
given the conservative choice ofα. The ESF algorithm is basically
the ASCA algorithm with an unduly underestimated parameterα,
and this fact explains the worse performance of the ESF algorithm
as compared to the SSCA and ASCA algorithms.

4.2 Networks with Unreliable Links
To study the stability of the acceleration algorithms with time-
varying matricesW [i], we consider in Fig. 5 a scenario similar to
that in Fig. 2, but with the difference that the communication links
fail with probability p = 0.2 at each iteration (see the discussion
in the beginning of this section). The parameters of all algorithms

0 20 40 60 80 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

Iteration i

99
th

−
pe

rc
en

til
e

sq
ua

re
d

er
ro

r
pe

rf
or

m
an

ce
 [d

B
]

SSCA

ASCA

Laplacian

ESF

Figure 4: Transient performance of the algorithms. Network
matrices W [i] are fixed and deterministic, but they change in
every run of the simulation.

0 20 40 60 80 100
−80

−60

−40

−20

0

20

40

60

Iteration i

99
th

−
pe

rc
en

til
e

sq
ua

re
d

er
ro

r
pe

rf
or

m
an

ce
 [d

B
]

Laplacian

ESF

ASCA

SSCA

Figure 5: Transient performance of the algorithms. The
network topology is the one in Fig. 1, but communication links
fail with probability p = 0.2 at each iteration of the algorithms.

are the same as those in Fig. 2. We do not use exact bounds on the
eigenvalues ofW to chooseα andβ because we want to illustrate
a situation where the topology is supposed to be fixed and known,
but the communication links are subject to failures that cannot be
predicted (a common scenario in wireless networks). We omitonce
again the performance of the polynomial filtering approach in [9]
because it did not converge in most runs of our simulations.

We can see in Fig. 5 that, with failing links, the proposed
acceleration schemes (the ESF being a particular case) is acceptable
because all agents are close to reach consensus onxav in few
iterations. In addition, the proposed algorithms converged in all
runs of the simulation, which shows the good stability properties
of our algorithms, even though Proposition 1 has only proved
convergence in the mean sense. The relative performance of the
algorithms is similar to that obtained in previous simulations, and
the reason is the same as before.

In the last simulation, we study the impact of the network size
on the convergence properties of the algorithms. In more detail, in
Fig. 6 we show the (sample) median number of iterations that each

171

10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

Network size

M
ed

ia
n

nu
m

be
r

of
 it

er
at

io
ns

Laplacian
SSCA
ASCA
ESF

Figure 6: Median number of iterations required to reach the
precision ‖o[i] − x[0]‖/‖x[0]‖ ≤ 0.001 as a function of the
network size. The network topology changes at each run of the
simulation, and communication links can fail with probabil ity
p = 0.2 at each iteration of the algorithms.

algorithm requires to reach the precision‖o[i] − x[0]‖/‖x[0]‖ ≤
0.001. In this figure, the network topology is randomized in
every run of the simulation, and we decrease the connection range
between agents tod = 0.7

√

log(N)/N to stress further the
limitations of Laplacian-based methods and the gains obtained with
acceleration algorithms. In addition, links fail with probability
p = 0.2 at each iteration of the algorithms. If links are reliable,
by keeping other conditions the same, the value0.999 is a good
estimate of the second largest eigenvalue of networks with sizes
ranging from 10 to 50, so we useβ = 0.999. More precisely, for
networks of size 50, the second largest eigenvalue of the network
matrix is greater thanβ = 0.999 with (empirical) probability less
than 2% (with smaller networks, the probability is lower). For the
minimum eigenvalue, eigenvalues less than−0.1 have not been
observed in the simulations, so we useα = −0.1. The parameters
α andβ have thus been adjusted to accommodate eigenvalues of
(reliable) networks of different sizes and topologies. Note that the
simulations in Fig. 6 use networks with unreliable links, and we did
not try to estimate the eigenvalues ofW because the probability of
failures cannot be usually predicted in real-world applications. The
parameterc in [10, Eq. (28)] was once again set toc = 1 − ω∞,
whereω∞ is given by (14) withβ = −α.

As proved in [2] and also observed in Fig. 6, Laplacian-
based methods scale badly with the network size. However, all
acceleration techniques are relatively insensitive to thenetwork
size, so they can be good alternatives to Laplacian-based methods
in spatial computers. The compared acceleration schemes have
similar performance because the precision, although fairly high,
can be achieved in few iterations by all acceleration schemes (in
previous simulations we can see that differences are usually more
pronounced when we show 99th-percentile curves). Therefore,
choosing parameters based on expected bounds on the eigenvalues
of the network matrix (as proposed in this study) makes simple
consensus algorithms practical in applications where approximate
averages have to be computed with few iterations.

5. CONCLUSIONS
Laplacian-based methods for consensus have been identifiedas too
slow to be practical in many multiagent applications, especially

those involving large-scale systems [2]. However, in this study
we have demonstrated that such methods can still be useful in
large systems if they are combined with acceleration techniques.
In particular, the convergence speed of our two novel algorithms
is fast and decreases gracefully with the network size in scenarios
where the sole use of Laplacian-based methods are known to be
impractical. Our first algorithm requires agents with synchronized
clocks, and it is optimal in a well defined sense. The second
algorithm is an asynchronous method that is able to provide
performance very close to that of the optimal synchronous
algorithm. Unlike existing acceleration methods, we have only
assumed that rough bounds on the extremal eigenvalues of the
network matrix are available (those bounds can be readily obtained
by considering typical application scenarios).

6. REFERENCES
[1] R. L. G. Cavalcante, A. Rogers, N. R. Jennings, and I. Yamada,

“Distributed multiagent learning with a broadcast adaptive
subgradient method,” inProc. of the 9th Int. Conf. on
Autonomous Agents and Multiagent Systems, 2010, pp.
1039–1046.

[2] N. Elhage and J. Beal, “Laplacian-based consensus on spatial
computers,” inProc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems, May 2010, pp. 907–914.

[3] C.-H. Yu and R. Nagpal, “Sensing-based shape formation on modular
multi-robot systems: A theoretical study,” inProc. of the 7th Int.
Conf. on Autonomous Agents and Multiagent Systems, May
2008, pp. 71–78.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,”Proc. IEEE,
vol. 95, no. 1, pp. 215–233, Jan. 2007.

[5] S. Kar and J. M. F. Moura, “Sensor networks with random links:
Topology design for distributed consensus,”IEEE Trans. Signal
Processing, vol. 56, pp. 3315–3326, July 2008.

[6] L. Xiao and S. Boyd, “Fast linear iterations for distributed
averaging,”Systems and Control Letters, vol. 53, pp. 65–78, Sept.
2004.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomizedgossip
algorithms,”IEEE Trans. Inform. Theory, vol. 52, no. 6, pp.
2508–2530, June 2006.

[8] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip
algorithms for distributed computation,” inForty-Fourth Annual
Allerton Conference, Sept. 2006, pp. 952–959.

[9] E. Kokiopoulou and P. Frossard, “Polynomial filtering for fast
convergence in distributed consensus,”IEEE Transactions on
Signal Processing, vol. 57, no. 1, pp. 342–354, Jan. 2009.

[10] D. Scherber and H. C. Papadopoulos, “Distributed computation of
averages over ad hoc networks,”IEEE Journal on Selected Areas
in Communications, vol. 23, no. 4, pp. 776–787, Apr. 2005.

[11] G. H. Golub and R. S. Varga, “Chebyshev semi-iterative methods,
successive overrelaxation iterative methods, and second order
Richardson iterative methods,”Numerische Mathematik, no. 3, pp.
145–156, 1961.

[12] G. H. Golub and C. F. V. Loan,Matrix Computations, 3rd ed.
Baltimore, MD: The Johns Hopkins Univ. Press, 1996.

[13] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[14] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE Transactions on Information Theory, vol. 46, no. 2, pp.
388–404, Mar. 2000.

172

