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ABSTRACT
Team Coverage Games (TCGs) are a representation of coop-
erative games, where the value a coalition generates depends
on both individual contributions of its members and syner-
gies between them. The synergies are expressed in terms of
the importance of the agents in various teams. TCGs model
the synergy as a reduction in utility that occurs when team
members are missing, causing the team not to achieve its
full potential. We focus on the case where the utility re-
duction incured is a concave function of the importance of
the missing team members and analyze the domain from a
computational game theoretic perspective.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
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J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics
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1. INTRODUCTION
Game theory analyzes and provides models for many types

of interaction between self-interested agents. Using such
analysis to automate such interactions has immediately raised
the question of computational complexity. Cooperative games
consider coalitions of agents, each capable of achieving a cer-
tain utility. This utility is generated by all the coalition’s
agents together. Representation languages for cooperative
games define the value generated by each coalition.

Cooperative game theory characterizes possible gain dis-
tributions through solution concepts, such as the core [5],
the least-core and the nucleolus [7]. We suggest a represen-
tation for cooperative games called Team Coverage Games
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(TCGs), where the value a coalition generates depends both
on the utility generated by each of its members, and on the
coverage of various agent teams. If a team of agents is not
covered by a coalition, the value generated by that coalition
is reduced, as a function of the importance of the missing
team members. We provide algorithms for finding the op-
timal coalition which generates the highest utility and for
computing the core, ε-core and least-core of TCGs. We be-
lieve that TCGs can help model many interactions, while
allowing tractably computing solutions.

1.1 The Team Coverage Game Model
We propose a model where agents operate in teams, but

only achieve their full contribution in the presence of other
team members. If members of a team are missing, the agent
can only contribute part of the full contribution she makes
in the presence of the whole team. TCGs have n agents, I =
{1, 2, . . . , n}, each having an individual (possibly negative)
contribution ui which it supplies to the coalition.

Given a coalition C, if some agents are missing for a team
tj (so agents Tj \ C 6= ∅ of tj are missing), the utility is
reduced due to the degredation in that team’s performance.
This models the utility loss of the coalition due to breaking
the well-formed teams. We model this team coverage loss
by assigning each member i ∈ Tj of the team a weight,
wi,j indicating the agent’s importance to the team tj . If
i /∈ Tj then wi,j = 0. We denote the total weight of a subset
T ′ ⊆ Tj of team members as w(T ′, tj) =

∑
i∈T ′ wi,j , which

indicates the total importance of the members of T ′ to team
tj . The reduction in utility due to missing members in team
tj is expressed as a function of the importance of missing
members. Note that Tj \ C are the missing members of
team tj in coalition C. The total importance of the missing
members is w(Tj\C, tj). We use a team consistency function
fj : R → R mapping the total weight (importance) of the
missing members to the decrease in the coalition’s utility.

The coalition’s value depends on both its members’ indi-
vidual contributions and the coverage of teams. Coalition
C’s utility given the teams t1, . . . , tk is: U(C) =

∑
i∈C ui −∑

tj∈T fj (w(Tj \ C, tj)). We represent any coalition C ⊆ I

of agents using boolean indicator variables xi ∈ {0, 1}, i ∈ I,
one variable per agent, where xi = 1 if agent i ∈ C, and
xi = 0 if i /∈ C. Any vector x ∈ {0, 1}|I| represents a
coalition. The utility of any coalition x can be written as:
U(x) =

∑
i∈I uixi −

∑
tj∈T fj

(∑
i∈I wi,j(1− xi)

)
We define cardinal and threshold TCGs. In Cardinal TCGs

(CTCG) the value of a coalition is simply its utility. In
Threshold TCGs (TTCG) a coalition wins if it obtains a util-
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ity higher than a threshold k, and loses otherwise. A CTCG
has the characteristic function v(C) = U(C). A TTCG has
the characteristic function (using a fixed threshold r ∈ R)
where v(C) = 1 if U(C) > r and otherwise v(C) = 0.

We now discus optimal coalitions and core issues in CTCGs.
The problem of finding the coalition with the highest utility
is CTCG-OPT-COALITION: Given a TCG G, find C∗ with
highest utility, i.e. a coalition C∗ such that for any C′ 6= C∗

we have U(C′) ≤ U(C∗). Solving this problem requires find-
ing: x∗ = arg maxx

∑
i∈I uixi−

∑
tj∈T fj

(∑
i∈I wi,j(1− xi)

)
.

We show this problem is generally hard, but tractable for
submodular consistency functions.

Theorem 1 (CTCG-OPT-COALITION is NP-hard).
Finding the maximal value coalition x∗ is NP-hard for gen-
eral team consistency functions f .

Theorem 2. CTCG-OPT-COALITION is polynomially
solvable for submodular consistency functions.

Algorithms for minimizing submodular functions have a
high complexity. Some submodular functions can be min-
imized efficiently by solving an ST-Min-Cut problem. In
particular, certain forms relying on concave functions can
be minimized [6] and Theorem 2 relies on this method.

We now turn to considering core related problems. It is
known that the core is non-empty for convex games [8], i.e.
games with supermodular functions v satisfying ∀Cv(C) ≥ 0
and v(∅) = 0. However, in CTCGs for some coalitions C
we might have v(C) < 0, and specifically v(∅) can also be
negative. We now generalize the result in [8] as follows.

Theorem 3. If v is supermodular, v(∅) ≤ 0 and v(C∗) =
maxC v(C) ≥ 0 then the core is non-empty.

Theorem 3 is constructive: it allows constructing a core
imputation from C∗, when the theorem’s condition hold.

We now consider the ε-core. The excess of C as d(C) =
v(C) − p(C). The CTCG-ME problem is: Given a CTCG,
an imputation p = (p1, . . . , pn) and q ∈ R, test whether
maxC⊆Id(C) ≤ q. The TCG-ε-CORE-MEMBERSHIP (TCG-
ECM) problem is: Given a CTCG G, ε and an imputation
p = (p1, . . . , pn), test whether p is in the ε-core. Theorem 4
shows we can solve TCG-ECM in polynomial time, using a
linear program that finds a violated ε-core constraint.

Theorem 4. CTCG-ME and TCG-ECM are in P.

Another important proble is finding an impuation in the ε-
core. The TCG-ε-CORE-FIND-IMPUTATION (TCG-ECFI)
problem is: Given a TCG and ε, find an imputation p =
(p1, . . . , pn) in the ε-core if one exists, or reply that no such
imputation exists. We show a tractable algorithm for TCG-
ECFI based on the above method for finding the maximal
excess coalition, using a technique similar to the one used
in [4] for weighted voting games.

Theorem 5. TCG-ECFI is in P.

Theorem 5 allows finding the least-core, using a binary
search on the minimal ε making the ε-core non-empty.

We now provide results for the threshold version TTCG,
where a coalition wins if its utility is higher than k.

Theorem 6. In submodular TTCGs, finding vetoers and
computing the core are in P.

Theorem 7. Any problem that is computationally hard
for Weighted Voting Games is also hard for TTCGs.

Although TTCGs appear to be similar to CTCGs, the
two differ in computational complexity. In CTCGs we can
compute the least-core in polynomial time, but in TTCGs
even computing the maximal excess is NP-hard. Finding the
maximal excess coalition is NP-complete in weighted voting
games [4], so hardness follows for TTCGs through Theo-
rem 7. Transforming a TTCG to a weighted voting game
creates agents with potentially different individual contri-
butions. The maximal excess problem remains hard even
in domains with identical individual contribution, and with
only pair teams (i.e. each team has at most two agents).

Theorem 8. In TTCGs, finding the minimally paid win-
ning coalition for an imputation is NP-hard, even with iden-
tical individual contribution and pair teams.

2. CONCLUSIONS AND RELATED WORK
We proposed the Team Coverage Games (TCG) represen-

tation. TCGs have some similarities with other game forms,
such as classes are based on skills [3, 1]. However, TCGs are
a “softer” version of such games replacing “hard” constrains
with a “punishment” for missing members. Another some-
what similar analysis is [2]. It studies coalitional stability,
but focuses on overlapping coalitions. Several questions are
open for future research. First, our analysis has focused on
the core and the least-core. It would be interesting to exam-
ine other solutions. The relation between TCGs and WVGs
allows translating hardness results for WVGs to TTCGs.
However, CTCGs do not generalize WVGs so computational
results for CTCGs must be derived some other way. Finally,
we have relied on submodularity, and it would be interesting
to see which results apply to more general settings.
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