Rich Goal Types in Agent Programming

Mehdi Dastani
Utrecht University
The Netherlands

mehdi@cs.uu.nl

ABSTRACT

Goals are central to the design and implementation of igasit
software agents. Much of the literature on goals and reagoni
about goals in agent programming frameworks only deals with
limited set of goal types, typically achievement goals, anthe-
times maintenance goals. In this paper we extend a preyiousl
proposed unifying framework for goals with additional icigoal
types that are explicitly represented as Linear Temporgid (¢.TL)
formulae. We show that these goal types can be modelled as-a co
bination of achieve and maintain goals. This is done by pliogi

an operationalization of these new goal types, and showiag t
the operationalization generates computation traces#iafy the
temporal formula.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Atrtificial Intelligence—
Intelligent agents, languages and structyré®.5 [Artificial In-
telligencq: Programming Languages and Software; F.28dics
and Meaning of Programg: Studies of Program Constructs; D.3.3
[Programming Language$: Language Constructs and Features

General Terms
Theory, Languages

Keywords
Agent Programming, Goals, Formal Semantics

1. INTRODUCTION

A widely-accepted approach to designing and programmiegtag
is the cognitive approach, where agents are modeled in terms of
mental concepts such as beliefs, goals, plans and intent@fithe
various concepts that have been used for cognitive agemtsy a
concept isgoals This is because agents are (by common defini-
tion) proactive, and goals are what allow agents to be praact
It is also noteworthy that (the existence of explicitly repented)
goals is one of the clearerftBrences between (proactive) agents
and active objects. Goals have been extensively studietificial
intelligence and multi-agent systems (e.g. [2,13,16,21])

Earlier work focused mostly on achievement goals, which rep
resent a desired state that the agent wants to reach. Hoviever

Cite as: Rich Goal Types in Agent Programming, M. Dastani, M.B.
van Riemsdijk, M. Winikoff,Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 20%dlyim, Tumer, Stone
and Sonenberg (eds.), May, 2—6, 2011, Taipei, Taiwan, pp. 405-412.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

405

M. Birna van Riemsdijk
Delft University of Technology
The Netherlands

m.b.vanriemsdijk@tudelft.nl

Michael Winikoff
University of Otago
New Zealand
michael.winikoff@otago.ac.nz

creasingly othegoal typesare being studied such as maintenance
goals, which represent a state the agent wants to maintath, a
perform goals, which represent the goal to execute certdiores
(e.g., [4,7,8,11]). However, only considering a small nembf
goal types can be limiting, since in practical applicatitrere may

be goals that cannot be captured well by achievement or exaint
nance or perform goals.

To make this discussion more concrete, consider a persenal a
sistant agent that manages a user’s calendar and tasks. cahe g
the agent may have is booking a meeting. This would typidadly
modelled as an achievement goal that aims to bring aboute sta
where all required participants have the meeting in thderar.
However, in practice, diaries change, and we want to en$ate t
the meeting remains in participants’ diaries, and that Ehaikey
participant become unable to attend, a new time will be riegot
ated. This is not captured by an achievement goal. Rather, it
better modelled by a combined “achieve then maintain” gdattv
achieves a certain condition, and then maintains it overriioe
time period. Another task that we might want the agent to tnde
take is to ensure that booking travel is not done until thegletids
approved. Note that budget approval may be under the cdairol
perhaps just influence) of the agent, i.e. the agent may Haws p
for attempting to have the budget approved. Alternativieljay
be completely outside the agent’s control, in which caseatient
can just wait for it to happen and then enable the travel bapki
process.

A number of papers have taken this line of research a step fur-
ther by taking arbitrary Linear Temporal Logic (LTL) fornad as
goals [1,2, 12, 13, 16], rather than considering specifid tyqees.
The advantage of this approach is that it does not restiécgytal
types that can be used. However, a possible disadvantalgat i t
requires extensive alterations of a more basic agent progiag
framework, the practical implications of which are not yietae.

Temporal logic is also used by M M [10], but it is used
directly for agent execution, whereas we use temporal lagia
design framework for specifying goafpeswhich are mapped to
existing implementations of achieve and maintenance géalgi-
tionally, M M requires a particular format for its rules: all rules
are in one of the three formstart — ¢, ory —» Qg ory — $¢
whereg is a disjunction of literalsy is a conjunction of literals,
andg is a positive literal.

In this paper, we propose an approach that is somewhere in be-
tween those focusing on a limited set of goal types and those i
which arbitrary LTL formulae can be taken as goals. We prepos
an approach in which goals that are represented by refatheeh-
plex LTL formulae are operationalized hiyanslating these LTL
formulae to more basic achieve and maintain goals. The aalgan
of this approach is that the goal types can be integratedistiey

agent programming frameworks that already have an opagdtio
ization of achieve and maintain goals. We illustrate theragagh

by showing how a number of LTL formulae can be translated to
achieve and maintain goals.

This paper builds on previous work [19] which presented a uni
fying framework for goals based on viewing goals as LTL folaeu
that described desired progressions. This previous waqutuced
existing basic goal types, whereas we propose a framewattk th
allows the use of richer goal types. Section 2 provides & tge
scription of the unifying framework on which we build. Sexti3
presents the new goal types which are formalized and relailise
sections 4 and 5. Finally, in Section 6 we conclude the papér a
discuss some future directions.

2. AUNIFYING FRAMEWORK FOR GOAL
TYPES

This paper builds on the framework of van Riemsdiflal. [19]
in which a goal type is informally considered as a propertgreh
acterising a set of computation traces. The framework itaéxgd
in terms of an abstract architecture for operationalizinglg such
as achieve and maintain goals. In particular, the operalized
architecture aims to capture essential aspects of goaggeint @ro-
gramming frameworks in terms of properties of computatianés,
abstracting from particular goal types.

The framework models goals as follows. The state includee-st
related propositions, which capture the state of the waridwell
as propositions of the formloneg(a) which capture the performance
of actions. This approach takes an abstract view of a goal &g
a particular pattern, or structure, of a formula in Lineamperal
Logic (LTL). A given LTL formula corresponds to a set of trace
which make it true, and is viewed as a goal in that it allowsvegi
system trace to be classified as satisfying the goal or not.

van Riemsdijket al.[19] defined four commonly-used goal types:
achievement goal, (reactive) maintenance Yyqarform goal, and
query goal. These goals are classified into a taxonomy (Hetowd
an operationalization is provided for them within a singienfie-
work, using a simple execution cycle which was extended adth
ditional rules of the form{condition action) where actions could

beto S VA orD agoal.
Goal
State-baSed Action-based
(declarative) (procedural)
single-state multifle-state perform
query achieve maintain

A key feature of this approach is that it balances flexibilifyh
being structured enough to ensure desired properties ¢, gad
hence for it to make sense for the resulting constructs tabecc
“goals”. Arange of desired properties of goals have beentified
in the literature. Winikd et al. [21, Section 2] survey existing lit-
erature and, based on this, identify the following desineghprties
of goals:

1. Persistent: goals should only be dropped for a good reason

IMaintenance goals are defined as beingactivewhere violation
of desired state is anticipated and avoidedrearctive where the
desired state is “recovered” once it is violated [8].

406

2. Unachieved: goals should not already hold; alternativel
they are dropped when they are achieved.

3. Possible: goals should be dropped when they are impessibl
to achieve.

4. Known: the agent should be aware of its goals. In implemen-
tation terms, this implies a measure of reflectiveness.

5. Consistent: goals should not be in conflict with other aeldp
goals.

A number of additional properties are identified by [4]. Soofe
these (Producibf@erminable and Suspendable) simply correspond
to the existence of a goal life-cycle. The others (Variablgdiion
and Action Decoupled) relate to the notion of long term goladg
they argue for.

One advantage of the proposed goals framework is that tige pro
erties representing a specific goal type can be dealt witlgénaral
and systematic way. Suppose we have a goal a certain type.
The framework mapg to a goal construcg(R,...) whereR is a
collection of rules (derived from) that govern transitions between
goal states. We can then show that the goal’s realizationsiee
properties of being persistent, unachieved, and posdiglesquir-
ing that the operationalization ofR, .. .) results in the goal being
dropped exactly wheg becomes known to be true, or known to
be impossible. For example, consider the goal to achgevéhis
is mapped [19, Section 3.3.1] 4§R, ...) whereR consists of two
rules: one to activate the goal when it is adopted, and onedj d
the goal whens v f becomes true, whergis the “success con-
dition”, i.e. when the goal is succeeded, here p; and f is a
description of a condition under which the goal becomes snpo
sible to achieve. Herdé depends on properties @ but may be
simply false, if it always remains possible to achigveThen it is
straightforward to show that, under the operational seivafior
goals defined by [19], the gog(R, .. .) is dropped exactly whep
becomes known to be true, or known to be impossible (pragserti
1-3, above). The property of being known (property 4) is exdl
by having an explicit goal base which allows the agent tocefia
which goals it has. Consistency (property 5) concerns actens
between goals, and is beyond the scope of this paper.

3. NEW GOAL TYPES

In this paper, goals are represented explicitly as spedfimdi-
lae in Linear Temporal Logic (LTL) [9]. While [19] defined the
notion of goal as representing preferred progressions,irgod
mally referred to LTL to explain this, the operationalizatiitself
did not use LTL explicitly in the representation of goals.eTtrL
formulae that we use to represent goals are defined by ttosviol
grammar. In addition to basic propositiors,(and standard propo-
sitional connectives, it has the temporal connectigeg“eventu-
ally”), O (“always”), andu (“until”). We use standard abbrevia-
tions such ast = pv —pand¢; V ¢, = =((=¢1) A (=¢2)). Note
that we do not use the nexp| connective because the goals we
consider in this paper does not use this operator.

¢ =Pl =p P AP | OGO | P1U 2

The semantics are the usual ones (given below). They areedefin
over a mode/M which is an infinite sequence of states, where each
state is a set of propositions that hold in that state. A fdangu
is true with respect to a modéM and an index, indicating the

current state. We usk{; to denote théth state inM.

MiEp iff peM,
MikE-¢ iff Mipoe
MiEdpAgy Iff MiE¢ andM,ikE ¢,
MiEOe iff Fk=i: MkE¢
MiEO¢ iff Vk>i:MkE®
MiE¢Up, iff TFk>i: Mk ¢, and

Vjsuchthai < j<k: M, jE ¢

We now extend the taxonomy of [19] with additional goal types
including those discussed in the introduction. Specifycétle per-
sonal assistant agent example introduced new goal typesfirfh
booking a meeting and then maintaining participant avditgb
can be formalised as follows. Lpabe short foparticipantsAvailable
msbe short fomeetingScheduledndmobe short fomeetingOccurs
then we represent the goal of booking a meeting as the failpwi
LTL formula:

O(msa (pau mo)

Considering the second goal, not booking travel until thedet
has been approved, this can be formaliséd as

(—bookTrave) U budgetApproved

Abstracting from the specific goal instances to general tyqes,
we have defined goal types of the forda(¢: A (¢2 U 7)) (achieve
¢1 and then maintaig, until 7), and¢ U r (maintaing until 7). We
now generalise these goal types by considering a range of imay
which a (non-temporal) property can be required to hold over a
number of states.

Consider a multiple-state goal where a (non-temporal) gntgp
¢ is required to hold over a number of states in the trace. The
taxonomy in the previous section (from [19]) only supportsrayle
multiple-state goal. However, there are a number of wayshiichy
a goal pattern can apply to a sequence of states. It can apply:

1. to all statesf¢;

2. at the start of the traces U 7, wherer is a formula that de-
scribes the state at whighis no longer required to be true;

. atthe end of the trac&>(r A[J¢), wherer is a “trigger” for-
mula that describes the state at whichegins to be required
to be true; or

. in the middle of the trace(r A (¢ UT')), wherer is the
starting trigger and’ the ending trigger; or

. it can apply to a number of sub-sequences of statés:—
(pUT)), wherer is a trigger that describes a state at which
¢ begins to be required to hold, amtdescribes the states at
which ¢ is no longer required to hold.

These cases for multiple-state goal types are summarisgdyin
ure 1. Note that in all cases we require tigahold at all states
within the specified region.

Considering the personal assistant example, the firskg@aisn

O¢

¢ >F—— sur
O(rAOe)
S INCIED)
X FKIF— O(r - (pUT))

Figure 1: Multiple-state goal types

We thus define the possible LTL patterns that we allow as piaki
state goal types as follows, whegeand r are propositional (i.e.
non-temporal). Instead of only supporting a single type oftiple-
state goal, as in previous work, we support the followingjcivh
correspond with the cases in Figure 1:

Gni=0¢oUTIOEAON I OEA(PUT)IOF — (pUT))

We also allow the single-state goal tyge¢. We would like to
emphasize that the proposed temporal goal types are by nesmea
exhaustive and that other LTL patterns can be identified poere
sent other multiple-state goal types as well. Our claim & the
proposed goal types are intuitive in that the correspondirgpat-
terns represents desirable execution traces as illudtogt¢he ex-
amples, and that they can be operationalized by means ahechi
and maintain goals. We also would like to note that other goal
types (e.g., those mentioned in Figure 1) can be represented
framework as well. For example, the query goal can be reptede
as Bp) v (B-p) (whereBpdenotes that agent believpsén the cur-
rent state), the achieve goal 4sp, the maintenance goal asp,

and the perform goal atonda), wheredonga) denote the fact that
actiona s performed.

4. REALISING THE NEW GOAL TYPES

The most characterising feature of our programming apjroac
is to represent goals explicitly as temporal formulae andper-
ationalize these formulae in terms of achieve and maintaalsy
The advantage of this approach is that achieve and maintah g
types have already well-defined operational semantics rimesof
the existing agent programming frameworks (e.g., 2APL J&}
dex [15], and JACK [5]) such that our goal types can be used to
extend these frameworks.

In order to realise the new goal types in an operationalregtti
we assume that an agent configuration comprises a beliefdiase
sisting of propositional atoms, and two goal bases. Thedat
base, called théemporal goal basecontains goals specified by
temporal LTL formulae. The second goal base, calledbasic
goal base consists of achieve goals of the forig) (read as:¢
should be achieved) and maintain goals of the fodf, r) (read
as: ¢ should be maintained unti), whereg andr are propositional
formulae. The maintain goa¥(¢, 1) represents that should be
maintained indefinitely.

The operationalization of temporal goal types can then be de
fined in terms of operations on temporal and basic goal bdses.

(paumo) corresponds to the fourth case above and the secondthis paper, we assume that the achieve and maintain goatsshav
goal corresponds to the second case above. Note that we coulc:orrect operationalization. In particular, for the ackieyoal we

also consider a goal wherghookTravelmust hold on dierent se-
guences of states, e.g. that once there is no more moneyludhe
get (hmm) then travel cannot be booked until a (new) budget is ap-
proved, formally: OJ(nmm — (=bookTravelu budgetApprovey.

2This goal would be expected to be used in conjunction withad go
to book travel>bookTravel

407

assume that iA(¢) is in the basic goal base, then the agent belief
base will eventually entai#, and for the maintain goals we assume
that if M(¢, 7) is in the basic goal base, then the agent belief base
entailsg until 7 is entailed by the belief base. The latter assump-
tion thus ensures that there is no need for reachiayi(tgpically
referred to as reactive maintain goal), since we assumeeit dot
become false once the basic maintain goal has been adopted. T

Adopt

Activate
Suspend(X

@ Drop(X) (>

Figure 2: Temporal (top) and basic (bottom) goal life cycles

basic maintain goal is thus interpreted as proactive angittie vi-
olation of desired states. Clearly, our assumption for ttieexe
goal is realistic as many agent programming languages ssich a
2APL [6] provide already programming constructs to impleme
achieve goals with the correct interpretation. Also, owuasption

for the maintain goal is realistic as there exist operaliaaion
proposals for the maintain goals [11] that perform lookahstaps

to avoid generating execution paths where the goal is @dlat

For the purposes of this paper we want to show that our frame-
work realises temporal goals correctly if we have correcrap
tionalization of achieve and maintain goals. The idea is$ tha
temporal goak>¢ can be operationalised by adding the achieve
goal A(¢) to the basic goal base. Similarly, the temporal gbalr
can be operationalised by adding the maintain ddéb, 7) to the
basic goal base. More complex temporal goals can be opeatio
ized by adding both achieve and maintain goals to the basit go
base, as will be shown in the sequel.

In our framework, goals have a life cycle as illustrated ig-Fi
ure 2. Both temporal (top) and basic (bottom) goals beginnin a
initial state (1), and can then be either in active (A) or rsged
(S) states. For the reasons explained in the next sectiempaoatral
goal can be adopted entering in a suspended state and a bakic g
(either an achieve or a maintain goal) can be adopted egtierthe
active state. A temporal goal in a suspended state can batecti
after which it can be either suspended again or dropped. & bas
goal in an active state can be either suspended or dropped.

While temporal goals are assumed to be given by an agent pro-

gram (specified by an agent programmer), the basic (achiae a
maintain) goals are adopted as a consequence of processing t
poral goals. In our framework, a temporal goal is dropped if i
can be satisfied by adopting an achieve or a maintain goalmA te
poral goal is suspended if it can partially satisfied by adopting
an achieve or a maintain goal. For this reason, the acbwog(X)

L ¢ 59(¢) |
<>(ZS {<¢’ Dro p(®)> > <_'¢’ Dro p(A(¢))>}
O¢ {{(¢, Drop(M(g, 1))) , (=¢, S uspenA(¢))),
(¢, Activate}
puUT {{(¢, Drop(M(¢, 7))y . {(—¢, S uspen(¢))),
(¢, Activate}
O AO9) {{¢ A 7, Drop(M(¢, 1)),
(=(¢ A7), SuspentA(s A 1)),
(¢ A T, Activate}
O Aa(@ut)) (o AT Drop(M(g, 7)),
(=(¢ A7), Suspen@(¢ A 7)),
(¢ A T, Activate}
O@F - (@ut)) 7A@, SuspentM(s, 7)),
(T A ¢, Activate}

Figure 3: Generic Condition-Action Pairs for Temporal Goals

The domain related condition-action pairs can be used foows
purposes, e.g., to activate temporal goals in domain spesiia-
tions in which the goals are likely to be realised (in additio the
generic ones) or to suspend them in situations in which tfasgo
are not likely to be realised (in addition to the generic gn€hese
domain related condition-action pairs should be desigreefally
since otherwise they may cause undesirable behavior. Wenass
domain related condition-action pairs are assigned to &aopo-
ral goal by the agent programmer in order to influence thelitde
of temporal goal based on domain dependent knowledge. We use
64(¢) to refer to the set of generic condition-action pairs of penal
goal¢ as specified in Figure 3.

It is important to note that these condition-action paies @mly
applicable when goals are in specific states, e.g., goaloehn
be dropped when they are active and activated when they are su
pended. The suspension condition-action pairs can notfoelijn
the active state, but also when a goal is adopted (which ntbxees
goal into the suspended state). The applicability of camaliaction
pairs are formally specified by the transition rules in Setb.1.

The first temporal goal type is characterised(as, where¢ is
a non-temporal formula. The first generic condition-actair as-
signed to this goal indicates that whens entailed by the agent’s
beliefs in its current state, then the gaab can be dropped and no
basic goal is added to the basic goal base. In this case,rtipote
ral goal is already believed to be satisfied. The second tondi
action pair indicates that if is not entailed by the agent’s beliefs in
its current state, then the gogl¢ can be dropped, but simultane-
ously the agent adopts the achieve gi@) by adding it to its basic

andS uspen¢X) drop and suspend the corresponding temporal goalsgoal base. Our assumption that the achieve goal is opeaditied

and, at the same time, add the basic gdéab the basic goal base.
This notation should not be confused and read as paranesteris
drop and suspend actions. Finally, the acti@mep(d) andSus

correctly ensures that the temporal g@ap will be satisfied by the
agent execution. As we will see later on, these drop actiohg o
take place if the temporal goal is in its active state. It $thdoe no-

pend®) remove a temporal goal from temporal goal base and leave ticed that there is no condition-action pair to activate teimporal

the basic goal base unchanged.

4.1 Life Cycle for Temporal Goals

In order to specify the state transitions of temporal goalset
of condition-action pairs is assigned to each temporal.gddle
condition of such a pair is a test on an agent’s belief basettaand
action is to change the goal’s state. The condition-actairsgran
be either generic or domain related. A generic conditicimac
pair specifies a transition for all instances of a goal typéeva
domain related condition-action pair specifies a transifiio a spe-
cific instance of a goal type depending on the applicatioraatih

408

goal. We assume such a condition-action pair is added as a do-
main related pair by the programmer. An example of such aipair
(T, Activate, which is a strong activation condition as it indicates
that the temporal goal should always be activated.

The second temporal goal is characterisedhy, where¢ is
a non-temporal formula. The first condition-action pairplrdahe
temporal goal and adopts the maintain goal, adding it at ahses
time to the basic goal base. Again, our assumption of cooet-
ationalisation of maintain goals ensures that the temmwal will
be satisfied, which is why we can drop the temporal when adgpti
the basic maintain goal. That is, there is no need to suspedd a

reactivate this temporal goal shoucho longer be believed, since
the latter is assumed not to occur once the basic maintainigoa
adopted. Note that a maintain gaddli(¢, L) is adopted in a state
that satisfies the maintain conditign The second condition-action
pair indicates that the temporal gagaly should be suspendeddf

is not entailed by the current agent’s beliefs, while adaptihe
achieve goalA(¢) to pursue a state from which the maintain goal
can be maintained. This can occur only when adopting thiptem
ral goal whileg¢ does not hold. Since this temporal goal is dropped
after activation, it cannot be suspended again from theeastate.
The third pair ensures that the temporal goal is activatathagpon
achievement of.

The operationalisation of the third temporal goal type isyve
much similar to the second one since is equivalent top U L,
i.e., the only diference is thap should be maintained untilholds,
and thus not indefinitely as was the case Wil#.

The fourth temporal goal type is characterised<®y{r A [¢).
The first condition-action pair ensures tigeis maintained indefi-
nitely if the agent’s current beliefs entaitsn 7. However, if either
¢ or T do not hold, then the temporal goal is suspended and the
achieve goalA(¢ A 7) is added to the basic goal base. This ensures
that the agent will pursue the condition before maintainimgdef-
initely. The third pair ensures that the goal is activatedimgnce
the conditiong A 7 is satisfied. We adopt a goal to achieve bgth
andr, and not justr, because in the state in which the agent transi-
tions from achieving to maintainingg, we wantg to be true (so it
can be maintained). This is also the reason why the thirditiond
action pair has a condition @f A 7, and not justr. These points
also apply to the following temporal goal types.

The fifth temporal goal type is characterised®yr A (¢ U 7).
The first condition-action pair indicates thagif\ T holds, then the
temporal goal can be dropped and at the same time the basie mai
tain goalM(¢, 7) is adopted. Note that if A 7 holds, the maintain
goal M(¢, 7’") ensures thap is maintained untit’ is achieved. The
second condition-action pair covers the situation whetreeey or
7 does not hold. In such a situation, the temporal goal caneot b
realized. The temporal goal is therefore suspended, bubabie
achievement goaA(¢ A 1) is added in order to achieve the condi-
tion for the first condition-action pair and the goal is aatad again
once this condition is satisfied.

Finally, the sixth temporal goal type is characterized iy —

(¢ UT’)). The first condition-action pair specifies that when
is entailed by an agent’s belief base the temporal goal casuge
pended (not dropped) and the basic maintain §b@l, 7') adopted.
The adopted maintain goal ensures the maintenangeuotil 7’.
Note that the temporal goal can be pursued again since itugas s
pended, instead of being dropped. The second conditicorgaair
is to activate the temporal goal. Note that the conditiorhaf pair
is the same as the condition of the first pair, but that the fiagt
is applicable only to active goals and the second only toesudpd
goals. However, in order to avoid a loop (suspend, activaie;
pend, ...) we impose an additional condition that a suspkgdal
of this type cannot be activated again until the plan geedratr the
goal has been performed. Formalising this restrictiorragttfor-
ward but is omitted for space reasons.

4.2 Life Cycle for Basic Goals

Generic condition-action pairs are also assigned to bastsg
when they are adopted for a temporal goal. As we will see,later
these condition-action pairs implement the generic @hetetween
beliefs and goals, e.g., an achieve gaéb) is dropped whep is
believed and a maintain go&l(¢, 7) is dropped ifr is believed.

Note that the second condition-action pair for basic maatee

409

BGoal Condition — Action Pairs 1
Alg) {{¢, Dropy) }
M(s,7) {(=¢ A =1, Suspeny, (¢ V 7, Activate , (r, Drop)}

Figure 4: Generic Condition-Action Pairs for Basic Goals

goals, which activates the goal, is only applicable to sndpd
goals (as defined in the transition rules in Section 5.2). I@n t
other hand, the last condition-action pair, which dropssadaaain-
tenance goal, can only be applied to an active basic maimtena
goal. It should also be observed that our assumption aborgato
operationalisation of maintain goals implies that the ¢t of
the suspend action is never satisfied, and therefore the tvesin-
tain goal never gets into the suspended state. This conehtition
pair is used in cases where the assumption that maintenaat® g
are correctly operationalised does not hold.

Additionally, a set of domain related condition-actionrpaare
assigned to each basic goal. Like temporal goals, domaatect!
condition-action pairs for basic goals should be used witec
since otherwise they may cause undesirable behavior. Titbtzm-
action pairs for basic goals may seem redundant as they dmnet
tribute to the operationalisation of temporal goals. Hosvethese
condition-action pairs generalise the presented franmlewious al-
lowing for the design of arbitrary basic goal behaviors, ahhmay
be useful for a variety of domain dependent applications. eixe
ample, a robot with an achieve goal to be at a certain posiitin
suspend its achieve goal when its battery charge is rfitigunt.

5. OPERATIONAL SEMANTICS

The operationalization of goal types is accomplished byape
tional semantics, which indicate possible transitionsveen agent
configurations due to goal processing.

Definition 1 The agent configuration is defined as a tufatey;, yp),
where o is the agent’s belief base (a finite set of propositional
atoms),y; is the temporal goal base (a finite set of triples of the
form (¢, state A) where¢ is a temporal formula, state is the state
of the temporal goal (init, active or susp(ended)), @nid the set of
condition-action pairs governing the life cycle), apglis the basic
goal base (a finite set of triples of the foifjm state A) where g is
one of A¢) or M(¢, 1), or M(¢, L), and the remaining components
are the same as for the temporal goal base(p)fand M(¢, 7) de-
note goals to achieve and maintain the non-temporal forrmpute-
spectively. The maintain goal (4, 7) has an additional argument,
a propositionr, that indicates the deadline until whighshould be
maintained.

The operational semantics defines how the agent pursues com-
plex temporal goals in terms of the pursuit of basic achiex@rand
maintenance goals. How the agent pursues basic achievement
maintenance goals is not defined here, and can be found elsewh
(e.g. [19]). We make assumptions about the pursuit of aehiev
ment and maintenance goals being operationalised correcttl
then show that, given these assumptions, the semantias lgare
correctly achieve complex temporal goals.

5.1 Transition Rules for Temporal Goals

Below, we specify transition rules for individual tempogalals,
and after that transition rules that lift these to sets offeral goals.
Let¢ be atemporal goaby a set of domain related condition-action
pair for ¢, anddy(¢) be the set of generic condition-action pairs as
defined in Section 4.1. Let be the generic condition-action pair

for basic goals as defined in Figure 4. We defifX, yp) (i.e., yb
extended with basic goX) as follows (note that we do not add any
domain related condition-action pair to basic goals).

° +(®a Yb) =7b
o +(X,7b) = yp U {(X, active 1)}

The first two rules belowAdoptl andAdop®) define the adop-
tion of a temporal goald, init, 64), firstly in the case where there is
a condition-action pair to suspend the goal while adoptibgsic
goal, and secondly where there is no applicable conditiiom
pair to suspend the goal (no basic goal is added). Note thaitn
cases, temporal goals are adopted entering in the suspstated
Temporal goals are initially suspended in order to ensuaettieir
corresponding maintain goal is added to the basic goal balse o
in states where their maintain condition is satisfied. This be
verified by observing the condition-action pairs that addntaén
goals to the basic goal base in Figure 3. Note that the apiolicaf
the first transition rule adds a maintain goal to the basid base
only for the sixth goal type and only when the condition oftihnée
added maintain goal is satisfied. In other cases, the teinpaais
that would add a maintain goal are suspended without addieg t
maintain goal to the basic goal base until the maintain door
are satisfied.

In contrast to temporal goals, basic goals are adopted ircan a
tive state (see above in the definition-efX, yp)). This is because
achieve goals can always be activated, i.e., there is nomesky
they should be suspended at the start. A maintain goal cast@g
in an active state since its adoption condition ensures distain
condition holds as explained above.

It is also important to notice that in the first two transitiaes
we use generic condition-action pairs only frégi(and not from
A). This is because domain related condition-action pagsoaty
used for activation and dropping of the goals, not for thelog
tion. Finally, observe that the first five transition rulekwal tran-
sitions from one single temporal goal to a set of temporalsgjoa
This means that these transition rules cannot be appliesecon
tively. However, the last transition rule is designed to agthe
processing of a set of temporal goals in terms of transitibasare
derivable from the first five transition rules.

(c,SuspentX)) € 64(¢) o EC
<0-s (¢’ init’ 6d)’ 7b> - <O-’ {(¢’ suspdd U 5g(¢))}, +(X’ Vb))

Adoptl

-3(c, SuspentX)) € 64(¢) : o EC
(o, (¢, nit, 5q), yp) — (0, {(#, SUSPSa U 64(#))}, ¥b)
The following rule activates a suspended temporal goal.
(c,Activate e A o ECcC
(0, (¢, suspA), yp) — (0, {(¢, active A)}, yb)

The following rule suspends an active temporal goal andsfpos
bly) adds a basic goal to the basic goal base.

(c,SuspentX)) e A ocEC
(o, (¢, active A), yp) — (0, {(¢, suspA)}, +(X, y))

The following rule drops a temporal goal and (possibly) adds
basic goal to the basic goal base.

(c,Drop(X)ye A o EC
<O—’ (¢’ aCtiVe A)’ 7b> d <O—7 {}7 +(X7 7b)>

The following transition rule specifies how the above rules f
single temporal goals (denoted gjscan be lifted to temporal goal

AdopR

Activate

Suspend

Drop

410

bases. Note that wheregss a single goal (a tuplely is a set of
goals (either singleton or empty).
g €Nt <0', g’ 7b> - <0', g,’ ’}/[’)>

Lift
@ Yooy = @ A UG

5.2 Transition Rules for Basic Goals

The following rules specify the life cycle of a basic goal The
DropBasicrule indicates that if a basic goal is in an active state,
then it can be dropped if there is a corresponding condgictien
pair for which the condition is satisfied in the current state the
action is a drop action. It should be noted that for a basigeaeh
ment goal we havégp, Drop), which indicates that the basic goal
A(¢) can be dropped whep holds. Similarly, for a basic main-
tain goal we havér, Drop), which indicates that the maintain goal
M(¢, T) can be dropped if holds in the current state.

(c,Droppe A okEcC
(o7, (X active A)) = (o, v)

DropBasic

The following transition rule$ uspB specifies that a goal in an
active state can be suspended. Note that the corresporatidgion-
action pair for a maintain goal indicates that a maintain gaa be
suspended if neithef nor = hold in the current state.

(c,Suspenge A o kEcC
<0-v Yt (Xv aCtIVQ A)) - <0-’ Yt {(Xv SuspA)}>

SuspB

The next transition rule is designed to manage the transdfo
a basic goal from suspended to active state. Note that thie-cor
sponding condition-action pair for a maintain goal states the
basic maintain godii(¢, r) can be activated if eithef or r hold in
the current state.

(c,Activatée e A o kEc
(o, 71, (X, suspA)) — (o, v, {(X, active A)})

ActivB

Finally, as for temporal goals, we have a transition rule spac-
ifies how the above rules for single basic goals (denoteg) aan
be lifted to basic goal bases. Note again that whegdas single
basic goal (a tuple)y’ is a set of basic goals (either singleton or
empty).

gEY <O-’ Yts g> - <0-’ Yt» g’)
(0,76 70) = (a7, (e \MID U)

5.3 Properties

In the following, we useP to denote the set of non-temporal
propositional formulae, and we u$g e, andf 7 to respec-
tively denote propositional entailment, propositionabément based
on the closed-world assumption, and LTL entailment.

We define the transition systeXrto include the rules defined ear-
lier in this section. It is important to observe that the ition sys-
temX contains other transition rules in addition to those presén
in sections 5.1 and 5.2. In particul&ris assumed to contain transi-
tion rules for action execution, which may change the baliafes.
As the application of transition rules may be interleavensgible
belief changes may influence the goal life cycles. One assamp
that we make about the details of transition syst&nis that the
rules defined earlier in this section have a higher priokigntother
rules. So for instance, if there are two applicable traositules,
say one for derivin@llowing an action execution transition, and
the other for the application of a condition-action pair of@al,
then the second transition rule is applied to deéillew the tran-
sition of goal life cycle. This assumption is crucial to shive
properties of our transition system in the rest of this secti

LiftB

Definition 2 LetS = (o, i, vE) — (02,92, ¥2) — ... be an infi-
nite sequence of configurations generated by the trans#ystem
X. In this sequence, the transitigo, y, v,y — (¢, v, ity is
derived by the application of a transition rule Bf The sequence
S is called atraceof X. The traceS of X is called afair traceif it

is generated by &ir run of the transition system, that is, a run in
which every transition rule that is enabled infinitely oftémalso
applied infinitely often.

Note that every finite trace is a fair trace. Furthermore pifiar-
ity assumption does nottact fairness, since in any given configu-
ration, there is only a finite number of goal-related traoeg that
can be applied. In the following, we consider only infinitades
(which can be guaranteed by adding an “idling” rule thatsitons
a configuration to itself if no other transition rules are laggble).
We usec’, y,, andy; to denote the ingredients of tfih state of a
traceS.

Definition 3 Let S be atraceof . We define BS), called the
belief trace ofS, to be the LTL-trace s= s's?... (where §is
a state assigning a truth value to each atomic propositidgthe
following condition holds:

Vo ePVieN: o Eqad © SE S

Furthermore, observe that singeis non-temporal, we also have
that S E ¢ © B(S),i ELTL ¢.

The following proposition states that for every trace thsrene
unique belief trace possible.

Proposition 1 Let S be a trace off. The belief trace BS) is
uniquely determined h§.

Proof: This proposition is the direct consequence of matching be-
lief basess' with states 'susing the closed-world assumption. I.e.,
state $assigns the truth value of propositions based on their truth
values inc' using closed-world assumption.

Assumption 1 The achieve goal &) is properly operationalized
by a transition system S if the following condition holdsduoery
traceS of X:

Vi: (A(g).activeA) ey} = Fj=i:0) Faad

Assumption 2 The maintain goal Ny, 7) is properly operational-
ized by a transition system S if the following condition lsdidr
every traceS of X:

Vi (M(¢,7), active A) € y, =
@Ajzi: ol kwat) A (Yi<sk<|: o*Foad)
or t=1AMK=i: *Ewmad)

The following propositions show that the operational setican
defined in section 5 correctly operationalize complex teralgoals
(in ;) using the basic achievement and maintenance goalg)in
Generally, correct realisation is the property that if afjenal LTL
formulay is in the temporal goal base of statand is active, for-
mally (x, activeg A) € ¥, thenB(S),i 1 y. However, since this
only holds for the particular goal patterns that have beegrap
tionalized, we prove this for each case separately. All psdpns
are based on assumptions 1 and 2.

Proposition 2 If (¢, active A) € yi, then BS),i k. ¢ for
all fair traces S of .

Proof: Case 1. Assume that' K. ¢. By the definition of the
condition-action pairs fok>¢ and the transition rule for Drop, we

411

have that, since>¢ € y, we must have that(4) € y;'*. There-
fore by assumption 1 (and definition 3) we have that> i + 1 :
B(S), j ELtL ¢ and hence by the semantics of LTL th&SBi .1
O¢. Case 2: Assume that f=¢.. ¢. Hence BS),i £, ¢ and
triVia”y B(S),l ':LTL <>¢

The following proposition states that a property can be main
tained if it already holds.

Proposition 3 If (¢, active A) € yi ando ewa ¢, then BS),i 1.
O¢ for all fair traces S of .

Proof: Since¢ € i, by the definition of the condition-action
rules and the transition rule for Drop, we have that(ddL) €
vyt By assumption 2 (and definition 3), sincé Fowa ¢ and
Vi 2i+1:0 Ewa ¢ WehaveVj > i : B(S),] EurL ¢ and
hence BS),i Fir O¢-

The following proposition shows thatU is correctly opera-
tionalized. It assumes that# L, sinceg U L is false in LTL.

Proposition 4 If (¢ U, active A) € yi (wherer # 1), ando Eewa
¢, then BS),i 1L ¢ U 7 for all fair tracesS of X.

Proof (sketch): Since(¢ U t) € ¥4, by the definition of the condition-
action pairs and of the transition rules, we havédir) € yib+1. By
assumption 2 the trac8 at configuration k1 satisfiesdj > i+1 :
ol Eawa TAVK: i +1<k<j: 0 Ecwa¢. From this condition
together with the definition 3 and the fact thatB,i E.1. ¢, itis
easy to see that([®),i ELtL ¢ UT.

Proposition 5 If (O(r A O¢), active A) € i, then BS),i Eir.
O (r A Og) for all fair traces S of X.

Proof (sketch): We consider two cases in configuration i. Case 1:
o' Fewa ¢ A T (itherg or 7 is not believed in the current configu-
ration). Since(>(r A O¢) € yl, by the definition of the condition-
action pairs and of the transition rules, we havé 1) € yib*l.
By assumption 1 (and definition 3), we have tHat> i + 1 :
B(S),] EirL ¢ A 7. Sinced(r A O¢) is never removed from
the temporal goal base (the condition-action pairs alwayspend,
and never drop it), we havé (r A (¢) € y,. By the definition of
the condition-action pairs and of the transition rules, dmetause
o) Eowa ¢ A 7, We have Mg, L) € ¥, From, o Eoua ¢, assump-
tion 2 and the definition 3, we have®, j E.r. (¢ and hence
B(S),i Eir. O(r A O¢). Case 2:07 Eana ¢ A . Itis easy to see
that the proposition holds in this case by having ij in the proof
sketch of case 1.

Proposition 6 If (& (7A(¢ U T')), active A) € i, then BS),i it
Ot A (¢ UT)) for all fair traces S of =.

Proof (sketch): The proof is similar to the proof of the previous
proposition.

The following proposition assumes that> ¢. The justification
for this assumption is that we want to show that the temparal i
correctly realised. In the case wherbecomes true but does not
hold, the temporal goal immediately fails, ire operationalisation
is able to realise the goal. We thus exclude this case.

Proposition 7 If (O(r — (¢ U7’)), activg A) € yi andr — ¢, then
B(S),i Eur. O(r — (¢ U T')) for all fair traces S of X.

Proof (sketch): We want to show that®),i .t O(r — (U T)),

i.e. that for any j> i, we have BS), j ELrL (t = (U T)). There
are two cases. Case I/ }qa 7. In this case the implication triv-
ially holds. Case 20 f=¢ya 7. Sincer — ¢, we haver’ Ecya ¢.
Since the temporal goal is always suspended and never dipppe
O — (puU7)) € ¥ forall j > i. Thus, by the definition of

the condition-action pairs and of the transition rules, asidce
o Eowa 7 A ¢, we have Mg, ') € y)™. By assumption 2 the trace
S at configuration j+ 1 ensures thap will be entailed by the belief
base until’ is entailed. Because! .4 ¢, traceS at configura-
tion j ensures thad is entailed by the belief base untilis entailed,
i.e. B(S),j EiT ¢UT’, from which ES),J EiTe (T - ((])UT’))
trivially follows.

6. DISCUSSION

In this paper we built on a temporal logic view of agent goals b

(9]

[10]

defining new, novel, goal types, and showing how these new goa [11]

types could be operationalized in terms of existing basé¢tgpas
(achievement and maintenance). The operationalizatidrased
on a goal life cycle where transitions between states ofsgass
governed by condition-action pairs. We show that the ojmral-
ization realizes traces on which the temporal goals arsfeatj as-
suming satisfaction of the basic goal types. Through thidhae
provided a flexible framework for operationalizing rich gbges.
Other goal types can be added by providing their translatidhe
basic goal types. Although we have provided several exasriple
the paper, future work will have to show which goal types ae p
ticularly useful in practice. This may also depend on the a@iom
that is modelled.

An important topic for future work to allow gaining more ptac
cal experience with the framework is implementing it on tbpan-
ventional agent-oriented programming languages, suchA&d 2
[6], Jadex [15], Jason [3], JACK [5] etc. It is interestingriote
that the proposed framework appears to be a good match viéth ru

[12]

[13]

[14]

based systems, as used in Opal [20]. Also, we aim to extend the[15]

framework to include subgoals along the lines of [14], anehth
using this as a basis for incorporating goal susperig@samption
and abortion (based on [17,18]).

7. REFERENCES

[1] F. Bacchus and F. Kabanza. Planning for temporally
extended goals. IRroceedings of the 13th National
Conference on Artificial Intelligence (AAAI'9@)ages
1215-1222, 1996.

[2] C. Baral and J. Zhao. Non-monotonic temporal logics for
goal specification. International Joint Conference on
Artificial Intelligence (IJCAI) pages 236—-242, 2007.

[3] R. H. Bordini, J. F. Hibner, and M. Wooldridge.
Programming multi-agent systems in AgentSpeak using
Jason Wiley, 2007. ISBN 0470029005.

[4] L. Braubach and A. Pokahr. Representing long-term and
interest BDI goals. IfiProgramming Multi-Agent Systems
(ProMAS) 2009.

[5] P.Busetta, R. Rénnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents - Components for Intelligent Agents in
Java. Technical report, Agent Oriented Software Pty. Ltd,
Melbourne, Australia, 1998. Available from
http;Avww.agent-software.cam

[6] M. Dastani. 2APL: a practical agent programming languiag
Autonomous Agents and Multi-Agent Systems
16(3):214-248, 2008.

[7] M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Goal
types in agent programming. Proceedings of the 17th
European Conference on Atrtifical Intelligence 2006
(ECAI'06), volume 141 ofFrontiers in Artificial Intelligence
and Applicationspages 220—-224. 10S Press, 2006.

[8] S. Duff, J. Harland, and J. Thangarajah. On proactivity and
maintenance goals. liutonomous Agents and Multi-Agent

412

[16]

[17]

(18]

[19]

[20]

[21]

Systems (AAMAS)ages 1033-1040, Hakodate, 2006.

E. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor,Handbook of Theoretical Computer Scieneelume
B: Formal Models and Semantics, pages 996-1072. Elsevier,
Amsterdam, 1990.

M. Fisher and A. Hepple. Executing logical agent
specifications. In R. H. Bordini, M. Dastani, J. Dix, and

A. El Fallah-Seghrouchni, editorBulti-Agent
Programming: Languages, Platforms and Applications
volume 2, chapter 1, pages 3-29. Springer, 2009.

K. Hindriks and M. B. van Riemsdijk. Satisfying
maintenance goals. Declarative Agent Languages and
Technologies (DALT'07)volume 4897 of.NAI, pages
86-103. Springer, 2008.

K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk.
Agent programming with temporally extended goals. In
Autonomous Agents and Multi-Agent Systems (AAMAS)
pages 137-144. IFAAMAS, 2009.

S. M. Khan and Y. Lespérance. A logical account of
prioritized goals and their dynamics. In G. Lakemeyer,

L. Morgenstern, and M. A. Williams, editorBroc. of the 9th
International Symposium on Logical Formalizations of
Commonsense Reasonjpgges 85-90, 2009.

M. Morandini, L. Penserini, and A. Perini. Operational
semantics of goal models in adaptive agents. In C. Sierra,
C. Castelfranchi, K. S. Decker, and J. S. Sichman, editors,
Autonomous Agents and Multi-Agent Systems (AAMAS)
pages 129-136. IFAAMAS, 2009.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: a BDI
reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editorsulti-Agent
Programming: Languages, Platforms and Applications
Springer, Berlin, 2005.

S. Shapiro and G. Brewka. Dynamic interactions between
goals and beliefs. linternational Joint Conference on
Artificial Intelligence (IJCAI) pages 2625-2630, 2007.

J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Bmi
Aborting goals and plans in BDI agents. Autonomous
Agents and MultiAgent Systems (AAMAZ)07.

J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Bmi
Suspending and resuming tasks in intelligent agents. In
Padgham, Parkes, Miller, and Parsons, edifaugpnomous
Agents and Multi-Agent Systems (AAMAZ)08.

M. B. van Riemsdijk, M. Dastani, and M. Winilkb Goals in
agent systems: A unifying framework. In Padgham, Parkes,
Muller, and Parsons, editor8Butonomous Agents and
Multi-Agent Systems (AAMA$)ages 713-720. IFAAMAS,
2008.

M. Wang, M. Nowostawski, and M. K. Purvis. Declarative
agent programming support for a FIPA-compliant agent
platform. In R. H. Bordini, M. Dastani, J. Dix, and A. El
Fallah-Seghrouchni, editorByoMAS volume 3862 of

LNCS pages 252-266. Springer, 2005.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & procedural goals in intelligent agent sysem
In Proceedings of the Eighth International Conference on
Principles of Knowledge Representation and Reasoning
(KR), Toulouse, France, Apr. 2002.

