
Efficient Planning in R-max

Marek Grześ and Jesse Hoey
David R. Cheriton School of Computer Science, University of Waterloo

200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
{mgrzes, jhoey}@cs.uwaterloo.ca

ABSTRACT
PAC-MDP algorithms are particularly efficient in terms of the num-
ber of samples obtained from the environment which are needed by
the learning agents in order to achieve a near optimal performance.
These algorithms however execute a time consuming planning step
after each new state-action pair becomes known to the agent, that
is, the pair has been sampled sufficiently many times to be consid-
ered as known by the algorithm. This fact is a serious limitation on
broader applications of these kind of algorithms.

This paper examines the planning problem in PAC-MDP learn-
ing. Value iteration, prioritized sweeping, and backward value it-
eration are investigated. Through the exploitation of the specific
nature of the planning problem in the considered reinforcement
learning algorithms, we show how these planning algorithms can
be improved. Our extensions yield significant improvements in all
evaluated algorithms, and standard value iteration in particular. The
theoretical justification to all contributions is provided and all ap-
proaches are further evaluated empirically. With our extensions,
we managed to solve problems of sizes which have never been ap-
proached by PAC-MDP learning in the existing literature.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial Intellig-
ence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Theory

Keywords
Reinforcement learning, Planning, MDP, Value Iteration

1 Introduction
The key research challenge in the area of reinforcement learning
(RL) is how to balance the exploration-exploitation trade-off. One
of the best approaches to exploration in RL, which has good the-
oretical properties, is so called PAC-MDP learning (PAC means
Probably Approximately Correct). State-of-the-art examples of this
idea are E3 [9] and R-max [3]. PAC-MDP learning defines the ex-
ploration strategy which guarantees that with high probability the
algorithm performs near optimally for all but a polynomial num-
ber of time steps (i.e., polynomial in the relevant parameters of the
underlying process). This fact means that PAC-MDP algorithms

Cite as: Efficient Planning in R-max, Marek Grześ and Jesse Hoey, Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. 963-970.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

are considerably efficient in terms of the number of samples which
are needed during learning in order to achieve a near optimal per-
formance. These algorithms however execute a time consuming
planning step after each new state-action pair becomes known to
the agent, i.e., the pair was sampled sufficiently many times to be
considered as known by the algorithm, and this is a serious limita-
tion against broader applications of these kind of algorithms [21].

This paper examines the planning problem in PAC-MDP learn-
ing. A number of algorithms are investigated with regard to plan-
ning in PAC-MDP RL (this includes value iteration, prioritized
sweeping, and backward value iteration), and the contributions of
this paper can summarized as follows: First, we show how the stan-
dard R-max algorithm can reduce the worst case number of plan-
ning steps from |S||A| to |S|. Second, exploiting the special nature
of the planning problem in considered RL algorithms, the new up-
date operator is proposed which updates only the best action of each
state until convergence within the given state. This approach yields
significant improvements in all evaluated algorithms, and in stan-
dard value iteration in particular. Next, an extension is proposed
to the prioritized sweeping algorithm which again exploits proper-
ties of planning problems in PAC-MDP learning. Specifically, only
policy predecessors of each state are added to the priority queue
in contrast to adding all predecessors as in the standard prioritized
sweeping algorithm. Finally, we apply backward value iteration
(BVI) to planning in R-max, and we show that the original algo-
rithm from the literature [4] can fail on broad classes of MDPs. We
show the problem, and after that our correction to the BVI algo-
rithm is proposed for the general case. Then, our extensions to the
corrected version of BVI which are again specific to planning in
PAC-MDP learning are proposed. The theoretical justification to
all contributions is provided and all approaches are further evalu-
ated empirically on two domains.

Regardless which particular PAC-MDP algorithm is considered,
the time consuming planing step is required after a new state-action
pair becomes known. This problem applies also to other model-
based RL algorithms which are not PAC-MDP, such as the Bayesian
Exploration Bonus algorithm [10]. Our work is to improve the
planing step of these kind of algorithms, and it applies to all ex-
isting flavours of PAC-MDP learning [16, 19]. In this paper, we are
focusing on R-max, a popular example of PAC-MDP learning, and
our work is equally applicable to other related model-based RL al-
gorithms (including those which heuristically modify rewards [1]).

2 Background
The underlying mathematical model of the RL methodology is the
Markov Decision Process (MDP). An MDP is defined as a tuple
(S, A, T, R, γ), where s ∈ S is the state space, a ∈ A is the action
space, T : S×A→ S is the transition function, R : S×A×S→ R

963

the reward function (which is assumed here to be bounded above
by the value Rmax), and 0 ≤ γ ≤ 1 is the discount factor which
determines how the long-term reward is calculated from immedi-
ate rewards [15]. The problem of solving an MDP is to find a
policy (i.e., mapping from states to actions) which maximizes the
accumulated reward. A Bellman equation defines optimality condi-
tions when the environment dynamics (i.e., transition probabilities
and a reward function) are known [2]. In such a case, the prob-
lem of finding the policy becomes a planning problem which can
be solved using iterative approaches like policy and value iteration
[2]. These algorithms take (S, A, T, R, γ) as an input and return a
policy which determines which action should be taken in each state
so that the long term reward is maximized. In algorithms which
represent the policy via the value function, Q(s, a) reflects the ex-
pected long term reward when action a is executed in state s and
V (s) = maxa Q(s, a).

The policy and value iteration methods require access to an ex-
plicit, mathematical model of the environment, that is, transition
probabilities, T , and the reward function, R, of the controlled pro-
cess. When such a model is not available, there is a need for algo-
rithms which can learn from experience. Algorithms which learn
the policy from the simulation in the absence of the MDP model
are known as reinforcement learning [18, 2].

The first major approach to RL is to estimate the missing model
of the environment using, e.g., statistical techniques. The repeated
simulation is used to approximate or average the model. Once
such an estimation of the model is available, standard techniques
for solving MDPs are again applicable. This approach is known
as model-based RL [17]. This paper investigates a special type of
model-based RL which is known as PAC-MDP learning.

An alternative class of approaches to RL which are not consid-
ered in this paper does not attempt to estimate the model of the
environment, and because of that is called model-free RL. Algo-
rithms of this type directly estimate the value function or a policy
[13] from repeated simulation. The standard examples of this ap-
proach constitute Q-learning and SARSA algorithms [18].

PAC-MDP learning is a particular approach to exploration in RL
and is based on optimism in the face of uncertainty [9, 3]. Like
in standard model-based learning, in PAC-MDP model-based algo-
rithms, the dynamics of the underlying MDP are estimated from
data. If a certain state-action pair has been experienced enough
times (parameter m controls this in R-max), then the estimated
dynamics are close to the true values. The optimism under un-
certainty plays a crucial role when dealing with state-action pairs
which have not been experienced m times. For such pairs, the algo-
rithm assumes the highest possible value of their Q-values. State-
action pairs for which n(s, a) < m are named unknown and known
when n(s, a) ≥ m where n(s, a) is the number of times the state-
action pair was experienced. When a new state action pair becomes
known, the existing approximation, M̂ , of the true model, M∗, is
used to compute the corresponding optimal policy for M̂ which
when executed will encourage the algorithm to try unknown actions
and learn their dynamics. Such an exploration strategy guarantees
that with high probability the algorithm performs near optimally
for all but a polynomial number of steps (i.e., polynomial in the
relevant parameters of the underlying MDP).

The prototypical R-max algorithm uses the standard Bellman
backup (see Algorithm 1) and value iteration to compute the policy,
π̂, for the model M̂ , where the policy π̂(s) is defined in Equation 1.

π̂(s) = arg maxa Q̂(s, a) (1)

Summarizing, the R-max algorithm works as follows: It acts

Algorithm 1 Backup(s): Bellman backup for state s

old_val← V̂ (s)

V̂ (s) = maxa

{
Q̂(s, a) = R̂(s, a) + γ

∑
s′ T̂ (s, a, s′)V̂ (s′)

}
return |old_val − V̂ (s)|

greedily according to the current V̂ . Once a new state-action pair
becomes known, it performs planning with the updated model (i.e.,
a model with a new known state-action pair), and again acts greed-
ily according to updated V̂ . A natural and the most efficient ap-
proach to planning in this scenario is to use the outcome of the
previous planning process as the initial value function for new plan-
ning, which we refer in the paper to as incremental planning. This
is assumed for all algorithms and experiments of this paper.

The proofs and the theoretical analysis of PAC-MDP algorithms
can be found in the relevant literature [8, 16]. In our analysis one
specific property of such algorithms is advocated: the optimism un-
der uncertainty which guarantees that inequality V̂ (s) ≥ V ∗(s) is
always satisfied during learning, where V ∗(s) is the optimal value
function which corresponds to the true MDP model M∗.

3 Known States in R-max
The focus of this paper is how to perform the planning step in R-
max efficiently. In original R-max, the planning step is executed ev-
ery time a new state-action pair becomes known [3] (this is also the
case in known implementations [1]). While investigating the range
of planning algorithms which are discussed below, we found that
the efficiency of planning in R-max can be improved by taking into
account the fact that the value of a given state does not change until
all its actions become known. This is because if all unknown state-
action pairs are initialized with Vmax (as is the case in R-max),
where Vmax = Rmax/(1 − γ) when γ < 1 and Vmax = Rmax

if γ = 1, then V (s) = Vmax as long as at least one action re-
mains unknown in state s. If the R-max algorithm executes the
planning algorithm after the pair (s,a) becomes known, whereas
there still exists at least one action which is unknown in s, then
only one Q-value will change its value, i.e., the value of the pair
(s,a). If, after the update, Q(s, a) < V (s) = Vmax, the value
of s will not change. Action a will not be executed next time in
state s, and another action will be used. In this way, unknown ac-
tions are correctly explored by policy π̂ from Equation 1, but we
observe here that the update is useless. Our novel improvement,
which comes from the above observation, is to extend the notion
of known state-action pairs by a notion of a known state, where
known(s) = true iff ∀a known(s, a) = true. With this exten-
sion, our approach is to execute the planning step in R-max only
when a new state, s, becomes known (i.e., known(s) becomes
true). The only issue now is that the action selection according
to Equation 1 has be changed in order to deal properly with states
for which known(s) = false. This can be addressed by select-
ing actions using Algorithm 2 instead of Equation 1. As explained

Algorithm 2 GetAction(s): a modified action selection method
if known(s) then

return π̂(s) {see Equation 1}
else

return any action a for which known(s, a) = false
end if

above, this procedure will not change the exploration of the R-
max algorithm when ties are broken randomly. Normally, when

964

the planning step is executed after learning each new state-action
pair, its Q-value is Q(s, a) ≤ V (s) = Vmax when there exists
at leat one unknown action. When ties are broken randomly (this
is for the case when Q(s, a) = Vmax for updated known action
a), this is equivalent to postponing planning and executing another
action which is still unknown when known(s) = false.

This improvement is particularly useful for planning algorithms
which do the systematic update of the entire Q-table as value it-
eration does, because when known(s) = false the entire plan-
ning process changes Q-values only of those actions which have
just become known and there are no changes in Q-values of any
other states, whereas value iteration will iterate and perform (use-
less) Bellman updates for all sates. Experimental validation of our
extension is in the experimental section of the paper. Since, this im-
provement yielded a considerable speed-up and represents a more
efficient implementation of R-max, if not stated otherwise, we use
this extension in all experiments presented in the paper. The main
goal of this paper is to speed up the R-max algorithm with regard to
planning, and our approach presented here reduces the number of
executions of the planner (regardless which planner is used) from
O(|S||A|) to O(|S|).

4 Best-actions Only Updates
From this point, we are looking at ways of improving planning al-
gorithms. The first extension which is introduced in this section
is applicable to all algorithms investigated in the paper. However
in order to make the presentation easier to understand by the reader
and to explain the intuition which is behind this extension, we show
firstly how it applies to value iteration. Its application to other plan-
ning approaches is discussed in detail in subsequent sections.

Lets assume the standard scenario of R-max learning when value
iteration is used as a planning method, together with the incremen-
tal approach indicated at the end of Section 2. This means that the
initial value function at the beginning of planning is always opti-
mistic with regard to the value which is the result of planning. Ad-
ditionally, under conditions specified below, the value function af-
ter each Bellman backup is also optimistic with regard to the value
function after the previous Bellman backup (in R-max, values are
successively decreased to reflect the change in the model which
made the model less optimistic when a new state became known).
The intuition which motivates Algorithm 3 is that the change of
V (s) in a given iteration can be triggered only by the change of the
Q-value of the best action of s because all Q(s, a) are always op-
timistic with regard to the optimal value function and to the value
after succeeding Bellman backups, and we argue here that in each
state the action which has highest Q(s, a) should be updated first.
This can be explained as follows. If the value of the best action
will not change after its update, which means that V (s) will not
change in the current iteration, then all other remaining actions can
be skipped in this iteration because they have lower values and they
will not influence V (s) (this explains why the for loop in Algo-
rithm 3 can backup only the best actions). If the value of the best
action changes after the update on the other hand, then another ac-
tion may be the best and it is reasonable to update currently the best
action of the same state again (this explains why the external loop
of Algorithm 3 makes sense). We recall here that in the standard
Bellman backup (see Algorithm 1) all actions are updated. Our
idea here is that it is profitable to focus Bellman backups only on
the best action of each state instead of performing updates of all
actions when optimistic initialization satisfies conditions defined
below. This concept is named best-actions only update (BAO) and
is captured by Algorithm 3.

The two formal arguments below prove that Algorithm 3 is valid.

Algorithm 3 BAO(s): best-actions only backup of state s

old_val← V (s)
repeat

best_actions = all a in s st. |Q(s, a)−maxi Q(s, i)| < ε
δ = 0
for each a in best_actions do

old_q = Q(s, a)
Q(s, a) = R(s, a) + γ

∑
s′ T (s, a, s′)maxa′ Q(s′, a′)

if |old_q −Q(s, a)| > δ then
δ = |old_q −Q(s, a)|

end if
end for

until δ < ε
return |old_val − V (s)|

DEFINITION 1. Optimistic initialization with one step mono-
tonicity (OOSM) is the special case of optimistic initialization of
the Q-table which satisfies the following property:
Q(s, a) ≥ R(s, a) + γ

∑
s′ T (s, a, s′)V (s′).

The property of OOSM initialization is satisfied, e.g., in any MDP
as long as all Q-values are initialized with Vmax. It will be shown
in what follows that planning in R-max satisfies the OOSM require-
ment as well.

In order to prove Algorithm 3, we first prove the following lemma:

LEMMA 1. If all Q(s, a) are initialized according to optimism
with one step monotonicity (OOSM), then after each individual
t + 1-st Bellman backup of the Q-table, the following inequality
is satisfied: ∀s,aQt(s, a) ≥ Qt+1(s, a), where Qt is the value
function after the previous, t-th, Bellman backup.

PROOF. We prove this lemma by induction on the number of
performed Bellman backups of Q-values. To prove the base case,
we show that the lemma is satisfied after the first Bellman backup.
This is satisfied directly by the definition of optimism with one
step monotonicity (see Definition 1). After proving the base case,
we assume that the statement holds after t Bellman backups, and
we will show that it holds after t + 1 backups using the following
argument:

Qt(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)Vt−1(s
′)

≥ R(s, a) + γ
∑
s′

T (s, a, s′)Vt(s
′) = Qt+1(s, a),

The first Bellman equation shows that the update of Qt(s, a) in the
backup t is based on values of all next states, s′, after t−1 backups,
and the third Bellman equation is analogous for the backup t + 1.
The second step is from the induction hypothesis which assumes
that Vt−1(s

′) ≥ Vt(s
′).

The following corollary results from Lemma 1:

COROLLARY 1. Q-values converge monotonically to Q∗(s, a)
when all Q(s, a) entries are OOSM initialized in value iteration.

THEOREM 1. Value iteration with best-actions only updates of
Algorithm 3 converges to the same value as standard value iteration
with the Bellman backup of Algorithm 1 when the value function is
OOSM initialized, i.e., when the optimistic initialization satisfies
Definition 1.

965

PROOF. In order to prove this theorem, it is sufficient to show
that non-best actions do not have to be updated. Lets assume that
a is a non-best action of a particular state s, i.e., an action st.
Q(s, a) < maxi Q(s, i). Because all Q-values are initially OOSM
optimistic, we know from Lemma 1 that Q(s, a) cannot be made
higher than its current value in any of the future iterations of value
iteration. It means that Q(s, a) cannot be made higher than maxi

Q(s, i) by updating Q(s, a), and the only way to make Q(s, a)
the best action in s is to reduce the value of maxi Q(s, a) which
may happen only by updating action i which satisfies maxi Q(s, i).
This shows that if the value function is initialized with OOSM op-
timism, it is sufficient to update the best actions only. Additionally,
if ∆maxi Q(s, i) < ε, V (s) cannot change in the current iteration
of value iteration (within given precision ε) and the algorithm can
move to updating other states of this iteration.

This proof makes BAO updates applicable to general value iter-
ation planning with OOSM optimistic initialization. As mentioned
before, OOSM is naturally satisfied in any MDP as long as all val-
ues are initialized with Vmax. This requirement is rather weak and
easy to satisfy and in this way applicability of BAO is substantial.

A short explanation is required on why in R-max OOSM is satis-
fied. In our approach, each new planning step starts with the value
function of the previous planning step (incremental planning). The
new MDP model is different from the previous one just in having
one more known state. Thus, all states which were known in the
previous model satisfy OOBC with equality, and the state which
has just become known still has its V (s) = Vmax which cannot be
made higher, which satisfies OOBC as well.

Due to the nature of the BAO updates, this method is expected to
yield particularly significant improvements in domains with larger
numbers of actions in each state. It also has a great potential to
improve planning in domains with continues actions, because only
a limited number of continuous actions should be updated.

5 Prioritized Sweeping for R-max
Prioritized sweeping (PS) has been popular for improved empiri-
cal convergence rate but the theoretical convergence was only ex-
pected by [12] to be provable based on the convergence results in
asynchronous dynamic programming (ADP) by observing that PS
is an ADP algorithm. The first formal proof for general PS was
recently presented by [11], and the PS algorithm of [12] was also
proved as a special case under rather a restrictive condition that
initially all states have to be assigned non-zero priority. This is a
rather restrictive assumption with regard to incremental planning
which is found in R-max because in R-max usually not all states
require being updated even once. In what follows, we prove that
PS converges when used for planning in R-max without those re-
strictive assumptions. This holds also for our extension to basic PS
(shown in Algorithm 4), which is based on the idea that it is suf-
ficient to add to the priority queue only policy predecessors s′ of
state s, defined as

PolicyPred(s) = {s′|T (s′, π(s′), s) > 0}, (2)

(see Line 6 in Algorithm 4) instead of all predecessors, defined as

Pred(s) = {s′|∃aT (s′, a, s) > 0}, (3)

as it is the case in standard PS [12].

LEMMA 2. The prioritized sweeping algorithm specified in Al-
gorithm 4 drives Bellman errors to 0 (with a required precision ε)
when executed for a newly learned state, sk, in R-max, and ini-
tializing the value function using the value function of the previous
planning step in which sk was not known.

Algorithm 4 PS-PP(sk): prioritized sweeping with policy prede-
cessors for incremental planning in R-max after state sk becomes
known
1: PQ← sk

2: while PQ 6= ∅ do
3: s← remove the first element from PQ
4: residual(s)← Backup(s)
5: if residual(s) > ε then
6: for all s′ ∈ PolicyPred(s) do
7: priority ← T (s′, a, s)× residual(s)
8: if s′ /∈ PQ then
9: insert s′ into PQ according to priority

10: else
11: update s′ in PQ if the new priority is higher
12: end if
13: end for
14: end if
15: end while

PROOF. Let F ⊂ S be the set of states which do not have sk in
their policy graph. Since, the value of sk can only decrease in the
current planning process (because in the previous planning process
it was unknown with V (sk) = Vmax, and now it becomes known
and its V (sk) ≤ Vmax), state sk will not appear in the optimal
policy graph of any state in F, therefore current values of all states
in F are correct, do not require updates, and their Bellman error is
already 0. This argument proves that states in F do not have to be
updated, and only states in S \ F should be updated, that is, policy
predecessors of sk. This proves that backward expansion of policy
predecessors in Line 6 is correct, and constitutes our extension to
the standard PS algorithm [12] for planning in R-max.

Let Ssk be S\F. Since sk is the only state in Ssk which changes
its dynamics, sk is the only state from which the modified value
function should be back-propagated. The argument of the previ-
ous paragraph showed that this back-propagation can keep updat-
ing only policy predecessors of state sk, therefore the last condi-
tion to prove is that the predecessor s′ of state s should be visited
only when residual(s) > ε. We do this by showing that if for
all s which can be reached when any action a is executed in s′,
residual(s) ≤ ε, then residual(s′) ≤ ε. This means that if all
successors of s′ change less than ε, s′ does not have to be backed
up given precision ε. This can be derived as follows:

residual(s′) = max
a
|R(s′, a) + γ

∑
s

T (s′, a, s)[V (s)

+∆V (s)]−R(s′, a)− γ
∑

s

T (s′, a, s)V (s)|

= max
a
|γ

∑
s

T (s′, a, s)∆V (s)| ≤ max
a

γ
∑

s

T (s′, a, s)|∆V (s)|

= max
a

γ
∑

s

T (s′, a, s)× residual(s)

≤ max
a

γ
∑

s

T (s′, a, s)ε = γε ≤ ε.

The first equation is the definition of residual(s′) where current
V (s′) was computed from V (s), and new V (s′) is for V (s) +
∆V (s) for each successor s of s′. Next steps are simple alge-
braic operations, and inequalities are from |a + b| ≤ |a| + |b|,
residual(s) ≤ ε, and γ ≤ 1. Backward search from sk in Algo-
rithm 4 will not expand state s′ only when all successors of s′ for a
given policy action a have residual(s) ≤ ε (s′ will be visited if at
least for one s residual(s) > ε). This ends the proof that V (s′) is

966

a) b) c)

Figure 1: An example when the original backward value itera-
tion fails on the loop

within required precision ε when the algorithm terminates.

Algorithm 4 would normally use the Backup(s) method of Al-
gorithm 1 in Line 4. The proof of Theorem 1 extends to Algo-
rithm 4 with OOSM initialization as well, and the BAO procedure
presented in Algorithm 3 can be also used in Algorithm 4 by re-
placing, in Line 4, Backup(s) with BAO(s).

6 Backward Value Iteration with Loops
Backward value iteration (BVI) is an algorithm for planning in gen-
eral MDPs with a set of terminal states [4]. This algorithm traverses
the transpose of the policy graph using breath- or dept-first search
which starts from the goal state, and checks for duplicates so that
each state is updated only once in the same iteration. States are
backed up in the order they are encountered during search. Before
applying this algorithm for planning in R-max and propose our ex-
tensions, we show that the original version of the algorithm can fail
in computing the correct value function. Let’s assume the origi-
nal version of the BVI algorithm from [4] and summarized above,
and the use of this algorithm in planning in the domain whose four
states are shown in Figure 1. First, in Figure 1a, current policy ac-
tions are shown before any updates of the current iteration of BVI.
Figure 1b shows policy actions after performing backups on states
b and d after which the policy action of state d changed (the new ac-
tion is highlighted using a think style). Figure 1c shows updates of
states a and c after which the best action of state c changed (again
the thick style shows a new action). After these updates, there is
a loop which involves states c and d, and the BVI algorithm will
not update these states in the current iteration again because each
state is updated only once, and the algorithm will also never update
these two states again in any of the future iterations, because policy
actions of all states in the loop do not lead to any state outside of
the loop (so neither c nor d will be the previous state - according
to a policy action - of any state outside of the loop). This situation
can happen in a broad class of MDPs in which states are revisited,
as in our testing domains, and applies also to stochastic actions
when all actions of all states in the loop lead to states in the loop
only. It is worth noting that in [4] where the BVI algorithm was
introduced, all domains require many steps to revisit the state (ac-
tions are not easily reversible due to velocity in the state space).
Our example shows, that the standard version of the BVI algorithm
can fail by encountering the loop in a broad class of MDPs. This
problem of the standard BVI algorithm was found empirically dur-
ing our experimentation in this research, in which the R-max agent
was getting stuck in such a loop. It is worth recalling here that
the PS-PP algorithm of the previous section expands only policy
predecessors, however it will not suffer from the same problem be-
cause PS-PP guarantees that s′ will be visited if at least for one
s residual(s) > ε, thus states which constitute the loop will be
updated as well and they will converge to proper values. The BVI

algorithm with policy predecessors and updating each state once in
each iteration will fail in this as indicated in Figure 1.

The brief analysis of Figure 1c indicates one simple solution to
the presented problem of the standard BVI algorithm. Since states
which are in the loop have other non-policy actions which lead to
states outside of the loop (e.g., state d has a non-policy action which
leads to state b), the straightforward solution to the loop problem
is to perform backward search on all predecessors of a given state
s as opposed to policy predecessors as it is the case in the original
BVI algorithm. This is the first extension to BVI which is proposed
in this paper, and the BVI algorithm modified in this way is named
LBVI which stands for BVI with loops. The LBVI algorithm with
this modification is applicable to general MDP planning. Our addi-
tional extensions to the LBVI algorithm are specific to incremental
planning in R-max which is studied in this paper. The complete
algorithm is presented in Algorithm 5. This is the standard version
of the BVI algorithm with the following extensions: (1) all prede-
cessors are used in the state expansion in Line 13 (to deal with the
problem of Figure 1), (2) residual is checked in Line 12 (to prune
the state expansion when possible), and (3) the BAO backup is ap-
plied in Line 8.

Algorithm 5 LBVI(sk): backward value iteration for incremental
planning in R-max after state sk becomes known
1: repeat
2: ∀sappended(s)← false
3: LargestResidual← 0
4: FIFOQ← sk

5: appended(sk)← true
6: while FIFOQ 6= ∅ do
7: s← remove the first element from FIFOQ
8: residual(s)← Backup(s)
9: if residual(s) > LargestResidual then

10: LargestResidual← residual(s)
11: end if
12: if residual(s) > ε then
13: for all s′ ∈ Pred(s) do
14: if appended(s′) == false then
15: append s′ to FIFOQ
16: appended(s′) = true
17: end if
18: end for
19: end if
20: end while
21: until LargestResidual < ε

LEMMA 3. The backward value iteration algorithm specified in
Algorithm 5 drives Bellman errors to 0 (with a required precision
ε) when executed for a newly learned state, sk, in R-max, and ini-
tializing the value function using the value function of the previous
planning step in which sk was not known.

PROOF. Let E ⊂ S be the set of states from which state sk

cannot be reached using any policy and non-policy actions. Since
state sk is not reachable from any state in E and sk is the only
state whose dynamics change, none of the states in E requires being
updated, hence Bellman error of all states in E is already 0.

Let Ssk be S\E. Since sk is the only state in Ssk which changes
its dynamics, sk is the only state from which the modified value
function should be back-propagated. Since the backward search
process expands all predecessors of each state and starts from sk,
all states which reach state sk (using both policy and non-policy

967

actions) will be updated. Therefore the last condition to prove
is that the predecessor s′ of state s should be visited only when
residual(s) > ε. In the prof of Lemma 2, it has been already
shown that if for all s which can be reached from s′, residual(s) ≤
ε, then residual(s′) ≤ ε. Backward search from sk in Algo-
rithm 5 will not expand state s′ only when all successors of s′

have residual(s) ≤ ε (s′ will be visited if at least for one s
residual(s) > ε). This ends the proof that when the algorithm
terminates, V (s) is within required precision ε.

Algorithm 5 would normally back up state s in Line 8 using the
Bellman backup shown in Algorithm 1. The proof of Theorem 1
extends to Algorithm 5 as well, and the BAO procedure presented
in Algorithm 3 for backing up state s can be also used in Algo-
rithm 5 by replacing, in Line 8, Backup(s) with BAO(s).

7 Empirical Evaluation
This section presents empirical evaluation of proposed approaches
to incremental planning in R-max. Planning time is the measure
that one wishes to minimize in R-max.

7.1 Algorithms
The first experiment evaluates the extension to the R-max algo-
rithm introduced in Section 3. Specifically, the standard R-max
with value iteration and action selection according to Equation 1
is compared against modified R-max with our predicate known(s)
and the action selection rule specified by Algorithm 2 instead of
using Equation 1.

The goal of the main empirical evaluation is to check how dif-
ferent extensions to standard planning algorithms improve the time
of planning, and for this reason all proposed extensions are evalu-
ated also separately to see their individual influence. Therefore, the
following configurations are evaluated in the empirical study of the
paper:

• VI: standard value iteration
• VI-BAO: value iteration with BAO updates
• PS: standard prioritized sweeping [12]
• PS-PP: standard prioritized sweeping with policy predecessors
• PS-BAO: standard prioritized sweeping with BAO updates
• PS-PP-BAO: prioritized sweeping with policy predecessors and

BAO updates
• LBVI: backward value iteration which copes will loops (back-

ward search to all predecessors)
• LBVI-RES: LBVI with residual check (Line 12 in Algorithm 5)
• LBVI-BAO: LBVI with BAO updates
• LBVI-RES-BAO: LBVI with residual check and BAO updates

All algorithms were implemented in C++, and the goal was to
provide the same amount of optimization to each algorithm. With
this in mind, the crucial element of prioritized sweeping algorithms
was the priority queue. Since, the operation of increasing the pri-
ority of the element in the priority queue is required (in Line 11 in
Algorithm 4), the trinomial heap was used because it supports this
operation in constant time [20]. In the implementation of the queue
used in LBVI, memory buffers were reused in order to have fast
operations on the FIFO queue.

As mentioned before, if not stated otherwise, all algorithms use
the modified treatment of unknown states as specified in Algo-
rithm 2 in Section 3, which significantly reduces the number of
times the planners are executed. In all experiments, the R-max pa-
rameter m was set to 5, and the planning precision ε was 10−4.
Experiments on the maze domain present the average value of 30
runs, and the hand washing domain of 10 runs. The standard error
of the mean (SEM) is shown both in graphs and in the table.

7.2 Domains

The first domain is the version of the navigation maze task which
can be found in the literature. In our implementation a scaled
up version of such a maze from [1] is used and it contains 25 ×
25 grid positions. The second domain is a simplified model of a
situated prompting system that assists multiple persons with de-
mentia to complete activities of daily living (ADL) more indepen-
dently by giving appropriate prompts when needed. Such a situa-
tion arises in a shared space, e.g. a ‘smart’ long-term care facil-
ity, or ‘smart home’ with multiple residents in need of assistance.
Prompting for each ADL-resident combination can be done using
a (PO)MDP [6], but the situation is more complex when multiple
residents are present, as prompts can interfere across ADL and be-
tween residents. The optimal solution (pursued here) is to model
the complete joint space of all residents and ADL, although ap-
proximate distributed solutions are also possible [5]. Our specific
implementation follows the description in [14]. In our case, each
MDP has 9 states and there are 3 prompts (do nothing or issue one
of the two prompts specific to the current plan step) for each state.
When prompting many clients at the same time, prompts of one
client can influence other clients, whereas other prompts cannot be
executed for more than one client at a time, e.g., audio prompts.
For example, the domain with 4 clients has 94× 34 Q(s, a) entries
in its Q-table. Other sizes can be calculated analogously.

7.3 Results

The first test was to evaluate the improvement of our modified no-
tion of states being known to the R-max algorithm as introduced in
Section 3. As specified in the first paragraph of Section 7.1, two
versions of the R-max algorithm were evaluated on the maze do-
main. These two versions of R-max were executed 30 times and the
user time was compared. The version of the algorithm with our ap-
proach to distinguish known and unknown states (from Section 3)
was 2.3 times faster than the original version. The applicability of
this extension does not depend on the planning algorithm and all
succeeding experiments use this modification to standard R-max.

Next experiments evaluate the major contributions of this paper.
Figures 2 and 3 show the evaluation of all 10 algorithms specified in
Section 7.1 on the maze domain. These algorithms determine how
planning is done, and in principle the R-max algorithm should be
able to explore in exactly the same way regardless which planning
algorithm is used. In order to verify this, the obtained results are
compared with regard to the asymptotic convergence of the R-max
algorithm, and the average cumulative reward as a function of the
episode number is presented in Figure 4. This figure shows that ex-
ploration was the same, and this can be seen as an empirical proof,
that all planning algorithms where returning the same exploration
policy at their output.

The BAO approach to updating states shows substantial improve-
ment in all three algorithms. In particular, value iteration which is
traditionally slower than, for example, prioritized sweeping signif-
icantly reduced its planning time and the number of backups. This
result is particularly significant not only to planing in R-max, but
also to general value-based planning in MDPs when initialization
satisfies the requirement of Definition 1 which uniform optimistic
initialization with Vmax does. With our BAO approach, value iter-
ation can be done much faster in a straightforward way.

A closer analysis of PS performance indicates that both policy
predecessors and BAO updates yield improvement when applied
individually, and further improvement is gained when both tech-
niques are used together. Overall with our extensions, PS when
used for incremental planning in R-max is narrowing its gap to BVI
which was shown in [4] to outperform PS in the standard case due

968

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

VI VI-BAO

PS PS-PP

PS-BAO

PS-PP-BAO

LBVI
LBVI-RES

LBVI-BAO

LBVI-RES-BAO

Time [ms]

Figure 2: Planning time in the maze experiment

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

VI VI-BAO

PS PS-PP

PS-BAO

PS-PP-BAO

LBVI
LBVI-RES

LBVI-BAO

LBVI-RES-BAO

Number of Q(s,a) backups

Figure 3: Number of Q(s,a) backups in the maze experiment

to the overhead of maintaining the priority queue.
The LBVI algorithm was evaluated with residual checking and

with BAO updates. Here, these extensions yield improvements
when applied individually, and additional gains are obtained when
they are used together. The fastest planning algorithm in this ex-
periment was LBVI with both residual check and BAO updates.

In our implementation, BVI is used with our modification which
updates all predecessors instead of policy predecessors, since this
was shown to be a straightforward solution to the loop problem of
the standard BVI algorithm as discussed in Section 6. This leads
however to an increase in the number of state expansions, but our
extensions proved to be sufficient in order to guarantee fast plan-
ning of the modified BVI algorithm. We acknowledge that there is
another direction to improve the performance of BVI by still using
policy predecessors, however the solution has to be found on how
to avoid loops which are reported in Section 6. This loop prob-
lem is detrimental for R-max agents because the agent gets stuck in
such a loop during exploration.

Results on the hand washing domain are in Table 1. The rank of

-18

-16

-14

-12

-10

-8

-6

-4

 0 2 4 6 8 10

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

/ 1
03

Number of episodes / 10

VI
VI-BAO

PS
PS-PP

PS-BAO
PS-PP-BAO

LBVI
LBVI-RES
LBVI-BAO

LBVI-RES-BAO

Figure 4: The cumulative reward of the learning agent

each algorithm is the same as in the maze domain above. The sig-
nificance of our improvements, BAO in particular, becomes more
evident when the state and action spaces are bigger. It is worth not-
ing that in the last two instances (4 and 5 clients), we were able to
do off-line planning in R-max with 5.3× 105 and 1.4× 107 state-
action pairs in the Q-table! Experiments in which it was infeasible
to wait for their completion are indicated with ‘-’.

8 Related Work
The fact that planning is a bottleneck of PAC-MDP learning has
been recently emphasized also in [21] where Monte Carlo on-line
planning algorithms for PAC-MDP learning were proposed. These
algorithms are interesting because their complexity does not de-
pend on the number of states. This is achieved by sampling C
times from each state (which limits the branching factor) and the
horizon is additionally limited by the discount factor. In this way, it
is sufficient to do Monte Carlo sampling only in the limited neigh-
bourhood of a given state. The disadvantage of these algorithms is
that they require the entire process to be repeated for each action se-
lection. Our algorithms which are proposed in this paper also make
use of the fact that when new state becomes known, mostly only
its neighbourhood needs to be updated, which is reflected very well
in our results. Our conjecture here is that the algorithms which we
propose in this paper, could be proven to have complexity depen-
dent only on the close neighbourhood of the state which triggers
the planning process. The rational for this theoretical future work
is indicated by our results in this paper. In [21] authors report re-
sults with Monte Carlo planning on a flag domain with 5 × 5 grid
and 6 flags possibly appearing, where VI did not succeed. In our
experiments of this paper, we are reporting results on large domains
where even though VI was very inefficient or did not work at all,
our extensions to VI-based planning were proven to be success-
ful. Such off-line algorithms require planning only once for each
known state and once planning is done, the policy can be used very
fast, whereas Monte Carlo methods plan for every step. Our meth-
ods could further scale the off-line methods up when used with
factored planners for MDPs [7]. We are additionally not aware of
any PAC-MDP results with off-line planning on domains as large
as those solved in this paper.

9 Conclusions
PAC-MDP algorithms are particularly efficient in terms of the num-
ber of samples which are needed by the learning agents in order to
achieve a near optimal performance. These algorithms however ex-
ecute a time consuming planning step after each new state-action
pair (or a new state according to our extension) becomes known
to the agent. This fact is a serious limitation on broader applica-
tions of these kind of algorithms. This paper examines the planning
problem in PAC-MDP learning, and seeks ways of shortening the
duration of the planning step. The contribution of this paper can be
summarized as follows:
• The number of executions of the planner can be reduced when

planning is triggered by a new state becoming known as intro-
duced in Section 3
• The new update operator, BAO, was proposed which, instead of

updating all actions of a given state once, updates only the best
action of each state but continues this updating until convergence
within the given state. This approach yields significant improve-
ments in all evaluated algorithms, and standard value iteration in
particular. This approach is also applicable beyond planning in
R-max, since optimistic initialization with Vmax can be easily
applied in general value-based MDP planning, and this contribu-
tion has potential to bear an impact on the field

969

Algorithm 1 Client 2 Clients 3 Clients 4 Clients 5 Clients
VI 7.9 ± 0.48 955.8 ± 23.30 273698.8 ± 3053.90 - -
VI-BAO 2.7 ± 0.26 86.5 ± 3.87 12721.9 ± 70.20 1671388.3 ± 6827.52 -
PS 5.1 ± 0.46 76.5 ± 3.07 7151.5 ± 98.77 788296.8 ± 2318.42 -
PS-PP 3.7 ± 0.45 45.7 ± 1.93 2394.0 ± 27.96 154282.2 ± 792.65 -
PS-BAO 1.3 ± 0.15 14.5 ± 1.16 1006.5 ± 6.11 79717.0 ± 271.98 -
PS-PP-BAO 1.4 ± 0.34 13.8 ± 1.02 602.5 ± 5.29 28601.8 ± 157.43 11956396.5 ± 194255.47
LBVI 5.3 ± 0.30 168.5 ± 9.60 24066.6 ± 202.85 - -
LBVI-RES 4.3 ± 0.30 83.6 ± 1.29 6182.4 ± 51.74 666335.2 ± 1498.05 -
LBVI-BAO 1.4 ± 0.16 16.5 ± 1.00 1183.1 ± 5.79 90647.5 ± 407.24 -
LBVI-RES-BAO 1.6 ± 0.27 11.4 ± 0.64 562.0 ± 7.35 28941.5 ± 128.09 11480025.3 ± 367755.46

Table 1: Planning times [ms] for different sizes of the hand washing domain

• An extension to the prioritized sweeping algorithm was proposed
which exploits properties of planning problems in PAC-MDP
learning. Specifically, only policy predecessors of each state are
added to the priority queue in contrast to adding all predecessors
as in the standard prioritized sweeping algorithm
• It was shown that the original backward value iteration algorithm

from the literature - which updates each state exactly once in
each iteration - can fail on a broad class of MDP domains. The
problem and one straightforward correction were shown. Then,
our extensions to the corrected version of BVI which are spe-
cific to planning in PAC-MDP learning were proposed. Specifi-
cally, it was shown that the predecessor state does not have to be
expanded in a given iteration when all its successors have their
residuals smaller than precision ε

• The instances of the hand washing domain with large state spaces
were solved, which extends applicability of the PAC-MDP para-
digm considerably beyond existing PAC-MDP evaluations which
can be found in the literature
• All presented in the paper algorithms are equally applicable to

goal-based as well as infinite horizon RL problems, because both
in prioritized sweeping and backward value iteration, planning
starts from a specific state, and it does not matter whether the
domain has a goal state or not

The theoretical justification to all contributions was provided and
all approaches were further evaluated empirically.

Regardless of the more specific details of the empirical evalua-
tion, a particularly substantial contribution of this work is that the
standard value iteration algorithm can be made considerably faster
by the straightforward application of the BAO update rule which
was proposed in this paper.

10 Acknowledgements
This research was sponsored by American Alzheimer’s Association
grant number ETAC-08-89008.

11 References
[1] J. Asmuth, M. L. Littman, and R. Zinkov. Potential-based

shaping in model-based reinforcement learning. In
Proceedings of AAAI, 2008.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[3] R. I. Brafman and M. Tennenholtz. R-max - a general
polynomial time algorithm for near-optimal reinforcement
learning. JMLR, 3:213–231, 2002.

[4] P. Dai and E. A. Hansen. Prioritizing Bellman backups
without a priority queue. In Proceedings of ICAPS, 2007.

[5] J. Hoey and M. Grześ. Distributed control of situated
assistance in large domains with many tasks. In Proc. of
ICAPS, 2011.

[6] J. Hoey, P. Poupart, A. von Bertoldi, T. Craig, C. Boutilier,
and A. Mihailidis. Automated handwashing assistance for
persons with dementia using video and a partially observable
markov decision process. Computer Vision and Image
Understanding, 114(5), May 2010.

[7] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD:
Stochastic planning using decision diagrams. In Proceedings
of UAI, pages 279–288, 1999.

[8] S. M. Kakade. On the Sample Complexity of Reinforcement
Learning. PhD thesis, Gatsby Computational Neuroscience
Unit, University College, London, 2003.

[9] M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. Machine Learning,
49:209–232, 2002.

[10] J. Z. Kolter and A. Ng. Near-Bayesian exploration in
polynomial time. In Proceedings of ICML, 2009.

[11] L. Li and M. L. Littman. Priorioritized sweeping converges
to the optimal value function. Technical report, Rutgers
University, 2008.

[12] A. W. Moore and C. G. Atkenson. Prioritized sweeping:
Reinforcement learning with less data and less time.
Machine Learning, 13:103–130, 1993.

[13] A. Y. Ng and M. Jordan. PEGASUS: A policy search method
for large MDPs and POMDPs. In In Proceedings of
Uncertainty in Artificial Intelligence, pages 406–415, 2000.

[14] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic
solution to discrete Bayesian reinforcement learningbell. In
Proceedings of ICML, pages 697–704, 2006.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1994.

[16] A. L. Strehl and M. L. Littman. An analysis of model-based
interval estimation for Markov decision processes. Journal of
Computer and System Sciences, 74:1309–1331, 2008.

[17] R. S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming.
In Proceedings of ICML, pages 216–224, 1990.

[18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[19] I. Szita and C. Szepesvári. Model-based reinforcement
learning with nearly tight exploration complexity bounds. In
Proceedings of ICML, pages 1031–1038, 2010.

[20] T. Takaoka. Theory of trinomial heaps. In Proceedings of the
International Conference on Computing and Combinatorics,
LNCS, pages 362–372, 2000.

[21] T. J. Walsh, S. Goschin, and M. L. Littman. Integrating
sample-based planning and model-based reinforcement
learning. In Proceedings of AAAI, 2010.

970

