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ABSTRACT
So far computer cannot satisfyingly solve many tasks that
are extremely easy for human, such as image recognition or
common sense reasoning. A partial solution is to delegate
algorithmically difficult computation task to human, called
human computation. The Game with a Purpose (GWAP),
in which computational task is transformed into a game,
is perhaps the most popular form of human computation.
A simplified adverse selection model for output-agreement/
simultaneous-verification GWAP was built, using the ESP
Game as example. The experiment results favored an ad-
verse selection model over an moral hazard model. We were
particularly interested in output quality of a GWAP affected
by how players are matched with each other, and proposed
capability-aligned matching (CAM) versus commonly-used
random matching. The analysis showed that when com-
pared with random mathcing, the CAM improved output
quality. The experiment confirmed conclusions drawed from
the analysis, and further pointed out that task-human match-
ing scheme was as important as human-human matching
scheme studied in this paper. The main contribution of this
paper is the analysis and empirical evaluation of human-
human matching scheme, showing that capability-aligned
matching can improve quality of GWAP.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Experimentation

Keywords
Game with a purpose, Adverse selection, Mechanism design

1. INTRODUCTION
The Game with a Purpose (GWAP) is a computer game

designed to perform computation tasks as a by-product [12].
It is targeted for algorithmically difficult problems that are
easy for human. Generally the GWAP are used for two
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purposes: (1) Solve algorithmically difficult problems. (2)
Generate and/or annotate datasets for further research.

The ESP Game [11] is used as the primary example due to
two reasons. (1) Because the ESP Game is the first GWAP,
much of its design is widely used in many GWAP, such as
output agreement, simultaneous verification, and random
player matching. (2) From a game theory perspective, the
ESP Game presents a fundamental type of game: static
game. The analysis of the ESP Game is the basic for more
complicated games, say, repeated games.

The ESP Game is used to illustrate the poor quality prob-
lem of a class of GWAPs, the output-agreement/simultaneous-
verification games [12, 5].

1.1 Motivation
There are two orthogonal properties of outputs generated

by a GWAP: correctness and quality. This paper addressed
the quality of outputs. What is “correct” or “of good qual-
ity” depends on the nature of computation task; this paper
defined them in the context of the ESP Game.

The ESP Game is designed to annotate images, and out-
puts are labels. A label is correct to an image if it describes
the image. This paper defines a label is of good quality rel-
ative to another label based on their specificness. That is,
labels are ordered by an “is-a” relation. For example, “red”
is of better quality than “color” because red is a color but
not vice-versa.

Figure 1 shows the relationship between correctness and
quality. It is possible that a label is of good quality but incor-
rect to an image (the quadrant II). For example, “Lincoln”
is of better quality than “man” but incorrect to a photo of
Washington. Note: The correctness is bounded to an image,
but the quality is a relative relation among labels.

CorrectIncorrect

Good Quality

Poor Quality

III

III IV

Figure 1: The four quadrants of a label.

In the original paper of the ESP Game [11], it has been
shown that output labels are descriptions of the images, i.e.,
correct. In a later study [10], the Google’s implementation
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of the ESP Game, Google Image Labeler, is examined. It
is observed that players tend to answer generic labels such
“building” as opposed to “terraced house”, i.e., correct but
of poor quality.

Even worse, it has been found that output labels are pre-
dictable by a low entropy distribution. This means that
a computer without looking at the image can guess what la-
bels a player will output (this is exactly the cheating defined
in [11]). Given that image annotation is algorithmically dif-
ficult, the predictability of outputs suggests that players are
not properly motivated to outperform computers. Besides,
if output labels are computer predictable, why do we need
human in the course of computation?

To summarize, prior experiments have shown that output
labels are correct but of poor quality (quadrant IV). Google
apparently noticed this and implemented a variable scoring
scheme according to specificity of labels, rather than a flat-
rate scheme used in the original ESP Game. Many GWAP
might also suffer from the poor quality problem because they
share much of the same design of the ESP Game.

From a game theory perspective, the poor quality problem
stems from the use of coordination game in the ESP Game.
The focal points, also called Schelling point, of coordination
GWAP are “generic label” of the ESP Game. The poor
quality problem is equivalent to the existence of focal points.

The original ESP Game has implemented taboo words as
an instrument to improve output quality. This is how taboo
words work: When the ESP Game verifies a label, it is listed
on the taboo list. Eventually all labels in the quadrant IV
are in taboo list, and players can only output labels in the
quadrant I—correct and of good quality.

The main shortcoming of taboo words is inefficiency: Why
not simply motivate players to output quadrant I labels?

1.2 Overview of Proposed Solution
The capability-align matching (CAM) is proposed for solv-

ing the poor quality problem. Two types of of matching are
in the ESP Game. (1) Matching a player with another. (2)
Matching an image to a pair of players. The CAM is the
former.

The CAM matches players with similar if not identical
capability. On the other hand, the current implementation
of the ESP Game (intentionally) use random matching.

Note: A critical game-theoretical requirement of the CAM
is that which matching scheme is used is common knowledge
among players.

The CAM is implemented in a small-scale experiment.
The implemented method is called the Segmentation method,
which extracts capability information from demographic data.

2. RELATED WORK
The ESP Game, the first GWAP, is designed to anno-

tate images and is shown to be effective on generating label-
descriptions of an image [11]. This simple game demon-
strates that designing a game to use human to perform com-
putation task is possible. Since then, many of GWAP follow
its design.

Three designs of the ESP Game are relevant to modeling.
They are also widely used in many GWAP.

• Random player matching. When compared with the
CAM, it incurs poor quality output.

• Isolated players. This has a great strategical conse-

quence: the ESP Game is a static game.

• Output agreement/Simultaneous Verification. (For its
definition, see [12, 5].) It is equivalent to coordination
game.

In theory, the ESP Game is a static coordination game.
The following are overview of previous approaches dealt

that could be used to improve output quality.
Incentive provision. This approach tries to “manipu-

late”players through incentive [10, 6], either money or score.
Its goal is to implement a designer-chosen good quality out-
come. Nevertheless, in some cases incentive-provision along
might be ineffective. As shown by experiments [9], increased
financial incentive does not necessary increase quality. The
CAM can reduce the amount of incentive required for im-
plementing a good quality outcome.

Competition. This approach is based a game structure
called zero-sum games. The Search War [8] is a two-player
zero-sum game. The KKB [4] adds a zero-sum sub-game to
the ESP Game. Nevertheless, in theory competition does
not improve quality, at least in the sense of specificness,
but it does diversify output—when the equilibrium is mixed.
Zero-sum games often have only mixed equilibrium due to
their strictly competitive nature. The zero-sum game that
the Search War and the KKB use is called matching pennies,
which has only a unique mixed equilibrium.

Note: This paper uses “competition” in a strict game-
theoretic sense. There are GWAP [3] that are competitive
(in ordinary sense) but not zero-sum. These games are coor-
dination games, and players only compete for first proposing
the will-be-agreed output.

Community. This approach is loosely defined by the
use of social network or demographic data. It could be
used for drawing players from Facebook1, for annotating
your friends [1], or for improving output quality [7]. The
CAM may use communities for extract player’s capability
information, called the Segmentation method.

3. A SPECIAL THEORY OF CAPABILITY-
ALIGNED MATCHING

Here we present a special version of the theory of the
CAM. The general version of the theory is published in an-
other venue due to page limits [2].

The analysis of the one-shot ESP Game is carried out
by comparing the CAM in a hypothetical, ideal scenario
to the random matching so that the theoretical maximal
improvement of the CAM is derived. The hypothetical, ideal
scenario is referred to as the first-best model, in which a
computer has complete information of players’ capability.
The scenario of the random matching is referred to as the
second-best model, in which a computer has only incomplete
information of players’ capability.

The performance of an outcome is defined in three aspects.
These are used for comparing the first- to the second-best
model.

The first aspect considers the quality, or the “revenue”.
It is possible that a best quality outcome is too costly to
implement. The following results all condition on that there
is a sufficient “margin of profit” (revenue minus cost) so that
implementing a best quality outcome is in equilibrium.

1http://apps.new.facebook.com/fb_gwap/
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The second aspect considers the amount of incentive pro-
vision, or the “cost”. Given a particular outcome to be im-
plemented, this amount should be as little as possible.

The last aspect considers the agreement rate, or the “risk
of the business”. This probability is a measure of efficiency
of a game. The higher the agreement rate, the faster a cor-
rect label is produced. And why is that? The ESP Game
is like a Las Vegas algorithm due to the verifying by agree-
ment nature of it. It always produce correct labels, but its
computation time varies randomly (we do not know when a
pair of agents will agree).

3.1 The One-Shot ESP Game Model
We formulate a direct mechanism of the ESP Game, called

one-shot ESP Game, in a special setting. This model is
used for demonstrating the theory we will examine in exper-
iments.

The strategic interaction in GWAP between a computer
and players, in economics terminology, is a principal-agent
relation. A computer (as a principal) hires players (as agents)
to perform computation tasks. The following is the basic
setup:

Number of labels/types. n+ 1.
Index of labels/types. 0 ≤ k, l ≤ n. Note: Because k and

l may index either label or type, we use superscript for
labels, and subscript for types.

Set of labels. W = {wk | 0 ≤ k ≤ n}.
Qualities of labels. qk = αk+β for label wk where α and

β are real constants.
Agent (player). There are two agents, 1 and 2, indexed

by i 6= j ∈ {1, 2}. The term “agent” and “player” are
used interchangeably.

Agent’s output. wk,i denote output label of a type-Vk, in-
dex i agent. The index of player is often dropped be-
cause the ESP Game is symmetric, that is, wk.

Utility of agents. u(p) =
√
p. Let v = u−1 for the ease of

notation. Agents are assumed to be homogeneous so
that we will not be distracted from minor issues like
private information of agent’s utility function.

Reservation utility u > 0. Let v = v(u) for the ease of
notation.

Capability of an agent (type). Vk = {w0, . . . , wk}. In
the ESP Game, the capability of an agent is his vo-
cabulary of words he can use. The term “capability”
and “type” are used interchangeably.

Type space. V = {Vk | 0 ≤ k ≤ n}. The set of capabili-
ties, also referred to as “the type space”.

Distribution of types. µk = 1
2n

Cnk for type Vk. µk is the
proportion of type-Vk players. It is a binomial distri-
bution so that most agents have moderate capability
and few agents are at extreme.

Payoffs. The principal chooses the payoffs. In the first-best
model, payoffs may contingent on both output label
and type, denoted by p(·). In the second-best model,
payoffs are contingent on output label only, denoted
by pk. Let uk = u(pk) for the ease of notation.

The one-shot ESP Game is a ESP Game that a player
only outputs one label. It is played as follows:

0. The quality function q is given to the principal.
1. The principal chooses a payoff function p, and matches

two agents from a pool of agents.

2. The agents observe the payoff function, and then de-
cide whether to play (note that at this point, the agents
know what matching scheme is in charge).

(a) If any agent decides not to play, then the game
terminates; the principal receives 0, and the agents
both receive u.

(b) Otherwise, the game proceeds to the next step.

3. The agents simultaneously output a label wi.
4. (a) If the agents agree on w, i.e., w = w1 = w2, then

the agents win; the principal receives q(w)−p(w),
and the agents both receive u(p(w)).

(b) Otherwise, the agents lose; the principal and the
agents all receive 0.

Note: For the ease of notation, the payoff to the agents is
also written as

p(wk,1, wl,2) =

{
p(w) wk,1 = wl,2 = w

0 wk,1 6= wl,2,

or in the unit of utility u(wk,1, wl,2) = u(p(wk,1, wl,2)), and
the payoff to the principal

π(wk,1, wl,2) =

{
q(w)− p(w) wk,1 = wl,2 = w

0 wk,1 6= wl,2.

A cautious reader might wonder why the payoff of the
principal is not q(w)− 2p(w). The reason is the ease of no-
tation. Because only the relative order of q-value matters
in this thesis, q can be linearly scaled up arbitrarily, and
whether the principal receives q− p or q− 2p does not mat-
ter.

3.2 The First-Best Model
The first-best model is our benchmark; it is the best pos-

sible performance the CAM can achieve. In the first-best
model, the principal has complete information of capabili-
ties, and players are perfectly aligned, that is, k = l.

The payoff function p is subjected to two constraints due
to the rationality of agents.

Individual rationality.

u(wk,1, wk,2) ≥ u. (IR1)

Incentive compatibility.

wk,i ∈ arg max
w∈Vk,i

u(w,wk,j). (IC1)

The principal maximizes the average payoff

max
p,{w0,...,wn}

∑
0≤k≤n

µkπ(wk, wk) (P1)

subjected to (IR1) and (IC1).
Obviously, the maximization program is solved by

p(wk) =

{
v wk = wk

0 wk 6= wk.
(1)

That is, the agent is not paid unless he outputs a best quality
label he can think of. Under this payoff function, the output
label wk is, not surprisingly, the best quality output wk. It is
easy to check if this outcome satisfies (IR1) and (IC1). And
agents always agree in equilibrium because it is a symmetric
game.

So in the first-best model, the principal implements
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• Best quality outcome wk = wk,

• Using minimal incentive provision v,

• With perfect agreement rate equals to 1.

This too-good-to-be-true performance of first-best equilib-
rium shows the power of capability information in an ide-
alize scenario. Rarely can a real world game have 100%
complete capability information; there is always uncertainty
in practice.

3.3 The Second-Best Model
In the second-best model, the principal has incomplete

information; capabilities are private information of agents.
The principal thus can at best randomly match agents. Note:
This is usually called adverse selection in economics litera-
ture.

The Individual Rationality and Incentive Compatibility
constraints are rewritten to reflect the uncertainty of the
agents. Let Pr[w = w∗,j ] denote agent i’s belief that agent
j’s output is w

Pr[w = w∗,j ]
def
=

∑
0≤l≤n

µl1{w = wl,j}. (B)

Note: Agent inherits uncertainty from principal, who imple-
ments random matching.

Individual rationality.

Pr[wk = w∗]u(wk) ≥ u. (IR2)

Incentive compatibility.

Pr[wk = w∗]u(wk) ≥ Pr[wl = w∗]u
l (IC2)

where 0 ≤ l < k.

Collusion proofness. Here is one more constraint in the
second-best model than the first-best model to prevent
players collude.

Pr[wk = w∗]u(wk) ≥ Pr[wl = w∗]u
l + µku

l (CP)

where 0 ≤ l < k.

Note: For simplicity this paper assumes that only the
same type of agents can collude.

Note: Collusion is not the same as cheat defined in the
original paper of the ESP Game [11] which is the attempts
to fast agree on many images without looking at images.
Collusion means some players lower the output quality to-
gether, but they still look at images. In other words, when
players cheat, the output is incorrect (because they even
not look at images). When players collude, the output is
still correct, but of poor quality.

As in the first-best model, the principal maximizes its
average payoff

max
p,{w0,...,wn}

∑
0≤k,l≤n

µkµlπ(wk, wl) (P2)

subjected to (IR2), (IC2) and (CP).
The three constraints are divided into two groups: (IR2)

and (IC2), and (CP) alone. The best quality outcome is
wk = wk, and so Pr[wk = w∗,j ] = µk. Plug them into con-
straint groups. The first constraint group is solved by

u

µk
. (2)

The second constraint group is solved by

uk−1 +
µk−1

µk
uk−1. (3)

The maximization program (P2) is constrained by the max-
imum of the two

uk = max

{
u

µk
, uk−1 +

µk−1

µk
uk−1

}
.

The constraint groups are not chosen arbitrarily. They cor-
respond to the information rent and collusion-proof rent.

So in the second-best model, the principal implements

• Best quality outcome wk = wk,
• Using amount of incentives higher than that of the

first-best uk > u,
• With less than perfect agreement rate∑

0≤k≤n
µk Pr[wk = w∗] < 1.

Here the components of second-best “cost” are analyzed,
including information rent and collusion-proof rent.

Information rent. Observe that in the ESP Game, an
agent outputs a best quality label is equivalent to an agent
reveals his private information, type. Consider the first-best
cost u; the positive rent u/µk − u paid by the principal for
acquiring agent’s private information is called “information
rent” in economic literature.

Collusion-proof rent. When µ is non-decreasing, such
as when 0 ≤ l < k ≤ bn/2c, we have information rent inver-
sion u/µl > u/µk. Does this mean a good quality label wk

is paid less than a poor quality label wl? In fact, no. The
constraint group (3) implies that uk > uk−1, that is, the
principal always has to pay more to a good quality label.
We call this rent to maintain (CP) “collusion-proof rent”.

How much profit margin is it enough? Now we cal-
culate values of α, β for reference. For a best quality equi-
librium to be existed, we must have positive profit margin

qk − pk > 0

where

qk = αk + β,

and

pk = v

(
max

{
u

µk
, uk−1 +

µk−1

µk
uk−1

})
.

Let n = 4 and v = $0.01, then at least α ≈ $433.40, and
β ≈ $2.57. This means given that the agent’s reservation
utility equals to 1 cent, the qualities of labels must be worthy
of tens to thousands of dollars so that a best quality outcome
is still profitable after paying information rent and collusion-
proof rent (see table 1). For example, the quality of label
w4, q(w4), must be worthy of at least $1736.11 dollars to
the principal.

On the other hand, the agreement rate is so low (roughly
27.3%) that the expected cost of the principal, the money
which he actually pays, is approximately $12.94 dollars.

This example shows us how expansive and how inefficient
(in terms of agreement rate) to implement a best quality
equilibrium when the principal does not have capability in-
formation.

Example of signals. Here we prepare results for the ex-
periments. We considers two types of signal, “narrow” and
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k µk pk

0 6.25% 2.56
1 25.00% 4.00
2 37.50% 11.11
3 25.00% 69.44
4 6.25% 1736.11

Table 1: Payoff of labels in unit of dollar.

“lift”. Put loosely, the narrow signal is like reducing pop-
ulation variance, and the lift signal is like increasing pop-
ulation mean toward higher type. Note: Here we use the
n = 4, v = $0.01, α = $1000, β = $10 setup.

k µk µk|θnarrow µk|θlift
0 6.25% 0.00% 5.25%
1 25.00% 25.00% 25.00%
2 37.50% 50.00% 37.50%
3 25.00% 25.00% 25.00%
4 6.25% 0.00% 7.25%

Table 2: The narrow and lift signal.

Consider a signal θnarrow that shrinks the population by
only drawing from type-V1 to type-V3 (see the middle col-
umn of table 2). The expected payoff to the principal is
increased by about $217 dollars, from $536.66 dollars to
$753.45 dollars.

Consider a signal θlift that simply add 1% to µ4 and sub-
tract 1% from µ0 (see the rightmost column of table 2).
The expected payoff to the principal is increased by about
58 cents, from $536.66 dollars to $537.24 dollars.

3.4 Summary
The principal is facing an adverse selection problem when

the capability information is private, and have to pay in-
formation rent and collusion-proof rent for a good quality
outcome. In addition to these rents, the principal suffers
from lower agreement rate, that is, slower verification speed.
We can perceive these troubles when the principal lacks the
capability information as the“cost”of the random matching.

4. EXPERIMENT
A preliminary, small-scale experiment was conducted to

test the core concepts of the theory. The experiment also
demonstrated how the Segmentation method with narrow
and lift signal can be implemented use online communities.

The Segmentation method extracts capability information
from demographic data. The border of a demographic group
is very flexible, which could be as broad as a university, or as
tight as a zealous fan group. The CAM does not necessarily
have to ask players to fill in annoying survey forms; the
demographic data can be automatically crawled from social
network websites or online forums,

Note: There is another implementation of the CAM, called
the Bootstrapping method, detailed in [2].

4.1 Experiment Design
On choosing demographic data, the lessons will be learned

from the experiments are:

• The demographic group should be related to the con-
tent of the images, and

• The deeper the participation of an agent in this group,
the higher the capability he might have.

The experiment design featured:

• The one-shot ESP Game was played without any time
limit.

• Subjects were not rewarded by scores or any other in-
centives.

• Problem sets of images that were assumed to be asso-
ciated with signals were chosen.

• Subjects were actually played with robots (for reasons
stated below).

• The control and treatment group differed in:

– The matching scheme.
– The equilibrium strategy played by robots.

• The experiment only had between-subjects effect, but
no within-subjects effect (because each subject partic-
ipated only once).

In brief, the experiment design features: the one-shot ESP
Game, robots, and the Segmentation.

The detailed experimental process was:

1. Subjects were randomly put into either the control or
treatment group.

2. Subjects were asked to report their participation level
of online communities.

3. Subjects were informed the matching scheme (but ac-
tually played with a robot).

Control: Random matching.
Treatment: The CAM.

4. Subjects played 5 training images from each problem
set, in the same order. The robot’s output label was
displayed when subjects lost.

5. Subjects played 20 testing images, every four from each
problem set, in the same order. The robot’s output
label was not displayed when subjects lost.

6. Subjects filled in a post-hoc survey to assess the diffi-
culty of all problem set in absolute and relative scale.

Note: In training games and test games, no scores or any
other incentives were awarded when subjects won, and there
was no time limit.

4.2 Comments on the Experiment Design
To eliminate the effect of time preference, the one-shot

ESP Game, rather than the original ESP Game, was used
in the experiment. The time preference should be eliminated
because it has been shown to affect the output quality [6].

In addition to time preference, anything that might affect
subjects was eliminated, such as time limit and scores, so
that any difference in outcomes could only be explained by
matching schemes.

The use of robots, a necessary evil in small-scale experi-
ment, was because:

• It was unlikely to have aligned-capability subjects at
the same time, especially when the scale was small.

• To eliminate human variations as much as possible.
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The robots played equilibrium strategy, that is, pooling
when put into the control group, and separating when put
into the treatment group.

Only high type of robot was implemented. Otherwise,
one more factor (robot’s type) had to be added, along with
matching scheme. This would further divide subjects, re-
sulting in smaller groups that could not yield anything sta-
tistically significant.

In testing games, the robot’s labels were not displayed to
subjects when subjects lost as the original ESP Game, but in
testing games, in order to teach subjects who had had never
played the ESP Game, the robot’s labels were displayed.

The implemented one-shot ESP Game did not compare
labels literally. Instead, a list of synonyms and common
misspellings was built in for label comparison.

4.3 Signals and Problem Sets
Two narrow-and-lift signals were chosen. One was a sub-

ject’s participation level in a online community, and the
other was locality (the college where subjects were recruited).
Note: Although the experiment extracted these signals by
asking subjects, it was easy to crawl these signals automat-
ically.

For the online community signals, it was assumed that the
population was narrower when the community was smaller,
and the population was lifted higher when the participation
was deeper (assuming that participation level was positively
correlated to capability).

The online communities were Bulletin Board System (BBS)
boards:

• WoW / Exchange information of the World of War-
craft.

• Baseball / Discussions about baseball.

• OnePiece / Discussions about the manga One Piece.

For each online community, the participation of a subject
was categorized into 4 levels.

Level 0. None of the below.

Level 1. Had played the World of Warcraft, watched any of
Major League Baseball games, or read the One Piece,
respectively.

Level 2. Had read the respective BBS board.

Level 3. Had added the respective BBS board to his My
Favorite.

Three problem sets positively associated with online com-
munity signals were chosen, namely, WoW, MLB, and OP.
The MLB problem set were pictures of game characters of
the World of Warcraft. The MLB problem set were pictures
of Major League Baseball players. The OP problem set were
pictures of manga characters of the One Piece.

Two problem sets (positively and negatively) associated
with locality signal were chosen, namely, LO and FO. The
LO and FO problem set were images of local and foreign
celebrities and landmarks, respectively. It was assumed that
subjects were more capable to the LO problem set than FO;
this assumption would be verified.

The images of a problem set were carefully chosen that
their difficulty to subjects was assumed uniform, and so
variation of output quality within one problem set by one
subject was assumed random normal.

4.4 Subjects
In total, 26 subjects were recruited from National Taiwan

University (that means 104 labels per problem set). Table 3
shows the distribution of subject’s gender, age, and group.

Distribution

Gender Female 10
Male 16

Age 18–21 8
22–25 14
26–29 2
30–33 2

Group Control 12
Treatment 14

Table 3: The distribution of subject’s gender, age,
and group.

Table 4 shows the distribution of participation level. The
OnePiece board had the most dedicated subjects (level 2
and level 3).

To our surprise, the WoW board was “very unpopular”
among our subjects; 24 out of 26 subjects had had never
played the World of Warcraft. In fact, the “unpopularity”
of the World of Warcraft among subjects would cause the
regression to fail because only zero or one subject was in
levels above 1.

Participation Level BBS Board

WoW Baseball OnePiece

#0 24 17 7
#1 1 6 11
#2 0 2 4
#3 1 1 4

Table 4: The participation levels of online commu-
nities.

Table 5 shows the post-hoc survey result. The survey
asked subjects to evaluate the difficulty of each problem set
in absolute and relative (to other problem sets) scale.

No matter sorted by mean or median, the difficulty of
problem sets were: LO (easiest), OP, FO, MLB, and WoW
(hardest).

The fact that subjects felt LO was easier than FO ver-
ified our assumption that locality was a good measure of
capability to the LO and FO problem set.

WoW MLB OP LO FO

Absolute Median 5.00 5.00 3.00 2.00 4.00
Mean 4.70 4.35 2.96 2.61 3.91

Relative Median 5.00 4.00 2.00 2.00 3.00
Mean 4.48 3.70 2.13 1.70 3.00

Table 5: The absolute and relative difficulty of prob-
lem sets. The difficulty scales from 1 (easiest) to 5
(hardest).

Table 5 also helped us verify that participation levels were
indeed, as assumed to be, good measures of capability. Why
was that? The participation level was an objective measure
of capability, whereas the post-hoc survey was a subjective
assessment of difficulty. Although different by nature, they
demonstrated the same tendency: OP (most capable or eas-
iest), MLB, and WoW (least capable or hardest) no matter
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sorted by participation level or by subjective difficulty as-
sessment.

4.5 Experiment Results
For each problem set, 104 labels were collected, and man-

ually annotated. A label was annotated “of good quality”
if it was the name (including synonyms and common mis-
spellings) of a person, object, or building in the image, i.e.,
correct and specific.

Table 6 shows numbers of label annotated as of good qual-
ity, divided by numbers of label of that category. Note:
There were empty categories in the WoW problem set due
to the “unpopularity” of the World of Warcraft among sub-
jects.

A first observation was the trend that the ratio of good
quality labels increased when the “Group” or “Participation
Level” increased.

Problem Set Group Participation Level

#0 #1 #2 #3

WoW 0 0/44 0/ 4 0/ 0 0/ 0
1 2/52 0/ 0 0/ 0 4/ 4

MLB 0 6/28 4/12 0/ 4 2/ 4
1 12/36 7/12 4/ 4 1/ 4

OP 0 0/12 11/28 0/ 4 0/ 4
1 4/16 9/16 10/12 11/12

LO 0 30/48
1 44/56

FO 0 1/48
1 10/56

Table 6: The contingency table of output labels. In
the “Group” column, 0 is for the control and 1 for
the treatment. Note: The LO and FO problem set
did not have related participation levels.

The ratios of good quality labels were regressed against
matching scheme and participation level in a logit model.
Let i index over problem sets {WoW, MLB, OP, LO, FO }.
Let Pr[Yi = 1] denote the ratio of good quality labels, and
Xi the group (0 is for the control and 1 for the treatment),
and Zi the participation level. The logit model was

logit Pr[Yi = 1] = βi0 + βi1Xi + DUMMYiβi2Zi (4)

where DUMMYi was a dummy variable that equaled to 1
when i equaled to WoW, MLB, or OP; and 0 otherwise.

Table 7 shows the p-values of logit regressions. All were
statistically significant at least at the 0.05 significance level;
the null hypotheses βi1 = βi2 = 0 were rejected. That is,
matching schemes and capabilities (Xi, Zi) indeed affected
the good quality ratios Pr[Yi = 1].

p-value

WoW 0.0000***
MLB 0.0060**
OP 0.0000***
LO 0.0434*
FO 0.0027**

Table 7: The p-values of logit regressions. Signifi-
cance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1.

Table 8 shows the predictive power of the logit models; the
rightmost column are p-values (β-values would be explained

later). For the MLB, OP, and FO problem set, matching
scheme Xi and capability Zi were statistically significant
predictors.

Note: The WoW and LO problem set presented interest-
ing results. See paragraphs below.

Estimate Std. Error z value Pr[> |z|]
WoW βi0 -26.6047 4380.2597 -0.01 0.9952

βi1 23.3858 4380.2598 0.01 0.9957
βi2 7.7057 2116.2887 0.00 0.9971

MLB βi0 -1.5753 0.4201 -3.75 0.0002***
βi1 1.0668 0.4638 2.30 0.0215*
βi2 0.6083 0.2714 2.24 0.0250*

OP βi0 -2.0770 0.4621 -4.50 0.0000***
βi1 1.5524 0.4643 3.34 0.0008***
βi2 0.7692 0.2393 3.22 0.0013**

LO βi0 0.5108 0.2981 1.71 0.0866.
βi1 0.7885 0.4415 1.79 0.0741.

FO βi0 -3.8501 1.0105 -3.81 0.0001***
βi1 2.3241 1.0691 2.17 0.0297*

Table 8: The summary of logit regression results.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1.

WoW. Although the logit regression failed partially due
to the “unpopularity” effect (empty categories), the main
reason was that the WoW problem set was the hardest. In
fact, when the ratios were regressed against only capability
Zi,

logit Pr[YWoW = 1] = β̂0 + β̂2ZWoW,

the p-value was statistically significant, and capability was
statistically significant predictor (table 9). In other words,
the WoW problem set was so hard that the capability itself
dominated the outcomes, and so the matching scheme had
little effect on output quality.

Estimate Std. Error z value Pr[> |z|]
WoW β̂0 -4.0772 0.7562 -5.39 0.0000***

β̂2 2.3410 0.7657 3.06 0.0022**

Table 9: The logit regression on the WoW problem
set with only capability. Significance codes: 0 ‘***’
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

LO. On the contrary to the WoW problem set, the prob-
lem of the LO problem set was too easy. The control-LO
category had good quality labels that were 30 times more
than the control-FO category (table 6). Given that con-
trol group subjects should output poor quality labels (and
they did in all problem sets except LO), the huge disparity
between the control-LO and control-FO category may be
explained by that subjects just could not think of any poor
quality label; the LO problem set was just too easy.

4.6 Predicted Good Quality Ratios
Table 10 shows the predicted ratios Pr[Yi = 1] from the

fitted β-values. Note: The predicted ratios of the WoW and
LO problem set were not predicted by statistically significant
predictors, and were listed only for reference.

Consistent trends in the MLB, OP, and FO (and also
WoW and LO) emerged:

• The ratios were higher when the participation levels
were higher.
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• The ratios of the treatment group (the CAM was used)
were higher than the ratios of the control group (the
random matching was used).
• The effect of matching scheme was greater than the

effect of capability (participation level). Lower par-
ticipation level treatment categories had higher ratios
than higher participation level control categories.

The last trend was particularly interesting: A less-capable
but properly-motivated player could output better quality
than a more-capable but less-motivated player.

Group Participation Level

#0 #1 #2 #3

WoW 0 0.0000 0.0000 0.0000 0.0297
1 0.0385 0.9889 1.0000 1.0000

MLB 0 0.1715 0.2755 0.4113 0.5621
1 0.3755 0.5249 0.6700 0.7886

OP 0 0.1114 0.2129 0.3685 0.5574
1 0.3718 0.5608 0.7338 0.8561

LO 0 0.6250
1 0.7857

FO 0 0.0208
1 0.1786

Table 10: The predicted ratios of good quality la-
bels. In the “Group” column, 0 is for the control
and 1 for the treatment.

4.7 Discussion
We had had observed:

• Potentially, a more capable player was more likely to
generate good quality labels.
• The CAM had improved quality of labels, given that

players had moderate capability.
• The effect of matching scheme on output quality was

greater than the effect of capability, for tasks that play-
ers had moderate capability.

From the observations, a limitation of the CAM was: When
difficulty of a task was extremely high or low, the capability
of players dominated the output quality, and the effect of
the CAM was negligible.

This limitation pointed out that matching the right task
to the right player was as important as matching the right
pair of players.

The experiment per se brought its own limitation. Sub-
jects were interacted with robots, not other subjects, and
there was only one type of robots. This experiment de-
sign restricted what we could conclude from data. The ex-
periment was more like testing if subjects would learn and
play the equilibrium strategy, and less like a user study of
the CAM. Despite the methodological imperfectness, the
promising results of this preliminary experiment showed that
the CAM is worthy of further investigation in larger-scale
experiments.

5. CONCLUSION
This paper proposes the capability-aligned matching (CAM)

for solving the poor quality problem that the output-agreement/
simultaneous-verification Games with a Purpose (GWAP)
would suffer from.

The analysis of an adverse selection model shows that the
CAM has two advantages over random matching. On cost

aspect, the information and collusion-proof rent, which are
used for increasing output quality, are reduced. On infor-
mational aspect, the agreement rate, which is the bounding
factor of verification speed, is increased.

This paper implements the Segmentation method, whose
source of capability information is demographic data, and
tests it in the experiments. The experiments suggest that
task-human matching is as important as human-human match-
ing.

All in all, the CAM is orthogonal to game rules, and
so could be seamlessly integrated into existing and future
output-agreement/simultaneous-verification GWAP for im-
proving output quality.
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