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ABSTRACT
Mechanism design studies how to design mechanisms that
result in good outcomes even when agents strategically re-
port their preferences. In traditional settings, it is assumed
that a mechanism can enforce payments to give an incen-
tive for agents to act honestly. However, in many Internet
application domains, introducing monetary transfers is im-
possible or undesirable. Also, in such highly anonymous
settings as the Internet, declaring preferences dishonestly is
not the only way to manipulate the mechanism. Often, it
is possible for an agent to pretend to be multiple agents
and submit multiple reports under different identifiers, e.g.,
by creating different e-mail addresses. The effect of such
false-name manipulations can be more serious in a mecha-
nism without monetary transfers, since submitting multiple
reports would have no risk.

In this paper, we present a case study in false-name-
proof mechanism design without money. In our basic set-
ting, agents are located on a real line, and the mechanism
must select the location of a public facility; the cost of an
agent is its distance to the facility. This setting is called
the facility location problem and can represent various sit-
uations where an agent’s preference is single-peaked. First,
we fully characterize the deterministic false-name-proof fa-
cility location mechanisms in this basic setting. By utilizing
this characterization, we show the tight bounds of the ap-
proximation ratios for two objective functions: social cost
and maximum cost. We then extend the results in two nat-
ural directions: a domain where a mechanism can be ran-
domized and a domain where agents are located in a tree.
Furthermore, we clarify the connections between false-name-
proofness and other related properties.
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1. INTRODUCTION

1.1 Background
Mechanism design has become an integral part of elec-

tronic commerce and a promising field for applying AI and
agent technologies. In particular, the celebrated Vickrey-
Clarke-Groves (VCG) mechanism for combinatorial auctions,
which is considered one crucial contribution of mechanism
design, has been applied to several domains. One of its
advantages is that it satisfies a property called strategy-
proofness; no agent ever benefits from misreporting her pref-
erence, regardless of the other agents’ strategies. The VCG
mechanism achieves this property by collecting an appropri-
ate amount of payment from each winner of the auction.

In several domains such as the Internet, however, imple-
menting payments is sometimes impossible mainly due to
security/banking issues. Moreover, there are several appli-
cation fields in which monetary transfers should not be intro-
duced due to ethical/legal considerations, including political
decision making or kidney exchanges. Thus, mechanisms
must be developed that satisfy strategy-proofness without
involving monetary transfers. Such mechanism design with-
out money is quite challenging and has attracted consider-
able attention among computer scientists (see [5, 10]).

Meanwhile, in such highly anonymous settings as the In-
ternet, reporting preference insincerely is not the only way to
manipulate a mechanism. Often, it is possible for an agent
to pretend to be multiple agents and participate in a mech-
anism multiple times by using different identifiers, e.g., by
creating different e-mail accounts. Since many Web applica-
tions require a valid e-mail address only, an agent can create
multiple e-mail address at practically no cost. Such strate-
gic behaviors called false-name manipulations have been dis-
cussed so far in the mechanism design field.

In environments in which payments can be made securely,
authenticating each identifier and collecting a participation
fee might discourage agents from using multiple identifiers.
Furthermore, in mechanisms with monetary transfers, adding
false identifiers is risky. For example, in an auction, the ma-
nipulator might have to pay a lot of money or buy unneces-
sary items by such false-name manipulation.

In contrast, such manipulations are more likely to occur
in a mechanism without monetary transfers, since submit-
ting multiple reports is less risky. For example, in voting,
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casting additional votes is unlikely to create disadvantages
for the manipulator. To the best of our knowledge, there
exist very few works on false-name manipulations in mecha-
nism design without money. One notable exception is a work
by Conitzer [4], which characterized anonymity-proof voting
rules (i.e., rules that satisfy false-name-proofness and volun-
tary participation). The obtained result is rather negative.
In essence, an anonymity-proof voting rule can take into
account voters’ preferences only when voters unanimously
prefers one candidate within two candidates that are chosen
at random. Furthermore, even if we only require strategy-
proofness, the Gibbard-Satterthwaite theorem states that
it is impossible to make a mechanism strategy-proof when
agents’ preferences are general (see [7]).

1.2 Our Results
In this paper, we present a case study in false-name-proof

mechanism design without money. Assuming that agents’
preferences are highly structured, we avoid falling into the
negative result in Conitzer [4], or in more general sense,
the Gibbard-Satterthwaite Theorem. We focus on facility
location problems and discuss how difficult it is to incentivize
agents to behave sincerely, even though they can use false
identifiers. This is the first work to deal with false-name
manipulations in facility location problems.

We discuss a facility location problem on a real line as a
basic setting and characterize deterministic false-name-proof
facility location mechanisms. Our characterization is in-
spired by Moulin’s characterization of strategy-proofness [6].
To simplify expositions and notations, we define the cost of
an agent as the distance between her location and a facility.
It is straightforward to extend this characterization to a do-
main with general single-peaked preferences. Additionally,
we establish the tight bounds of the approximation ratios
achieved by deterministic false-name-proof mechanisms for
two objective functions: social cost and maximum cost.

We then extend the results of the basic case in two fur-
ther directions. One is a domain of randomized mecha-
nisms, and the other is a facility location problem on a tree.
For randomized mechanisms, we show in Section 4.1 that
the left-right-middle mechanism, which was originally pro-
posed in Procaccia and Tennenholtz [8], satisfies false-name-
proofness. Furthermore, we show a lower bound of the ap-
proximation ratio for the social cost. On the other hand,
for the facility location problem on a tree, we characterize
deterministic false-name-proof mechanisms in Section 4.2.
Our characterization can be considered a refinement of the
result by Schummer and Vohra [9], in which they character-
ized deterministic strategy-proof mechanisms on a tree.

Furthermore, in Section 5, we clarified the connections be-
tween false-name-proofness and other related properties in
a facility location problem on a tree. We focused on popula-
tion monotonicity, group-strategyproofness, and anonymity-
proofness, which have been discussed in the literature of so-
cial choice and mechanism design. By utilizing our charac-
terization, we show that both population monotonicity and
anonymity-proofness are equivalent to false-name-proofness.
We also show that there exists a group-strategyproof mech-
anism which is not false-name-proof.

1.3 Related Works
Facility location problems have also been considered an

important famework of social choice due to the highly struc-

tured preferences of agents in the setting: single-peaked pref-
erences. There exist many application domains with such
single-peaked preferences. For example, in political deci-
sion making, an agent’s peak is her most preferred alter-
native. Moulin [6] characterized strategy-proof, Pareto effi-
cient, and anonymous facility location mechanisms on a real
line. Schummer and Vohra [9] extended Moulin’s results to
facility location problems on graphs.

Procaccia and Tennenholtz [8] presented a case study in
approximate mechanism design without money and estab-
lished tight bounds for the approximation ratio achieved by
strategy-proof facility location mechanisms on a real line.
They also proposed two extensions of facility location prob-
lems: a domain where two facilities must be located and a
domain where each agent owns multiple locations. Alon et
al. [1] discussed the maximum cost of strategy-proof facil-
ity location mechanisms on several network topologies. Guo
and Conitzer [5] is one of the most recent development of
approximate mechanism design without money for strategy-
proof resource allocations.

False-name manipulations have also been widely studied
in combinatorial auctions. Yokoo et al. [12] proposed a
condition where VCG becomes false-name-proof. Todo et
al. [11] characterized false-name-proof combinatorial auction
mechanisms. Besides combinatorial auctions, false-name-
proofness and its relatives have been discussed in other mech-
anism design fields, such as voting [4] and coalitional games [2].
In particular, Conitzer [4] proposed an extended property
called anonymity-proofness in voting and characterized
anonymity-proof voting rules.

2. PRELIMINARIES

2.1 Basic Model
In this paper, we deal with facility location problems in

which a mechanism locates one facility. Let n denote the
number of agents (identifiers) joining a mechanism and N
(|N | = n) the set of agents. Note that the number of agents
n is defined to be variable in N to discuss the change of the
number of agents joining a mechanism. Each agent i ∈ N
has a true location (or the most preferred location) xi on a
graph G. In this paper, we restrict our attention to peak-only
mechanisms, i.e., each agent reports only her most preferred
location. In a more general setting (e.g., voting), this can be
a quite strong restriction. However, in our setting, we can
assume any strategy-proof mechanism is peak-only, since the
peak location of each agent is her only private information.
The cost of an agent i is defined by the distance d(·, ·) be-
tween her true location and the location of a facility: if the
facility is located at y, the cost of agent i with location xi is
cost(xi, y) = d(xi, y). If a graph G is a real line, the distance
is defined as |xi − y|.

A (direct revelation, deterministic) facility location mech-
anism (or simply mechanism) is a function that maps a re-
ported location profile x = (x1, . . . , xn) by the set of agents
to a location of a facility y on a graph G. A mechanism
must locate a facility with respect to any number of agents
n, since we consider an environment where each agent may
use multiple identifiers (formally defined in Section 2.2). For
this reason, we define a mechanism f as a set of functions
(fn)n∈N, where each function fn is a mapping from a set
of location profiles reported by n identifiers to the graph.
For simplicity, we assume that a mechanism is anonymous,
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meaning that the obtained results are invariant under the
permutation of identifiers.

Definition 1 (Facility Location Mechanism). For
any natural number n ∈ N, a facility location mechanism f
assigns an outcome fn(x) to any reported location profile
x = (x1, . . . , xn) ∈ Gn:

f = (fn)n∈N, f
n : Gn → G.

In facility location problems, each agent reports her loca-
tion x′i, which is not necessarily her true location xi, to the
mechanism. However, in a strategy-proof mechanism, it is
guaranteed that each agent reports her true location xi to
the mechanism if she behaves to minimize her cost.

Definition 2 (Strategy-proofness). A mechanism
f is strategy-proof if ∀n ∈ N, ∀i ∈ N , ∀x−i, ∀xi, ∀x′i,
cost(xi, f(xi, x−i)) ≤ cost(xi, f(x′i, x−i)).

Here x−i denotes the reported location profile by agents
except i. That is, f(x′i, x−i) is the location of a facility when
agent i reports x′i and other agents report x−i. Definition 2
means that a mechanism is strategy-proof if for each agent,
reporting her true location is a dominant strategy; it mini-
mizes her cost regardless of the strategies of other agents.

Several strategy-proof mechanisms have been developed
for facility location problems. For a real line, one well-known
strategy-proof mechanism is the median mechanism, which
chooses the median location among the reported locations (if
the number of agents n is even, locates at the n/2-th smallest
location). To simplify the exposition and the notations, we
define a function med(·) that returns the median point for
a given profile of real numbers.

For the facility location problem on a real line, Moulin [6]
characterized strategy-proof mechanisms.

Theorem 1 (Moulin, 1980). A mechanism f is strategy-
proof, Pareto efficient, and anonymous if and only if for all
n ∈ N, there exist n− 1 real numbers αn

1 , αn
2 , . . . , αn

n−1 such
that for all reported location profile x = (x1, . . . , xn) ∈ Rn,

f(x) = med(x1, . . . , xn, αn
1 , . . . , αn

n−1). (1)

In the case of a real line, Pareto efficiency requires that a
facility be located at a point between the leftmost and right-
most locations among the reported locations. Theorem 1
means that any Pareto efficient, anonymous, and strategy-
proof mechanism can be represented by appropriately set-
ting the parameters in Eq. (1). Indeed, the median mecha-
nism is represented by setting these parameters as follows:

∀n ∈ N, ∀m ∈ {1, . . . , n− 1}, αn
m =

{
−∞ if m is odd

∞ if m is even.

Also, the leftmost mechanism, which locates a facility at
the smallest location among the reported locations, is rep-
resented by setting all parameters to −∞.

We focus on a worst case analysis to consider the perfor-
mance of the mechanisms. This analysis is commonly used
in the literature of (algorithmic) mechanism design, espe-
cially by computer scientists. We introduce two objective
functions: social cost and maximum cost. The social cost is
the sum of the costs of all agents. A solution minimizing
the social cost is also called a minisum solution. On the

other hand, the maximum cost is defined by the cost of the
agent whose cost is the highest among all agents. A solution
minimizing the maximum cost is also called a minimax so-
lution, which achieves an equitable location. We now define
the approximation ratios of a mechanism.

Definition 3 (Approximation Ratio). The approx-
imation ratios of a mechanism f for the social cost and the
maximum cost are defined as follows:

max
x

∑
i∈N cost(xi, f(x))

miny∈G

∑
i∈N cost(xi, y)

,

max
x

maxi∈N cost(xi, f(x))

miny∈G maxi∈N cost(xi, y)
.

2.2 False-name-proofness
In this subsection, we formalize false-name-proofness in

facility location problems. First, we introduce some nota-
tions for discussing false-name manipulations.

Let ϕi denote the set of identifiers used by agent i. This
is also the private information of agent i. Let xϕi denote
a location profile reported by a set of identifiers ϕi, and let
x−ϕi denote a location profile reported by identifiers except
for ϕi. In this definition, xϕi is considered a false-name
manipulation by i.

Definition 4 (False-name-proofness). A mechanism
f is false-name-proof if ∀n ∈ N, ∀i ∈ N , ∀x−ϕi , ∀xi, ∀ϕi,
∀xϕi , cost(xi, f(xi, x−ϕi)) ≤ cost(xi, f(xϕi , x−ϕi)).

In other words, a mechanism is false-name-proof if for each
agent, reporting her true location by using a single identifier
is a dominant strategy, even though she can use multiple
identifiers. The following example shows that the median
mechanism on a real line is not false-name-proof: an agent
can reduce her cost by using multiple identifiers.

Example 1. Consider the median mechanism on a real line
and N = {1, 2, 3}. Assume that x1 = 1, x2 = 2, and x3 =
3. If they report their locations truthfully, the mechanism
locates a facility at 2. However, if agent 1 adds two false
identifiers and reports xϕ1 = (1, 1, 1), the mechanism locates
a facility at 1. By this false-name manipulation, agent 1 can
strictly reduce her cost.

3. BASIC RESULTS

3.1 Characterization Theorem
Now we are ready to show our characterization theorem

of false-name-proof mechanisms on a real line. More pre-
cisely, we provide a necessary and sufficient condition for
a mechanism to be false-name-proof, Pareto efficient, and
anonymous. Lemmas 1 and 2 prove the theorem.

Theorem 2. A mechanism f is false-name-proof, Pareto
efficient, and anonymous if and only if there exists a real
number α such that for all n ∈ N and for all reported location
profiles x = (x1, . . . , xn) ∈ Rn,

f(x) = med(x1, . . . , xn, α, . . . , α︸ ︷︷ ︸
n−1

). (2)

Lemma 1. If a mechanism f satisfies Eq. (2), f is false-
name-proof, Pareto efficient, and anonymous.
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Proof. If f satisfies Eq. (2), it also satisfies Eq. (1).
Thus, f is Pareto efficient and anonymous. Therefore, we
now show that f is false-name-proof if it satisfies Eq. (2).

Let us discuss false-name manipulations by agent i and
show that no false-name manipulation reduces her cost. Let
lt(x−i) denote the leftmost location in a location profile x−i

reported by agents except i, and let rt(x−i) denote the right-
most location. If lt(x−i) ≤ α ≤ rt(x−i) holds, f always
locates a facility at α regardless of i’s strategy.

We prove that f is false-name-proof if α < lt(x−i). The
same argument can be applied if rt(x−i) < α from the sym-
metry. We show that agent i cannot reduce her cost by false-
name manipulations in each of the following three cases: (i)
xi ≤ α, (ii) α < xi ≤ lt(x−i), and (iii) lt(x−i) < xi.

Case (i) If i’s true location xi satisfies xi ≤ α, f locates a
facility at α if i reports truthfully. In this situation,
reporting xi′ > α by all false identifiers i′ ∈ ϕi are
the only false-name manipulations that affect the out-
come. However, by these manipulations, the outcome
becomes strictly further away from xi.

Case (ii) If xi satisfies α < xi ≤ lt(x−i), f locates a facility
at xi when agent i reports her true location. In this
case, agent i has no incentive to use false identifiers.

Case (iii) If xi satisfies lt(x−i) < xi, f locates a facility
at lt(x−i) if i reports truthfully. In this situation, re-
porting xi′ < lt(x−i) by all false identifiers i′ ∈ ϕi are
the only false-name manipulations that affect the out-
come. However, by these manipulations, the outcome
moves further away from xi.

Lemma 2. If a mechanism f is false-name-proof, Pareto
efficient, and anonymous, f satisfies Eq. (2).

Proof. Since false-name-proofness is a generalization of
strategy-proofness, if f is false-name-proof, Pareto efficient,
and anonymous, then for all n ∈ N, f has n− 1 parameters
αn

1 , αn
2 , . . . , αn

n−1 satisfying αn
1 ≤ . . . ≤ αn

n−1 and locates a
facility at the median point defined by Eq. (1) (from Theo-
rem 1). To prove this lemma, it suffices to show that there
exists α ∈ R such that for all n ≥ 2,

αn
1 = . . . = αn

n−1 = α. (3)

We prove this lemma by induction on n. For n = 2, Eq. (3)
obviously holds since there exists only one parameter α2

1.
We suppose that Eq. (3) holds for all n ≤ k and show that

it also holds for n = k + 1. Assuming αk
1 = . . . = αk

k−1 = α

holds, we prove αk+1
1 = . . . = αk+1

k = α also holds.

First, assume that α < αk+1
1 holds and derive a contradic-

tion. Now consider that a location profile x = (x1, . . . , xk)
such that α < x1 < . . . < xk < αk+1

1 holds. In this case,
the outcome of the mechanism f is f(x) = x1. If an agent
k whose location is the largest among all k agents adds an-
other identifier k′ and reports xϕk = (xk, xk), then the out-
come changes to f(xϕk , x−k) = xk. By this manipulation,
k’s cost decreases from xk − x1 to 0. This contradicts the
assumption of false-name-proofness. From symmetry, the
same argument can be applied to αk+1

k < α.
Next, assume that there exists j ∈ {1, . . . , k − 1} such

that αk+1
j ≤ α < αk+1

j+1 holds and derive a contradiction.
Consider a location profile x = (x1, . . . , xk) such that α <
x1 < . . . < xk < αk+1

j+1 . In this case, we have f(x) = x1. If

agent l = k − j (whose location is the (k − j)-th smallest
among the k agents) reports xϕl = (xl, xl), the outcome
becomes f(xϕl , x−l) = xl. By this manipulation, l’s cost
decreases from xl − x1 to 0. This contradicts false-name-
proofness. From symmetry, we can apply the same argument
to αk+1

j < α ≤ αk+1
j+1 .

Theorem 2 means that f is false-name-proof if and only
if it has a fixed parameter α regardless of the number of
agents and locates a facility based on the following rule.
Given a reported location profile x, f locates a facility at
α if α is between the smallest and largest locations among
the reported locations; otherwise, it locates at the closest
location to α among the reported locations.

Since we can obtain the leftmost and the rightmost mech-
anism by setting the parameter α to −∞ and ∞, respec-
tively, both mechanisms satisfy false-name-proofness. How-
ever, since the median mechanism cannot be represented in
this form, it does not satisfy false-name-proofness. In this
way, Theorem 2 allows us to easily verify if a mechanism
satisfies false-name-proofness.

One might think that a mechanism, which always locates
a facility at a pre-defined point regardless of the agents’
reports, satisfies false-name-proofness. This is true; there is
no incentive for agents to participate at all. Even though
it is false-name-proof, we cannot represent it in the form of
Theorem 2 because it is not Pareto efficient. However, it
is straightforward to obtain the following corollary that can
deal with such non-efficient mechanisms.

Corollary 1. A mechanism f is false-name-proof and
anonymous if and only if there exist three real numbers αL, α,
αR(αL ≤ α ≤ αR) such that for all n ∈ N and for all re-
ported location profiles x = (x1, . . . , xn) ∈ Rn,

f(x) = med(x1, . . . , xn, αL,

n−1︷ ︸︸ ︷
α, . . . , α, αR). (4)

The additional parameters αL and αR define the range of
the mechanism; the mechanism described in Corollary 1 al-
ways locates a facility in the range [αL, αR]. Indeed, Eq. (4)
can describe the above mechanism by defining the parame-
ters as αL = αR = α. Clearly, if we set these two parameters
as −∞ and ∞, respectively, we obtain Theorem 2.

Procaccia and Tennenholtz [8] extended the facility loca-
tion problem on a real line to a domain where each agent i
owns ωi locations xi = (xi,1, . . . , xi,ωi). The domain is still
single-peaked; when an agent hopes to minimize the sum of
distances to her locations, her peak is the median point of
her locations. As stated in Section 1.2, we can easily ap-
ply Theorem 2 to general single-peaked domains. Thus, we
obtain the following corollary.

Corollary 2. A mechanism f for the multiple locations
setting is false-name-proof, Pareto efficient, and anonymous
if and only if there exists a real number α such that for all
n ∈ N, for all ωi|i∈N , and for all reported location profiles
x = (x1, . . . ,xn) ∈ Rn,

f(x) = med(med(x1), . . . , med(xn),

n−1︷ ︸︸ ︷
α, . . . , α). (5)

Procaccia and Tennenholtz [8] developed a valuable mech-
anism, which creates ωi copies of the median of each agent i
and returns the median point among all copies. In their set-
ting, the number of locations ωi owned by agent i is public.
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Table 1: Summary of the approximation ra-
tios achieved by deterministic strategy-proof/false-
name-proof mechanisms on a real line. UB and LB
indicate upper and lower bounds. SP and FNP in-
dicate strategy-proof and false-name-proof.

SP FNP

Social Cost
UB: 1 UB: O(n) (Thm. 4)
LB: 1 LB: Ω(n) (Thm. 3)

Maximum Cost
UB: 2 ([8]) UB: 2
LB: 2 ([8]) LB: 2 (Thm. 5)

This means that the domain is not anonymous; a change of
agents’ location profiles affects the outcome. In contrast, we
deal with anonymous mechanisms in the above corollary by
assuming that ωi is the private information of i.

3.2 Approximation Ratios
In this subsection, we analyze the performance of false-

name-proof mechanisms from the viewpoint of approximate
mechanism design without money [8]. Table 1 summarizes
the results of this section. Our results, shown in the right-
most column, provide tight bounds of the approximation
ratios for both social and maximum costs.

3.2.1 Social Cost
We first consider social cost as an objective function and

show the lower bound of the approximation ratio achieved
by deterministic false-name-proof mechanisms for it in The-
orem 3. Theorem 4 shows that the lower bound is tight.

Theorem 3. Any deterministic false-name-proof mecha-
nism has an approximation ratio of Ω(n) for social cost.

Proof. First, consider a location profile x = (0, 1) and
assume that f(x) = y ∈ R. If y ̸= 0, then consider an-
other location profile x′ = (0, . . . , 0, 1) where |x′| = n. From
false-name-proofness, y′ = f(x′) must satisfy |y′| ≥ |y| =
cost(0, f(x)). In this case, the social cost with respect to
x′ becomes (n − 1)|y′| + |y′ − 1| ≥ (n − 1)|y| = (n − 1) ·
cost(0, f(x)), which depends on the number of agents n. If
y = 0, we can apply a similar argument by considering a
location profile x′ = (0, 1, . . . , 1).

Theorem 4. The leftmost mechanism has an approxima-
tion ratio of n − 1 for the social cost.

Proof. The leftmost mechanism is a false-name-proof
mechanism whose parameter α is defined as −∞. For any
reported location profile x, the approximation ratio of the
leftmost mechanism for the social cost with respect to x is
defined as

∑
i ̸=1 |xi − x1|/∑i̸=⌈n/2⌉ |xi − x⌈n/2⌉|. Here the

denominator is the social cost of the median mechanism that
has an approximation ratio of 1 for social cost. This ratio is
at most∑

i ̸=1 |xn − x1|∑
i=1,n |xi − x⌈n/2⌉| =

(n− 1)(xn − x1)

xn − x1
= n− 1,

and we have equality if x satisfies x1 < x2 = . . . = xn.

3.2.2 Maximum Cost
In contrast to Section 3.2.1, we consider maximum cost as

an objective function in this subsection. First, we show the
lower bound of an approximation ratio for maximum cost.

Theorem 5. Any deterministic false-name-proof mecha-
nism has an approximation ratio of at least 2 for maximum
cost.

The proof is straightforward. It was shown by Procaccia
and Tennenholtz [8] that any deterministic strategy-proof
mechanism has an approximation ratio of at least 2 for
maximum cost. Since false-name-proofness implies strategy-
proofness, the lower bound does not decrease if we require
false-name-proofness.

As stated in Section 3.1, the leftmost mechanism is false-
name-proof. Furthermore, the leftmost mechanism has an
approximation ratio of 2 for maximum cost by [8]. This
implies that the bound obtained in Theorem 5 is tight.

4. EXTENDED RESULTS
In Section 3, we showed a basic result on false-name-proof

mechanisms on a real line. We then extend the result in
two directions. In Section 4.1, we discuss the bound of ap-
proximation ratios achieved by randomized false-name-proof
mechanisms. In Section 4.2, we characterize deterministic
false-name-proof mechanisms on a tree.

4.1 Randomized Mechanisms
Our results shown in Section 3.2 suggest the difficulty of

designing a deterministic false-name-proof mechanism that
achieves good approximation ratios, even if the domain is
a real line. One natural approach to this problem is to use
randomized mechanisms, which return a probability distri-
bution over a real line for a given location profile. In this
subsection, we discuss whether allowing randomization en-
ables mechanisms to achieve better approximation ratios.

First, let us introduce a mechanism called left-right-middle,
which was developed by Procaccia and Tennenholtz [8].

Mechanism 1 (Left-Right-Middle). Given a location
profile x = (x1, . . . , xn), the left-right-middle mechanism lo-
cates a facility at x1 with probability 1/4, xn with probability
1/4, and (x1 + xn)/2 with probability 1/2.

Note that the cost of an agent is defined as the expected
distance from the location. Also, approximation ratios can
be redefined over a distribution. Now we confirm that the
left-right-middle mechanism is false-name-proof and calcu-
late the approximation ratio for social cost.

Theorem 6. The left-right-middle mechanism is false-
name-proof and has an approximation ratio of n/2 for social
cost.

Proof. First we show that the left-right-middle mecha-
nism is false-name-proof. The mechanism defines the out-
come depending only on the leftmost and rightmost loca-
tions. Thus, from a similar argument for strategy-proofness,
no agent can be better off by any false-name manipulations.

We now turn to proving that the left-right-middle mecha-
nism is n/2-approximation. For any reported location profile
x, the approximation ratio of the left-right-middle mecha-
nism for social cost with respect to x is defined as

1
4

∑
i |xi − x1|+ 1

4

∑
i |xi − xn|+ 1

2

∑
i |xi − x1+xn

2
|∑

i |xi − x⌈n/2⌉| .

This is at most
1
4
∑

i∈N (xi−x1)+ 1
4
∑

i∈N (xn−xi)+
1
2
∑

i∈N (xn− x1+xn
2 )∑

i=1,n |xi−x⌈n/2⌉|
=

n
2 (xn−x1)

xn−x1
= n

2
,
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and equality holds if x satisfies x1 < x2 = . . . = xn.

This shows us that with randomization, we can slightly
improve the social cost than with deterministic mechanisms,
e.g., the leftmost mechanism, when the number of agent n
is large. However, from an algorithmic point of view, the
performances of these mechanisms are essentially the same:
both have an approximation ratio of O(n) for social cost.
Thus, we next discuss if there exist randomized false-name-
proof mechanisms which have an essentially better approxi-
mation ratio for social cost. We show a lower bound of the
approximation ratio for social cost and answer the question.

Theorem 7. Any randomized false-name-proof mechanism
has an approximation ratio of Ω(n) for social cost.

Proof. Consider arbitrary randomized false-name-proof
mechanism f . Let x = (0, 1) be a location profile when
there are two agents and let P = f(x) be the outcome dis-
tribution over R. Intuitively, cost(0, P ) + cost(1, P ) ≥ 1
holds (formally proved in [8], Lemma 2.6). Thus, we assume
cost(1, P ) ≥ 1/2 without loss of generality.

Then, we consider the case with n agents 1, . . . , n and the
reported location profile x′ = (0, 1, . . . , 1). Let P ′ = f(x′)
be the outcome distribution. Since f is false-name-proof,
cost(1, P ′) ≥ cost(1, P ). Thus, the social cost is at least
(n − 1)/2. On the other hand, the optimal solution with
respect to the profile x′ is to locate a facility at 1, in which
the social cost is 1. Thus, the ratio is (n− 1)/2.

That is, even if randomization is allowed, the approxima-
tion ratio of a false-name-proof mechanism for social cost
ever depends on the number of agents n.

In contrast to social cost, we can obtain a tight bound
for maximum cost from the result of Procaccia and Tennen-
holtz [8]. They showed that the left-right-middle mechanism
achieves an optimal approximation ratio of 3/2 for maximum
cost. Furthermore, as shown in Theorem 6, the left-right-
middle is false-name-proof. Thus, the tight bound of the
approximation ratio for maximum cost is 3/2.

4.2 Location on a Tree
Several application domains of facility locations have much

more complicated structures, i.e., graph structure, than a
simple line. Thus, facility location problems on a graph are
natural extensions of the 1-dimensional case to such appli-
cation domains, as discussed in Section 3. One simple struc-
ture of graphs is a tree [1, 9]. Therefore, we characterize
deterministic false-name-proof mechanisms on a tree.

First, let us introduce additional notations. Let G be a
tree, which is a finite connected graph composed of the union
of a finite number of curves of finite length and contains no
cycle. Let L(G) ⊂ G be a set of leaves of G. For any
two points p, q ∈ G, let [p, q] denote the path between p, q.
Note that we can define a unique path [p, q] for all p, q since
G contains no cycle. Also, let d(p, q) denote the distance
between two points p, q, which is defined as the path-length
between the two points. When a facility is located at y ∈ G,
the cost of an agent i with true location xi ∈ G is defined
as cost(xi, y) = d(xi, y).

Although each agent still has a peak on the tree G, this
setting is no longer a single-peaked domain because we can-
not order all the points on the tree G according to any linear
order in which every agent has a single-peaked preference.

Thus, we cannot straightforwardly apply our result obtained
in Section 3.1 to this setting.

Let us introduce a well-known (group) strategy-proof mech-
anism, which is an generalization of the median mechanism
on a real line. We refer to it as the tree-median mechanism.

Mechanism 2 (Tree-Median). A tree-median mech-
anism on a tree G has a fixed parameter (root) β ∈ G and,
for all n and for all reported location profiles, starts from
β. As long as the current point has a subtree that contains
at least n/2 locations, it smoothly moves down this subtree.
When it reaches a point that does not have such a subtree,
locates a facility at this point.

As stated in Alon et al. [1], the tree-median mechanism
achieves the optimal approximation ratio for social cost.
However, obviously it is not false-name-proof, since it be-
haves in the same manner as the original median mechanism
when all agents are on a single path.

We then characterize false-name-proof mechanisms on a
tree. First, to simplify notations, let us define a Pareto
efficient set with respect to a given location profile.

Definition 5 (Pareto Efficient Set). For a tree G
and for a location profile x = (x1, . . . , xn) ∈ Gn, a set of
points PE(x) ⊆ G is said to be Pareto-efficient for x if ∀y ∈
PE(x), ∀y′ ∈ G, y′ does not dominate y for x.

Here, we say y′ ∈ G dominates y ∈ G for a location pro-
file x if ∀i ∈ N, d(xi, y) ≤ d(xi, y

′) and ∃j ∈ N, d(xj , y) <
d(xj , y

′). By using this notation, we define a class of mech-
anisms on a tree called Pareto-improving relocation rules.

Mechanism 3 (Pareto-Improving Relocation).
A mechanism f on a tree G is a Pareto-improving reloca-

tion rule if it has a fixed point β ∈ G such that for all n ∈ N
and for all reported location profiles x = (x1, . . . , xn) ∈ Gn,

f(x) = arg min
z∈PE(x)

d(z, β). (6)

Now we show our characterization theorem; a class of
false-name-proof, Pareto efficient, and anonymous mecha-
nisms consists exactly of Pareto-improving relocation rules.
It is shown separately in Lemmas 3 and 4.

Theorem 8. For any tree G, a mechanism f is false-
name-proof, Pareto efficient, and anonymous if and only if
it is a Pareto-improving relocation rule.

Lemma 3. If a mechanism f for a tree G is false-name-
proof, Pareto efficient, and anonymous, then it is a Pareto-
improving relocation rule.

Proof. Consider a deterministic mechanism f that is
false-name-proof, Pareto efficient, and anonymous. Since
f is deterministic, it returns a point with probability 1 for
a reported location profile. Now choose a location profile
xL that exactly contains every leaf L(G) of the tree G.
We then prove that f is a Pareto-improving relocation rule
with a parameter β = f(xL). More precisely, we show that
f(x) = arg minz∈PE(x) d(z, β) holds for the above β = f(xL)
and any location profile x.

First, we show that f(xL, x) = β holds for all x. Sup-
pose not; there exists at least one location profile x such
that f(xL, x) ̸= β. Here, let f(xL, x) indicate an outcome
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Figure 1: Sequence p1, p2, . . . , pk in the proof of
Lemma 3. Note that x = (x1, x2). False-name-
proofness implies f(x, p1, p2, . . . , pk) = f(x). However,
it contradicts Eq. (7).

location for an input location profile that is a joint of two
location profiles, xL and x. From Pareto efficiency, there
exists at least one location xL

i in the profile xL such that
d(xL

i , f(xL, x)) < d(xL
i , β). Thus, when xL is a true loca-

tion of the agents, agent i at xL
i can strictly reduce her cost

by reporting (xL
i , x) under false identifiers. This contradicts

the assumption that f is false-name-proof.
Next, let us show that

∀x such that β ∈ PE(x), f(x) = β. (7)

Suppose not; there exists at least one profile x such that
β ∈ PE(x) ∧ f(x) ̸= β. From Pareto efficiency, there exists
at least one location xi in the profile x such that d(xi, β) <
d(xi, f(x)). Thus, when x is a true location profile, agent i
at xi can strictly reduce her cost by reporting (xi, x

L). This
contradicts the assumption that f is false-name-proof.

Finally, let us show that

∀x such that β ̸∈ PE(x), f(x) = γ (8)

where γ = arg minz∈PE(x) d(z, β). Suppose not; there exists
at least one profile x such that β ̸∈ PE(x)∧ f(x) ̸= γ. From
Pareto efficiency, f(x) ∈ PE(x) holds. Then we can move
from γ toward β with distance d(γ, f(x))−ϵ and refer to the
point as p1. For this p1, there exists at least one location
xi such that ∀z ∈ [γ, p1], d(xi, z) < d(xi, f(x)). If f(x, p1) ∈
PE(x) \ f(x), there exists at least one agent who strictly
prefers f(x, p1) to f(x). She can reduce her cost by adding a
location p1 under a false identifier. Also, if f(x, p1) ∈ (γ, p1],
agent i at xi has an incentive to report (xi, p

1). Note that
(γ, p1] indicates a half-open interval. Thus, from false-name-
proofness, f(x, p1) = f(x) must hold.

If β ∈ (γ, p1], the above equation contradicts Eq. (7). If
β ̸∈ (γ, p1], we can construct a finite sequence of points
p1, p2, . . . , pk by applying the same argument (see Fig. 1)
and obtain β ∈ (γ, pk] ∧ f(x, p1, . . . , pk) = f(x) ̸= β. This
contradicts Eq. (7).

Lemma 4. If a mechanism f for a tree G is a Pareto-
improving relocation rule, then it is false-name-proof, Pareto
efficient, and anonymous.

Proof. Clearly, a Pareto-improving relocation rule is
Pareto efficient and anonymous. To prove this lemma, it
suffices to show that f is false-name-proof if it is a Pareto-
improving relocation rule.

From the definition, a Pareto-improving relocation rule f
has a fixed parameter β ∈ G. Let us fix a location profile
x−i and consider false-name manipulations by i. If β ∈
PE(x−i) holds, f always locates a facility at β regardless
of i’s strategy and satisfies false-name-proofness. Then we

focus on showing that no false-name manipulation strictly
reduces her cost when β ̸∈ PE(x−i) holds.

Let us define a point γ = arg minz∈PE(x−i) d(z, β). From
the definition of a Pareto-improving relocation rule, we have
f(xϕi , x−i) ∈ [γ, β] for any xϕi and f(xi, x−i) =
arg minz∈[γ,xi] d(z, β) for any xi. This means that f(xi, x−i)
is the closest point to xi in the range [γ, β]. Thus, we obtain
d(xi, f(xi, x−i)) ≤ d(xi, f(xϕi , x−i)) for any xi and xϕi .

Theorem 8 can be considered an extension of the result
by Schummer and Vohra [9], which characterized the class
of strategy-proof and Pareto efficient mechanisms on a tree.
Now let us introduce the relationship between these two
characterizations. We assume in this paper that mechanisms
are anonymous, while [9] did not. With the assumption of
anonymity, mechanisms characterized in [9] behave in the
same manner as those described in Eq. (1), when all agents
are on a single path. To achieve false-name-proofness when
all agents are on a single path, each “partial”mechanism de-
fined on each single path must be described in Eq. (2); for
any two leaves l1, l2 ∈ L(G), the path [l1, l2] has a fixed pa-
rameter αl1,l2 ∈ [l1, l2]. Here, as discussed in [9], these par-
tial mechanisms must be self-consistent in some way; they
must agree on the intersection of their paths. This consis-
tency requires that each parameter of each partial mecha-
nism must be defined as the closest point to a fixed β ∈ G
on the path, which is identical to Mechanism 3.

5. DISCUSSIONS
In the literature of social choice and mechanism design,

several properties have been introduced. In this section,
we clarify the connections between false-name-proofness and
three other properties in facility location problems on a tree.

5.1 Population Monotonicity
Population monotonicity in public goods environments

was originally identified in Ching and Thomson [3] Infor-
mally, population monotonicity requires that the arrival of a
new agents affects all agents initially present in the same di-
rection. However, with the assumption of Pareto efficiency,
we can define the property in a more restricted way:

Definition 6 (Population Monotonicity). A mech-
anism f is population monotonic if ∀n ∈ N, ∀x, ∀j ∈ N ,
∀i ̸= j, cost(xi, f(x)) ≥ cost(xi, f(x−j)).

This is somehow reminiscent of false-name-proofness. Both
deal with the change of the number of agents. The following
theorem shows the equivalence of these two properties.

Theorem 9. Under the assumptions of Pareto efficiency
and anonymity, a mechanism f is population monotonic if
and only if it is false-name-proof.

Proof. Ching and Thomson [3] gave a characterization
of population monotonic mechanisms under the assumption
of Pareto efficiency. Their characterization is identical to our
characterization of false-name-proofness (Theorem 8).

Note that without the assumption of Pareto efficiency,
false-name-proofness and population monotonicity do not
coincide even in the case of a real line. Consider the fol-
lowing mechanism for a real line: if n < 3, then locate a
facility at the point that is slightly smaller than the left-
most reported location, otherwise use the leftmost mecha-
nism. This mechanism is population monotonic, although it
is not false-name-proof (not even strategy-proof).
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5.2 Group-strategyproofness
Group-strategyproofness has been widely discussed in eco-

nomics. A mechanism is group-strategyproof if for any loca-
tion profile and any coalition of agents, there is no joint de-
viation of the coalition such that every agent in the coalition
strictly reduces her cost. For the connection to false-name-
proofness, we show the next theorem. For space reasons, we
omit the proof.

Theorem 10. Under the assumptions of Pareto efficiency
and anonymity, any false-name-proof mechanism f is group-
strategyproof.

It has been known that the tree-median mechanism is
group-strategyproof. However, as stated in Section 4.2, it
is not false-name-proof. In other words, the class of false-
name-proof mechanisms is a strict subset of the class of
group-strategyproof mechanisms under the assumptions of
Pareto efficiency and anonymity.

5.3 Anonymity-proofness
Anonymity-proofness, which was first proposed by

Conitzer [4], is an extension of false-name-proofness. First,
to define anonymity-proofness, we introduce the notion of
participation. A mechanism f satisfies participation if ∀n ∈
N, ∀i ∈ N , ∀x−i, ∀xi, cost(xi, f(xi, x−i)) ≤ cost(xi, f(x−i)).
That is, for each agent, it never hurts her to join the mech-
anism as long as she behaves sincerely.

Definition 7 (Anonymity-proofness). A mechanism
f is anonymity-proof if it is false-name-proof and satisfies
participation.

The next theorem shows the equivalence of anonymity-
proofness and false-name-proofness.

Theorem 11. Under the assumptions of Pareto efficiency
and anonymity, a mechanism f is anonymity-proof if and
only if f is false-name-proof.

Proof. From the definition of anonymity-proofness, f is
false-name-proof if it is anonymity-proof. To prove this the-
orem, it suffices to show that f satisfies participation if it
is false-name-proof. From Theorem 8, a false-name-proof f
is a Pareto-improving relocation rule; it has a parameter β.
Now let us fix the location profile x−i reported by agents
except i and focus on i’s strategy.

Let us define γ = arg minz∈PE(x−i) d(z, β). Note that
f(x−i) = γ holds from the definition of the Pareto-improving
relocation rule. If PE(xi, x−i)∩(γ, β] = ∅ holds, f always lo-
cates a facility at γ regardless whether agent i participates.
Thus, f satisfies participation.

If PE(xi, x−i) ∩ (γ, β] ̸= ∅ holds, we can find a point γ′

such that γ′ = arg minz∈PE(xi,x−i) d(z, β)∧γ′ ∈ (γ, xi]. Here

f(xi, x−i) = γ′ holds from the definition of Pareto-improving
relocation rule. Thus, we obtain cost(xi, f(x−i)) = d(xi, γ)
> d(xi, γ

′) > cost(xi, f(xi, x−i)), and f satisfies participa-
tion.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we presented a case study of false-name-

proof mechanism design without money by dealing with fa-
cility location problems. We first characterized determinis-
tic false-name-proof mechanisms on a real line and estab-
lished the tight bounds of approximation ratios. We then

discussed the approximation ratios achieved by randomized
false-name-proof mechanisms. Also, we characterized de-
terministic false-name-proof mechanisms on a tree. Fur-
thermore, we clarified the connections between false-name-
proofness and other related properties.

We outline our future direction of false-name-proof mech-
anism design without money. To the best of our knowl-
edge, there exists no work that discussed the effect of false-
name manipulations in private goods environments without
monetary transfers, e.g., resource allocations [5]. Intuitively,
false-name manipulations must become much more powerful
strategic behaviors in such environments. We would like to
find a solution to prevent false-name manipulations, eval-
uate it using techniques of approximate mechanism design
without money, and characterize the solutions.
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