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ABSTRACT
In the well-known scheduling game, a set of jobs controlled by
selfish players wishes each to minimize the load of the machine
on which it is executed, while the social goal is to minimize the
makespan, that is, the maximum load of any machine. We consider
this problem on the three most common machines models, identi-
cal machines, uniformly related machines and unrelated machines,
with respect to both weak and strict Pareto optimal Nash equilib-
ria. These are kinds of equilibria which are stable not only in the
sense that no player can improve its cost by changing its strategy
unilaterally, but in addition, there is no alternative choice of strate-
gies for the entire set of players where no player increases its cost,
and at least one player reduces its cost (in the case of strict Pareto
optimality), or where all players reduce their costs (in the case of
weak Pareto optimality).

We give a complete classification of the social quality of such
solutions with respect to an optimal solution, that is, we find the
Price of Anarchy of such schedules as a function of the number
of machines, m. In addition, we give a full classification of the
recognition complexity of such schedules.

Categories and Subject Descriptors
K.6.0 [Management of Computing and information Systems]:
General—Economics; F.2.2 [Nonnumerical Algorithms and Prob-
lems]: [Sequencing and scheduling]

General Terms
Algorithms, Economics, Theory

Keywords
Economic paradigms: Economically-motivated agents, Game The-
ory (cooperative and non-cooperative), Price of Anarchy, Job Schedul-
ing

1. INTRODUCTION
The rise of the Internet as a global platform for communication,

computation, and commerce brought up the necessity to reconsider
the prevalent paradigm in system design which assumes a central
authority which constructs and manages the network and its par-
ticipants, with a purpose of optimizing a global social objective.
Cite as: On the quality and complexity of Pareto equilibria in the Job
Scheduling Game, Leah Epstein, Elena Kleiman, Proc. of 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. 525-532.
Copyright c© 2011, International Foundation for Autonomous Agents and
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Designing a protocol intended for use in a global telecommuni-
cation network such as the Internet, we have to take into account
that it consists of multiple independent and self-interested users, or
players, which strive to optimize their private objective functions,
also known as individual costs. In networks of such scale and com-
plexity and in presence of raw economic competition between the
parties involved, there is no possibility to introduce a single regula-
tory establishment enforcing binding commitments on the players.

Obviously, such collective behavior often leads to sub-optimal
performance of the system, which is highly undesirable. In light of
the above, there is an increased need to design efficient protocols
that motivate self-interested agents to cooperate. Here ”coopera-
tion“ may be defined as any enforceable commitment that makes
it rational for the self interested players to choose a given strate-
gic profile. In the settings in discussion, any meaningful agreement
between the players must be self-enforcing. When deciding which
particular strategy profile to offer for the users, the first and most
basic requirement one has to consider is its stability, in a sense that
no player would have an interest to unilaterally defect from this
profile, given that the other players stick to it. This is consistent
with the notion of Nash equilibrium (NE) [25], which is a widely
accepted concept of stability in non-cooperative game theory. The
second requirement is that the profile must be efficient. A funda-
mental concept of efficiency considered in economics is the Pareto
efficiency, or Pareto optimality [24]. This efficiency criterion as-
sures that it is not possible for a group of players to change their
strategies so that every player is better off (or no worse off) than
before.

One may justifully argue that Nash stability and Pareto optimal-
ity should be minimal requirements for any equilibrium concept
intended to induce self-enforceability in presence of selfishness.

There are even stronger criteria for self-enforceability, requiring
fairness in terms of fair competition without coalitions (like cartels
and syndicates), and demanding from the profile to be resilient to
groups (or coalitions) of players willing to coordinate their deci-
sions, in order to achieve mutual beneficial outcomes. This is com-
patible with the definition of Strong Nash equilibrium (SNE) [3].
However, this requirement is sometimes too strong that it excludes
many reasonable profiles.

We therefore restrict ourselves to profiles that satisfy the require-
ments of Nash stability and Pareto efficiency. In a sense, Pareto op-
timal Nash equilibria can be considered as intermediate concepts
between Nash and Strong Nash equilibria; One may think of a
Pareto optimal equilibrium as being stable under moves by single
players or the grand coalition of all players, but not necessarily
arbitrary coalitions. We distinguish between two types of Pareto
efficiency. In a weakly Pareto optimal Nash equilibrium (WPO-NE)
there is no alternative strategy profile beneficial for all players. A

525



strictly Pareto optimal Nash equilibrium (SPO-NE) is also stable
against deviations in which some players do not benefit but are also
not worse off and at least one player improves his personal cost.
Obviously, any strictly Pareto optimal equilibrium is also weakly
Pareto optimal, but not wise-versa.

In this paper we consider strict and weak Pareto optimal Nash
equilibria for scheduling games on the most common three ma-
chine models in the setting of pure strategies. This class of games
is particularly important to our discussion as it models a great vari-
ety of problems in modern networks. Example applications include
bandwidth sharing in ATM networks [7], market-based protocols
for scheduling or task allocation [28], and congestion control pro-
tocols [18].

1.1 Model and Notation
We now define the general job scheduling problem. There are

n jobs J = {1, 2, . . . . , n} which are to be assigned to a set of
m machines M = {M1, . . . ,Mm}. We study three models of
machines, that differ in the relation between the processing times of
jobs on different machines. In the most general model of unrelated
machines, job 1 ≤ k ≤ n has a processing time of pik on machine
Mi, i.e., processing times are machine dependent. In the uniformly
related (or related) machine model, each machine Mi for 1 ≤ i ≤
m has a speed si and each job 1 ≤ k ≤ n has a positive size pk.
The processing time of job k on machine Mi is then pik = pk

si
. If

pjk = pj′k = pk for each job k and machines Mi and Mi′ , the
machines are called identical (in which case it is typically assumed
the all speed are equal to 1).

An assignment or schedule is a function A : J → M . The load
of machine Mi, which is also called the delay of this machine, is
Li =

∑
k:A(k)=Mi

pik. The cost, or the social cost of a schedule is
the maximum delay of any machine, also known as the makespan,
which we would like to minimize.

The job scheduling game JS is characterized by a tuple JS =
〈N, (Mk)k∈N , (ck)k∈N 〉, where N is the set of atomic players.
Each selfish player k ∈ N controls a single job and selects the
machine to which it will be assigned. We associate each player
with the job it wishes to run, that is, N = J . The set of strategies
Mk for each job k ∈ N is the set M of all machines. i.e. Mk =
M . Each job must be assigned to one machine only. Preemption
is not allowed. The outcome of the game is an assignment A =
(Ak)k∈N ∈ ×k∈NMk of jobs to the machines, whereAk for each
1 ≤ k ≤ n is the index of the machine that job k chooses to run
on. Let S denote the set of all possible assignments.

The cost function of job k ∈ N is denoted by ck : S → R. The
cost cik charged from job k for running on machine Mi in a given
assignment A is defined to be the load observed by machine i in
this assignment, that is ck(i,A−k) = Li(A), when A−k ∈ S−k;
here S−k = ×j∈N\{k}Sj denotes the actions of all players except
for player k. The goal of the selfish jobs is to run on a machine
with a load which is as small as possible. Similarly, for K ⊆ N
we denote byAK ∈ S−K the set of strategies of players outside of
K in a strategy profile A, when S−K = ×j∈N\KSj is the action
space of all players except for players in K. The social cost of a
strategy profile A is denoted by SC(A) = max

1≤k≤n
ck(A).

We will next provide formal definitions of Nash, Weak/Strict
Pareto Nash and Strong Nash equilibria in the job scheduling game,
using the notations given above.

DEFINITION 1. (Nash equilibrium) A strategy profile A is a
(pure) Nash equilibrium (NE) in the job scheduling game JS if
for all k ∈ N and for any strategy Āk ∈ M , ck(Ak,A−k) ≤
ck(Āk,A−k).

It was shown that job scheduling games always have (at least
one) pure Nash equilibrium [15, 11]. We denote the set of Nash
equilibria of an instance G of the job scheduling game by NE(G).

DEFINITION 2. (Strong Nash equilibrium) A strategy profileA
is a Strong Nash equilibrium (SNE) in the job scheduling game JS
if for every coalition φ 6= K ⊆ N and for any set of strategies
ĀK ∈ ×j∈KMj of players in K, there is a player i ∈ K such
that ci(ĀK ,A−K) ≥ ci(AK ,A−K).

Existence of Strong Nash equilibrium in job scheduling games
was proved in [1]. We denote the set of Strong Nash equilibria of
an instance G of the job scheduling game by SNE(G).

Clearly SNE(G)⊆NE(G), as coalitions of size 1 can not improve
by changing their strategy.

DEFINITION 3. (Weak/Strict Pareto optimal profile) A strategy
profile A is weakly Pareto optimal (WPO) if there is no strategy
profile Ā s.t. for all k ∈ N , ck(Ā) < ck(A).

A strategy profile A is strictly Pareto optimal (SPO) if there is
no strategy profile Ā and k∗ ∈ N s.t. for all k ∈ N\k∗, ck(Ā) <
ck(A) and ck∗(Ā) ≤ ck∗(A).

We denote by SPO(G) and WPO(G), respectively, the sets of
strictly and weakly Pareto optimal profiles of an instance G of the
job scheduling game. Clearly, SPO(G)⊆WPO(G).

A strategy profile A ∈ NE(G)∩WPO(G) is called Weak Pareto
optimal Nash equilibrium (WPO-NE), and a strategy profile
A ∈NE(G) ∩ SPO(G) is called Strict Pareto optimal Nash equilib-
rium (SPO-NE), and these are the profiles that we focus on.

We note that every strong equilibrium is also weakly Pareto op-
timal, as the requirement in Definition 2 applies to the grand coali-
tion of all players. Hence SNE(G)⊆ WPO(G). The existence of
Strong Nash equilibria in job scheduling games assures the exis-
tence of weak Pareto optimal Nash equilibria.

On the other hand, in general, neither Nash equilibria nor Strong
Nash equilibria are necessarily strictly Pareto optimal. Existence of
strict Pareto optimal Nash equilibria in scheduling games (among
others) was proved in [16].

An important issue concerns the quality of these solution con-
cepts. As there is a discrepancy between the private goals of the
players and the global social goal, we would like to measure the
loss in the performance of the system as it is reflected by the close-
ness of the costs of these concepts to the cost of the optimal solu-
tion, when the accepted methodology is worst-case approach.

The quality measures which consider Nash equilibria are the
Price of Anarchy introduced by Koutsoupias and Papadimitriou
[20] and the more optimistic Price of Stability suggested by An-
shelevich et al. [2], which are defined as the worst-case ratio be-
tween the social cost of the worst/best Nash equilibrium to the so-
cial cost of an optimal solution, which is denoted by OPT. Formally,

DEFINITION 4. (Price of Anarchy and Stability) The Price of
Anarchy (PoA) of the job scheduling game JS is defined by

PoA(JS) = sup
G∈JS

sup
A∈NE(G)

SC(A)

OPT(G)
.

If instead we consider the best Nash equilibrium of every instance,
this leads to the definition of the Price of Stability (PoS):

PoS(JS) = sup
G∈JS

inf
A∈NE(G)

SC(A)

OPT(G)
.

This concept is applied analogously to Strong Nash equilibria as
well as to weakly/strictly Pareto optimal Nash equilibria yielding
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the Strong Price of Anarchy SPoA(JS) and the Strong Price of
Stability SPoS(JS) as well as the weak and strict Pareto Prices of
AnarchyWPO-PoA(JS), SPO-PoA(JS) and StabilityWPO-
PoS(JS), SPO-PoS(JS). By definition, it is clear that
SPoA(JS) ≤ WPO-PoA(JS) ≤ PoA(JS). As any strictly
Pareto optimal NE is also a weakly Pareto optimal NE, it must be
the case that WPO-PoA(JS) ≥ SPO-PoA(JS). However, we
can show that in the job scheduling game there is no immediate
relation between the SPO-PoA(JS) and the SPoA(JS), as there
are Strong Nash equilibria that are not strictly Pareto optimal, while
there are strictly Pareto optimal Nash equilibria that are not strong
equilibria.

Some natural questions in this context are whether the Pareto
Prices of Anarchy are significantly smaller than the standard Price
of Anarchy, whether the weak Pareto Price of Anarchy is much
larger than the Strong Price of Anarchy, and finally, whether there
is any relation between the Strong Price of Anarchy and the strict
Pareto Price of Anarchy. In other words, does the requirement that
the equilibrium must be Pareto optimal leads to greater efficiency,
and does the further demand that the equilibrium must be stable
against arbitrary coalitions is helpful.

1.2 Related work and our contribution
Pareto efficiency of resource assignments is a well referred issue

in economics, especially in welfare economics. Pareto efficiency
is a highly desirable trait, however Dubey [9] has shown that Nash
equilibria may generally be Pareto inefficient based on the differ-
ence between the conditions to be satisfied by Nash equilibria and
those to be satisfied by Pareto optima.

Job scheduling is a classical problem in combinatorial optimiza-
tion. The analysis of job scheduling in the algorithmic game the-
ory context was initiated by Koutsoupias and Papadimitriou in their
seminal work [20], which was followed by many others (see e.g. [8,
22, 1, 13]). In our overview of the known results we will limit our
discussion only to results concerning pure strategies. We will begin
with the results on quality measures that concern Nash equilibria of
the game. For m identical machines, the PoA is 2 − 2

m+1
which

can be deduced from the results of [14] (the upper bound) and [26]
(the lower bound). For related machines the PoA is Θ( logm

log logm
)

[19, 8, 20]. In the model of unrelated machines the PoA is un-
bounded [5], which holds already for two machines. From the re-
sults of [11] it is evident that in all three models the PoS is 1.
The study of quality measures that concern Strong Nash equilibria
of this game was initiated by Andelman at el. [1]. For identical
machines, they proved that the SPoA equals the PoA, which in
turn equals 2 − 2

m+1
. For related machines, Fiat et al. [1] showed

that the SPoA is Θ( logm
(log logm)2

). Surprisingly, the SPoA for this
problem is bounded by the number of machines m, as shown in
[13], and this is tight [1]. Andelman at el. also showed that SPoS
is 1.

The previous work on Pareto efficiency of Nash equilibria in al-
gorithmic game theory was mainly concerned with weak Pareto
equilibria, probably since a solution which is not weakly Pareto
optimal is clearly unstable. A textbook in economics states the
following: “The concept of Pareto optimality originated in the eco-
nomics equilibrium and welfare theories at the beginning of the past
century. The main idea of this concept is that society is enjoying a
maximum ophelimity when no one can be made better off without
making someone else worse off” [21]. Thus the strict Pareto is a
stronger and more meaningful efficiency notion, as it captures an
important aspect of human social behavior. Another issue is that
the weak Pareto implies that everyone prefers some assignment to
any other. In reality, such unanimity of preferences among all per-

sons is very rare. To conclude, both concepts are important, and we
focus on both of them in this work.

Pareto optimality of Nash equilibria has been studied in the con-
text of congestion games, see Chien and Sinclair [6] and Holzman
and Law-Yone [17]. The former gave conditions for uniqueness
and for weak and strict Pareto optimality of Nash equilibria, and the
latter characterized the weak Pareto Prices of Anarchy and Stabil-
ity. The existence, and complexity of recognition and computation
of weak Pareto Nash equilibria in congestion games was studied
recently by Hoefer and Skopalik in [27].

In [16] Harks at el. show that a class of games that have a Lex-
icographical Improvement Property (which our game indeed has)
admits a generalized strong ordinal potential function. They use
this to show existence of Strong Nash equilibria with certain ef-
ficiency and fairness properties in these games, strict Pareto effi-
ciency included. They do so by arguing that a player wise cost-
lexicographically minimal assignment is also strictly Pareto opti-
mal (and so it is optimal w.r.t. the social goal function as well).

Weak Pareto Nash equilibria in routing and job scheduling games
were considered recently in [4] by Aumann and Dombb. As a mea-
sure for quantifying the distance of a best/worst Nash equilibrium
from being weakly Pareto efficient, they use the smallest factor by
which any player improves its cost when we move to a different
strategy profile, which they refer to as “Pareto inefficiency”. They
do not consider however the quality of Pareto optimal Nash equi-
libria with respect to the social goal.

Among other results, it is shown in [4] that any Nash equilibrium
assignment is necessarily weakly Pareto optimal for both identi-
cal and related machines. Moreover, for any machine model, any
assignment which achieves the social optimum must be weakly
Pareto optimal. One such assignment is one whose sorted vector of
machine loads is lexicographically minimal is necessarily weakly
Pareto optimal (see also [1, 11]). Milchtaich [23] has proved related
results for the case of non-atomic players, where the processing
time of each player is negligible compared to the total processing
time.

We consider these issues for SPO-NE assignments. We show that
while the property of identical machines remains true, this is not
the case for related machines, that is, not every Nash equilibrium
assignment is strict Pareto optimal. For unrelated machines, while
there always exist an assignment which is a social optimum and a
SPO-NE, assignments with lexicographically minimal sorted vector
of machine loads are not necessarily strictly Pareto optimal. In this
paper we fully characterize the weak and strict Pareto Prices of An-
archy of the job scheduling game in cases of identical, related and
unrelated machines. The characterization of the Prices of Stability
follows from previous work as explained above.

Next, we consider the complexity of recognition of weak and
strict Pareto optimality of NE. Note that the recognition of NE can
be done in polynomial time for any machine model by examin-
ing potential deviations of each job. As for strong equilibria, it
was shown by Feldman and Tamir [12] that it is NP-hard to recog-
nize an SNE for m ≥ 3 identical machines and for m ≥ 2 unre-
lated machines. For two identical machines, they showed that any
NE is a SNE, so recognition can be done in polynomial time (for
m ≥ 3, it was shown in [1] that not every NE is a SNE). For the
only remaining case of two related machines, it was shown [10]
that recognition is again NP-hard. We show that the situation for
Pareto optimal equilibria is slightly different. In fact, recognition
of WPO-NE or SPO-NE can be done in polynomial time for identical
machines and related machines. For unrelated machines, we show
that the recognition of WPO-NE is NP-hard in the strong sense and
the recognition of SPO-NE is NP-hard.
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We reflect upon the differences between the results for weak and
strict Pareto equilibria also compared to strong equilibria, and make
conclusions regarding the relations between the quality measures in
this game. See Table 1 for a summary of the results.

2. PARETO PRICES OF ANARCHY IN
THE JOB SCHEDULING GAME

2.1 Identical and Related machines
A result from [4] shows that any NE schedule for identical and

related machines is weakly Pareto optimal. This result implies that
WPO-PoA(JS) = PoA(JS). For the case of identical ma-
chines, they give an even stronger result: every schedule where
every machine receives at least one job is weakly Pareto optimal.
Note that if n < m, then a schedule is weakly Pareto optimal if
and only if at least one machine has a single job (to obtain strict
Pareto optimality for this case, or to obtain a NE, each job needs to
be assigned to a different machine).

In the strict Pareto case, while the general result for identical
machines still holds, and the set of NE schedules is equal to the set
of SPO-NE schedules for identical machines (as we prove next), it
is not necessarily true for related machines. We exhibit an example
of a schedule which is a NE but it is not strictly Pareto optimal.

Consider a job scheduling game with two related machines of
speeds 1,2 and two jobs of size 2. There are two types of pure
NE schedules: in the first one, both jobs are assigned to the fast
machine, and in the other one job runs on each machine. The first
one is not a SPO-NE, as switching to a schedule of the second type
strictly reduces the cost for one of the jobs, while not harming the
other. Moreover, the sorted machine load vector of the first type
of schedules is (2, 0), while the load vector of the second type is
(2, 1), so the schedule with the lexicographically minimal machine
load vector is not a SPO-NE (even though it is a SNE).

This difference in the results for related machines is explained by
the fact that conditions for weak Pareto allow Pareto improvements
where not all jobs strictly improve while the strict Pareto does not.
If a NE schedule has an empty machine, and a job arrived to such
a machine as a result of a deviation to a different schedule, where
all jobs strictly reduce their costs, then the reduction in the cost of
this job contradicts the original schedule being a NE. However, if
the job only needs to maintain its previous cost, then there is no
contradiction.

We will prove the following theorem, extending the result of [4]
which will allow us to claim that for identical machines, SPO-
PoA(JS) = PoA(JS).

THEOREM 5. Any schedule for identical machines, where no
machine is empty, is strictly Pareto optimal.

This is a stronger result than the one in [4], since it deals with
strict Pareto. The idea of the proof goes along the lines of [4], but
we need to modify it so that it applies for the stronger conditions
of strict Pareto optimal schedules. First we prove the following
property, which we will also use to characterize the WPO-PoA
for related machines.

THEOREM 6. Consider a scheduleX that is not a SPO-NE, and
denote the set of non-empty machines (which receive at least one
job) in X by µX . Let Y be a different schedule where no job has a
larger cost than it has in X and at least one job has a smaller cost.
Denote the set of non-empty machines in Y by µY . Then,∑

i∈µX
si <

∑
i∈µY

si,

where si is the speed of machine i.

PROOF. Consider a transition from schedule X to schedule Y ,
and denote by xji the sum of the sizes of jobs that are moved from
machine i ∈ µX to machine j ∈ µY (for j = i, this gives the sum
of sizes of jobs that are assigned to this machine in both schedules).
Let `t, for t ∈ µX , be the sum of sizes of jobs that run on machine
t in X , and let `′t, for t ∈ µY , be the sum of sizes of jobs that run
on machine t in Y . We extended the definition so that if t /∈ µX ,
then `t = 0, and if t /∈ µY , then `′t = 0.

Consider the total sum of sizes of jobs assigned to a machine in
X or in Y , then the following claim holds:

CLAIM 7. For every i ∈ µX ,
∑
j∈µY

xji = `i, or
∑
j∈µY

x
j
i
`i

= 1.

For every j ∈ µY ,
∑
i∈µX

xji = `′j , or
∑
i∈µX

x
j
i
`′j

= 1.

By the definition of the costs in Y compared to X , we get that:

CLAIM 8. If xji > 0, then
`′j
sj
≤ `i

si
, and there exist i ∈ µX ,i ∈

µY such that
`′j
sj
< `i

si
.

The following also holds:

CLAIM 9. For every i ∈ µX , j ∈ µY : x
j
i
`i
≤ sj

si
· x

j
i
`′j

, and there

exist i, j such that x
j
i
`i
<

sj
si
· x

j
i
`′j

.

PROOF. As i ∈ µX , `i > 0, as j ∈ µY , `′i > 0. If xji > 0, it is
derived from Claim 8, if xji = 0 it holds trivially. Since there is at
least one job for which the cost in Y is strictly smaller than its cost
in X , then the second property must hold.

Summing up the inequalities in Claim 9 over all j ∈ µY , in
combination with Claim 7, we get that for any i ∈ µX :

1 =
∑
j∈µY

x
j
i
`i
≤ ∑

j∈µY
sj
si
· x

j
i
`′j

, where there is at least one

i ∈ µX for which this inequality is strict. Equivalently, si ≤∑
j∈µY

x
j
i ·sj
`′j

. Summing up the last inequality over all i ∈ µX

combined with the fact that for some i this inequality is strict,
changing the order of summation, and using Claim 7 we get:∑
i∈µX si <

∑
i∈µX

∑
j∈µY

x
j
i ·sj
`′j

=
∑
j∈µY

∑
i∈µX

x
j
i ·sj
`′j

=∑
j∈µY sj , which concludes our proof.

We now return to the proof of Theorem 5.

PROOF. We show that any schedule X for identical machines
where µX=M is strictly Pareto optimal. Assume by contradiction
that this is not the case, and hence there exists a different schedule
Y where at least one job improves, while all the other jobs are not
worse off. As the machines in question are identical, s1 = s1 =
. . . = sm holds, thus

∑
i∈µX si = m and

∑
j∈µY sj ≤ m. By

Theorem 6 we get that m =
∑
i∈µX si <

∑
j∈µY sj ≤ m, which

is a contradiction, and we conclude that such Y cannot exist.

COROLLARY 10. Every schedule on identical machines which
is a NE is also a SPO-NE. Thus in this case SPO-PoA=WPO-
PoA=PoA.

PROOF. Consider a NE schedule. If there is an empty machine,
then each machine has at most one job (otherwise, if some machine
has two jobs then any of them can reduce its cost by moving to
an empty machine), and thus each job has the smallest cost that it
can have in any schedule. Otherwise, the property follows from
Theorem 5.
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# of
Strict Pareto Weak Pareto

machines SPO-PoA SPO-PoS Recognition WPO-PoA WPO-PoS Recognition

identical m 2− 2
m+1

1 [16] P 2− 2
m+1

1 [1, 4] P

related m Θ( logm
log logm

) 1 [16] P Θ( logm
log logm

) 1 [1, 4] P

unrelated
m = 2 2

1 [16] NP-hard
2

1 [1, 4] NP-hard
m ≥ 3 m ∞

Table 1: Summary of Results

We next consider related machines and prove that the three mea-
sures are equal in this case as well.

THEOREM 11. In the job scheduling game on related machines
SPO-PoA=WPO-PoA=PoA.

PROOF. As any SPO-NE is also a WPO-NE, and every WPO-NE is
a NE, the following sequence of inequalities holds: SPO-PoA ≤
WPO-PoA ≤ PoA. We will prove that this is actually a sequence
of equalities. It is enough to prove that PoA ≤ SPO-PoA. We
will do it by showing that the lower bound example for the PoA
given in [8] is also a lower bound for the SPO-PoA, by proving
that it is strictly Pareto optimal.

For completeness, we first present the lower bound of [8]. Con-
sider a job scheduling game on m related machines. The machines
are partitioned into k + 1 groups, each group j ,0 ≤ j ≤ k has Nj
machines. The sizes of the groups are defined in inductive manner:
Nk = Θ(

√
m), and for every j < k: Nj = (j+1)·Nj+1 (and thus

N0 = k! · Nk). The total number of machines m =
∑k
j=0Nj =∑k

j=0
k!

(k−j)! ·Nk. It follows that k ∼ logm
log logm

. The speed of each
machine in group j is sj = 2j .

A schedule is defined as follows: each machine in group j has
j jobs, each with size 2j . Each such job contributes 1 to the load
of its machine. The load of each machine in group Nj is then j,
and therefore the makespan which is accepted on the machines in
group Nk is k. Note that all the machines in group N0 are empty.

We denote this schedule by X . It was proven in [8] that X is a
pure NE. We claim that it is also strictly Pareto optimal.

CLAIM 12. X is strictly Pareto optimal.

PROOF. Assume by contradiction that X is not a SPO-NE, so
there exists another schedule Y where at least one job improves,
and all the other jobs are not worse off. Observe that all the ma-
chines in group N0 necessarily remain empty in Y ; each job that
runs on a machine in groupNj for 1 ≤ j ≤ k pays a cost of j inX ,
and if it is assigned on a machine from group N0 in Y it has to pay
a cost of 2j , and 2j > j for j ≥ 1, which makes it strictly worse
off. This means that µY ⊆ µX . On the other hand, according to
Theorem 6 which we proved earlier,

∑
i∈µX

si <
∑
i∈µY

si must hold,

and we get a contradiction. Hence, the schedule in this example is
strictly Pareto optimal.

An optimal schedule has a makespan of 2. To obtain such a
schedule, we move all jobs from machines in Nj (j ·Nj jobs, each
of size 2j) to machines in Nj−1, for 1 ≤ j ≤ k. Every machine
gets at most one job, and the load on all machines is less or equal
to 2j

2j−1 = 2. The SPO-PoA is therefore Ω( logm
log logm

).

We conclude that SPO-PoA=WPO-PoA=PoA.

It was proved in [13] that schedule X is not a SNE, as a coalition
of all k jobs from a machine in groupNk with 3 jobs from each of k

different machines from groupNk−2 can jointly move in a way that
reduces the costs of all its members. In addition to determining the
SPO-NE, this example illustrates the point that in the job schedul-
ing game not every SPO-NE is necessarily a SNE. We saw that for
related machines, the SPO-PoA=WPO-PoA are the same as the
PoA, while the SPoA is lower.

2.2 Unrelated machines
We saw that already for related machines, not every SNE is a

SPO-NE and vice versa. However, the results which we find for
the SPO-PoA on unrelated machines are similar to those which
are known for the SpoA, that is, the SPO-PoA is equal to m for
any number of machines m. Interestingly, the WPO-PoA for the
setting m = 2 is exactly 2, like the SPO-PoA, but for m ≥ 3 it is
unbounded like the PoA.

THEOREM 13. There exists a job scheduling game with 2 unre-
lated machines, such that WPO-PoA ≥ 2. For any, m ≥ 3 there
exists a job scheduling game with m unrelated machines, such that
WPO-PoA is unbounded.

PROOF. Consider a job scheduling game with two unrelated ma-
chines and two jobs, where p11 = p21 = p12 = 1 and p22 = 2.
A schedule where job 1 is assigned to M1 and job 2 is assigned to
M2 with a makespan of 2 is a WPO-NE; No job would benefit from
moving to a different machine, and job 1 will not profit by switch-
ing to a different schedule. In an optimal schedule for this game,
job k, k ∈ {1, 2} is assigned to Mk, and the makespan is 1. We
get that WPO-PoA ≥ 2.

Now, consider a job scheduling game with m ≥ 3 unrelated
machines and n = m jobs, where for each job k, 1 ≤ k ≤ m:
pkk = ε, and pjk = 1 for all j 6= k, for some arbitrary small
positive ε. A schedule where job 1 is assigned to run on M1, job
m is assigned to M2 and each job k for 2 ≤ k ≤ m − 1 is as-
signed to Mk+1, is a WPO-NE. It is weakly Pareto optimal since
job 1 cannot decrease its cost by changing to any other assignment.
The only way that another job could decrease its cost would be by
moving to the machine where its cost is ε, but the load on all those
machines is 1. Therefore, the schedule is a NE. The makespan of
this schedule is 1. An optimal schedule for this game, where each
job 1 ≤ k ≤ m is assigned to machine Mk, has a makespan of ε.
In total, we have WPO-PoA ≥ 1

ε
, which is unbounded letting ε

tend to zero.

We next prove a matching upper bound for m = 2.

THEOREM 14. For any job scheduling game with 2 unrelated
machines, WPO-PoA ≤ 2.

PROOF. Consider a schedule on two unrelated machines which
is a WPO-NE. Without loss of generality, assume that the load of
M1 is not larger than the load of M2, and denote the loads of the
machines are by L1 and L2, respectively. The makespan of this
schedule is then L2. We show L2 ≤ 2OPT. We first show L1 ≤
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OPT. If L2 ≥ L1 > OPT then an optimal schedule has the property
that every job has a smaller cost in it than it has in the current
schedule (a cost of at most OPT < L1 ≤ L2), in contradiction to
the fact that this schedule is a WPO-NE.

To complete the proof, we upper bound L2. If L2 ≤ OPT, then
we are done, otherwise, L2 > OPT, and there must exist a job k
assigned to M2 which is assigned to M1 in an optimal schedule
(since the load resulting from jobs assigned to M2 in an optimal
schedule is no larger than OPT). Thus, p1k ≤ OPT, and in the
alternative schedule, where this job moves to M1, the new load of
M1 is at most L1 + p1k ≤ 2OPT. However, we know that the
given schedule is a NE, which means that L1 + p1k ≥ L2, giving
L2 ≤ 2OPT . Therefore, WPO-PoA ≤ 2.

From Theorems 13 and 14 we conclude that for m = 2, WPO-
PoA = 2, and for m ≥ 3, WPO-PoA =∞.

We prove next that like the SPoA, the SPO-PoA is m. We
should note that the previous results for the SPoA cannot be used
here. As we saw, the sets of SNE and SPO-NE have no particular
relation. The proofs used for the SPoA do not hold for the SPO-
PoA and need to be adapted. The lower bound of m on the SPoA
by Andelman et al. [1] is not strictly Pareto optimal (see below),
and in the proof of the upper bound by Fiat et al. [13] the claim is
proved by considering alternative schedules where the jobs which
change their strategies are proper subsets of jobs (so other jobs may
increase their costs).

THEOREM 15. The SPO-PoA for m unrelated machines in
any job scheduling game is at most m.

PROOF. Consider a scheduleA onm unrelated machines which
is a SPO-NE. Assume that the machines are sorted by non-increasing
order of loads, that is, L1 ≥ L2 ≥ . . . ≥ Lm. The makespan of A
is therefore L1.

First, note that Lm ≤ OPT . If Lm > OPT then an optimal
schedule has the property that every job has a smaller cost in it,
contradicting the strict Pareto optimality ofA. Next, we will prove
that Li−Li+1 ≤ OPT holds for any 1 ≤ i ≤ m− 1. Assume by
contradiction that there exists i so that Li −Li+1 > OPT . We let
Li+1 = δ. By our assumption Li > δ +OPT holds.

Now, consider another schedule A′, where each one of the jobs
from machines Mj for 1 ≤ j ≤ i in A is running on the ma-
chine on which it runs in an optimal schedule (all the other jobs
hold their positions). We observe that none of these jobs runs on
machines Mi+1, . . . ,Mm in A′ (or in the optimal schedule under
consideration); The processing time of each such job in A′ is at
most OPT, and as Lk ≤ δ for i + 1 ≤ k ≤ m, its cost in A if it
switches to the machines out of Mi+1, . . . ,Mm on which its pro-
cessing time is at most OPT, then the load of this machine would
be at most δ + OPT , while its cost in A was strictly larger than
δ +OPT , contradicting A being a NE.

We conclude that these jobs are scheduled in A′ on machines
M1, . . . ,Mi, where the load of each one of the machines is at most
OPT, and that the loads and the allocations on machinesMi+1, . . . ,
Mm do not change from A to A′.

This means that inA′ the costs of all jobs from machinesM1, . . .
,Mi in A are strictly improved, and the costs of all jobs from ma-
chines Mi+1, . . . ,Mm in A do not change, which contradicts A
being a SPO-NE. Hence, such i does not exist. Applying this in-
equality repeatedly, we get that L1 ≤ Lm + (m − 1)OPT, which
in combination with the fact that Lm ≤ OPT gives us SPO-
PoA ≤ m.

THEOREM 16. There exists an instance of job scheduling game
with m unrelated machines for which SPO-PoA ≥ m.

PROOF. Consider a job scheduling game with m unrelated ma-
chines and n = m jobs, where for each job k, 2 ≤ k ≤ m:
pkk = k− kε, pk(k−1) = 1 and pik =∞ for all i 6= k− 1, k. For
job 1, p11 = 1− ε (for some small positive ε < 1

m
), pm1 = 1 and

pi1 =∞ for all i 6= 1,m.
In an optimal schedule for this game each one of the jobs 2 ≤

k ≤ m runs alone on machineMk−1 and job 1 runs onMm, which
yields a makespan of 1.

On the other hand, a schedule where each one of the jobs 1 ≤
k ≤ m runs alone on machine Mk has a makespan of m − mε.
We will show that this schedule is a SPO-NE. The schedule is a
NE, since for each job, moving to the only additional machine on
which its processing time is not infinite increases it cost by at least
ε. Consider an alternative schedule where no job increases its cost.
Job 1 is currently assigned on a machine with load 1− ε, which is
the minimal possible cost for it, and this minimum is unique. Thus
any alternative schedule must keep job 1 assigned alone to the first
machine. We can prove by induction on the indices of jobs that
every job has to stay assigned to its current machine alone; once
job k must stay on its machine alone, job k + 1 does not have an
alternative machine, and adding another job to the machine that it
is assigned to (Mk) would increase its cost. Thus such a schedule
does not exist. This gives that SPO-PoA ≥ m.

We conclude that for for any m, SPO-PoA = m.
This is a proper place to mention that the lower bound example

from [1] showing that SPoA ≥ m looks similar to our example at
a first glance. The difference in processing times is in the definition
pkk = k, for 1 ≤ k ≤ m. However, this example does not apply
here, as the schedule of cost m which it gives is not strictly Pareto
optimal; if we switch to the optimal schedule, where job 1 runs on
Mm and each job 2 ≤ k ≤ m runs on Mk−1, all jobs 2 ≤ k ≤ m
strictly improve their costs and job 1 is not worse off.

This is another example which demonstrates the fact that in the
job scheduling game we consider not every SNE is necessarily a
SPO-NE. However, we showed that this is the case already for re-
lated machines.

3. RECOGNITION OF PARETO OPTIMAL
EQUILIBRIA

In this section we consider the computational complexity of
SPO-NE and WPO-NE for all machine models. Specifically, we in-
vestigate the problem of recognition of such schedules.

THEOREM 17. There exists a polynomial time algorithms which
receives a schedule on related machines (or on identical machines)
and check whether the schedule is a SPO-NE and whether it is a
WPO-NE.

PROOF. Consider a schedule A, and recall that one can deter-
mine in polynomial time whether a given schedule is a NE. Since
any NE on identical machines is a WPO-NE and a SPO-NE, the
recognition of such schedules is equivalent to recognition of NE.
This is also the case for related machines and WPO-NE.

For the recognition of SPO-NE on related machines, we use the
following algorithm. First, check whether the schedule is a NE (if
not, then output a negative answer). If the schedule is a NE and it
does not contain an empty machine, return a positive answer. Oth-
erwise, for every job k, such that k is assigned to a machine which
has at least two jobs assigned to it, test if moving it to an empty
machine of maximum speed does not increase its cost. If there
exists a job for which the cost is not increased, return a negative
answer, and otherwise, a positive answer. Note that if there exists
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an empty machine, but no machine has two jobs assigned to it, then
the returned answer is positive.

Now we prove correctness of the last algorithm. If there are no
empty machines then any NE is a SPO-NE (by Theorem 6). For the
remaining cases of the algorithm, we prove the following claim.

CLAIM 18. Given A, which is a NE, there exists an alternative
schedule A′ where no job increases its cost and at least one job
reduces its cost if and only if there exists a job k which is assigned
to a machine with at least one other job in A, and moving it to an
empty machine of maximum speed does not increase its cost.

PROOF. We first assume that such a job k exists. Consider the
schedule Ã in which k is assigned to a machine of maximum speed
which is empty in A, and the rest of the assignment is the same
as in A. There is at least one job which is assigned to the same
machine as k inA, whose cost is strictly reduced (since the load of
its machine decreases when k is moved to another machine). The
cost of k does not increase, and any job assigned to any machine
other than the machine of k in A and the machine of k in Ã keeps
its previous cost.

Next, assume thatA′ exists, and assume that among such sched-
ules, A′ has a minimum number of jobs which are assigned not to
the same machine as in A. Using Theorem 6, we get that A neces-
sarily has an empty machine Mi′ which is non-empty in A′. Let k
be a job assigned to Mi′ inA′ and let Mi be the machine to which
it is assigned in A.

If machine Mi does not have an additional job in A, and since
its cost on Mi′ (possibly with additional jobs) is no larger, we get
si′ ≥ si. However, the schedule is a NE, so k cannot reduce its cost
by moving to an empty machine. Therefore, its cost on Mi′ is the
same as its cost on Mi, si′ = si and k is assigned to Mi′ alone in
A′. The jobs assigned toMi inA′ are not assigned toMi′ or toMi

inA. This is true since Mi′ is empty inA and Mi only has the job
k in A. We construct a schedule Â where the jobs assigned to Mi

and Mi′ in A′ are swapped and the other jobs are assigned to the
same machines as inA. The number of jobs assigned to a different
machine from their machines in A is reduced by 1 (due to k being
assigned to the same machines in Â and A), which contradicts the
choice of A′.

Thus, there exists an additional job k′ assigned toMi inA. Since
moving k to some empty machine does not increase its cost, then
moving it to an empty machine with maximum speed clearly does
not increase its cost.

Given the claim, if every non-empty machine has a single job
then the schedule is a SPO-NE. Otherwise, the algorithm tests the
existence of a job k as in the claim.

THEOREM 19. i. The problem of checking whether a given
schedule on unrelated machines is a WPO-NE is strongly co-NP-
complete. ii. The problem of checking whether a given schedule
on unrelated machines is a SPO-NE is co-NP-complete.

PROOF. Given a schedule and an alternative schedule, checking
whether the alternative schedule implies that the given schedule is
not a NE or not (weakly or strictly) Pareto optimal can be done in
polynomial time, and therefore the problems are in co-NP.

To prove hardness of the recognition of WPO-NE, we reduce from
the 3-PARTITION problem, which is strongly NP-hard. In this prob-
lem we are given an integer B and 3M integers a1, a2, . . . , a3M ,

where B
4
< ak < B

2
for 1 ≤ k ≤ 3M ,

3M∑
k=1

ak = MB, and

we are asked whether there exists a partition of the integers into
M sets, where the sum of each subset is exactly B. We construct

an input with m = 4M machines. There are 4M jobs, 3M of
them are based on the instance of 3-PARTITION and the last M
jobs are dummy jobs. For 1 ≤ k ≤ 3M , we have pik = B + 1
for 1 ≤ i ≤ 3M , and pik = ak for 3M + 1 ≤ i ≤ 4M . For
3M + 1 ≤ k ≤ 4M , we have pik = B for 1 ≤ i ≤ 3M , and
pik = B + 1 for 3M + 1 ≤ i ≤ 4M . The given schedule is one
where job k is assigned to machine k. All machines have a load of
B+1, so the schedule is a NE. We show that the schedule is weakly
Pareto optimal if and only if a 3-partition as required does not ex-
ist. Assume first that a 3-partition exists. We define an alternative
schedule. In this schedule, each one of the last M machines runs
one subset of jobs of the first 3M jobs, out of the M subsets of the
3-partition. The sum of the corresponding subsets of numbers in
the input of 3-PARTITION is B and therefore, their total processing
time on such a machine is B. Each dummy job runs on a different
machine out of the first 3M machines, having a cost ofB. Thus, all
jobs have a smaller cost in the alternative schedule, so the original
one is not Pareto optimal.

On the other hand, if there exists an alternative schedule where
all jobs reduce their costs, then all the first 3M jobs must be as-
signed to the last M machines (since on the other machines even if
such a job is assigned to alone it still has a cost ofB). For job k, no
matter which such machine receives it, it has a processing time of
ak on it, so all jobs have a total processing time of MB. Since all
numbers are integers, the only way that every job reduces its load
is that each machine will have a load of exactly B, which implies a
3-partition.

To prove hardness of the recognition of SPO-NE, we can use the
reduction of [12] showing that the recognition of SNE is hard. For
completeness we present an alternative reduction. To prove hard-
ness of the recognition of SPO-NE, we reduce from the PARTITION
problem, which is NP-hard. In this problem we are given an inte-

ger B and N integers a1, a2, . . . , aN , where,
N∑
k=1

ak = 2B, and

we are asked whether there exists a partition of the integers into
two sets, where the sum of each subset is exactly B. We construct
an input with m = 2 machines (it is possible to use the same input
for any larger number of machines, giving all jobs infinite process-
ing times on every machine except for the first two machines). We
have N + 2 jobs. Job k, for 1 ≤ k ≤ N , p1k = ak + 1

2N
while

p2k = ak. Job N + 1 has p1(N+1) = B and p2(N+1) = B + 1
2

.
Job N + 2 has p1(N+2) = ∞ and p2(N+1) = B so it must be as-
signed to M2. We are given the schedule where the first N jobs are
assigned toM1 and the two last jobs are assigned toM2. The loads
of both machines are 2B + 1

2
, thus this schedule is a NE. If there

exists a partition, consider the alternative schedule where each ma-
chine receives one subset of jobs whose total size in the original
input is B, and job N + 1 is assigned to M1. Let K1 be the cardi-
nality of the set of jobs assigned to M1 in the alternative schedule.
Then the resulting load ofM1 is 2B+ K1−1

2N
. SinceM2 receives at

least two jobs, then K1 ≤ N , so the load is strictly below 2B + 1
2

.
The load of M2 is exactly 2B. Thus, the original schedule is not
strictly (or weakly) Pareto optimal. On the other hand, if the orig-
inal schedule is not strictly (or weakly) Pareto optimal, then in an
alternative schedule, job N + 1 must be assigned to M1, and the
total processing time of jobs assigned with it must be strictly below
B + 1. The total processing time of jobs assigned to M2 must be
strictly below B + 1 as well, and so there are two sets whose sizes
(in the original input) are at most B, which implies a partition.

Note that this reduction can be used to prove the (weak) co-NP-
completeness of the recognition of WPO-NE schedules. Thus both
problems are hard for any number of machines.
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4. CONCLUSIONS
In this paper we have studied the quality and complexity of the

strict and weak Pareto optimal Nash equilibria in job scheduling
games, in the settings of identical, related and unrelated machines.

We found that in the models of identical and related machines,
strict and weak Pareto optimal Nash equilibria can be as bad as pure
Nash equilibria, however in the model of unrelated machines, while
for weak Pareto optimal Nash equilibria and m ≥ 3 this is still the
case, strict Pareto optimal Nash equilibria (and even weak Pareto
optimal equilibria, for m = 2) are as good as Strong Nash equi-
libria w.r.t. the Price of Anarchy. This implies that for unrelated
machines, cooperation between all players (as opposed to coopera-
tion between subsets of players) still gives solutions of high quality.

As for identical and related machines, recognition of weakly or
strictly Pareto optimal equilibria can be done in polynomial time,
unlike strong equilibria. Despite the slightly worse quality of such
equilibria compared to strong equilibria (due to the results for the
Price of Anarchy on related machines), we conclude that weak and
strict Pareto optimal equilibria are of interest for identical and re-
lated machines.
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