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ABSTRACT
In the near future, there is potential for a tremendous expan-
sion in the number of Earth-orbiting CubeSats, due to re-
duced cost associated with platform standardization, avail-
ability of standardized parts for CubeSats, and reduced launch-
ing costs due to improved packaging methods and lower
cost launchers. However, software algorithms capable of ef-
ficiently coordinating CubeSats have not kept up with their
hardware gains, making it likely that these CubSats will be
severely underutilized. Fortunately, these coordination is-
sues can be addressed with multiagent algorithms. In this
paper, we show how a multiagent system can be used to ad-
dress the particular problem of how a third party should bid
for use of existing Earth-observing CubeSats so that it can
achieve optical coverage over a key geographic region of in-
terest. In this model, an agent is assigned to every CubeSat
from which observations may be purchased, and agents must
decide how much to offer for these services. We address this
problem by having agents use reinforcement learning algo-
rithms with agent-specific shaped rewards. The results show
an eight fold improvement over a simple strawman alloca-
tion algorithm and a two fold improvement over a multiagent
system using standard reward functions.
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1. INTRODUCTION
Collaborative networks of CubeSats offer mission capabili-

ties that are impractical for larger satellite platforms, includ-
ing simultaneous in situ measurements of multiple locations
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in space and temporally separated measurements of precise
points in space [3]. They also offer lower cost and increased
robustness compared to traditional satellites due to the low
cost of COTS components and system reconfigurability. In
addition, networking clusters of CubeSats together in order
to boost performance is becoming a popular concept, similar
to networking multiple computers together into clusters to
increase computational capabilities [1].

While considerable effort has been put into reducing the
cost of CubeSats and increasing their capability, little work
has been done on how to coordinate all these resources once
they are in orbit. A good way to address this issue is through
the use of multiagent learning methods.The development of
multiagent coordination algorithms that allow CubeSats to
share resources, allocate tasks, and dynamically form part-
nerships will allow tremendous flexibility in the way Cube-
Sats are deployed. These capabilities could revolutionize the
way space research is performed by enabling a large commu-
nity of universities and institutions to readily share satellite
resources, opening up new avenues of research, and greatly
reducing the cost barrier associated with space research that
has limited advancements for decades.

The algorithm presented in this work is designed to handle
two problems at once, in a robust way: 1) how to obtain a
distributed set of resources (CubeSats), such that the total
collection of resources performs a task in a cost-effective way,
and 2) how to bid for these resources with unreliable sell-
ers. We address this problem by using a multiagent learning
system, in which each individual agent must learn to bid for
a resource, such that the collective set of bids of all agents
is likely to obtain an amount of resources that will optimize
the system level performance objective.

2. SATELLITE COORDINATION PROBLEM
In this work, we look at a model where we assume Cube-

Sats are owned by separate institutions, and that the values
of each Cubesat’s observations to its institution are con-
stantly changing based upon its position in orbit. We also
assume that a third party knows the approximate value of
these satellites to their own institution, within a probabil-
ity distribution. The overall problem then becomes: how
this third party can make bids for the observational capabil-
ities of these satellites to obtain an optimal return. If bids
are too small, then too few observations are made and the
return is small. If bids are too large, then too many obser-
vations are made and the observational benefit is not worth
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Figure 1: A third party wishes to have a set of uni-
versity owned CubeSats take observations of a point
of interest (POI), T . While university si will usually
want to observe its own POI ui, it will be willing to
make an observation of T if it is paid more to do so
than the value of it’s observation of ui.

the cost. Even worse, if observations have diminishing re-
turns, then large bids will result in too many observations
of even smaller value. Our approach to this problem entails
assigning a single agent to each satellite which decides how
much to bid for the use of the satellite’s observational ca-
pability at any given time. We then have the problem of
how to coordinate all of the agents’ bids to receive an op-
timal collective return. We address this problem with rein-
forcement learning techniques that maximize agent-specific
rewards which are shaped to speed up learning while pro-
moting high-performance solutions.

2.1 System Objective
The overall objective is to try to obtain the greatest total

value of observations at the least cost. While computing the
total cost is rather straightforward, the total value of the ob-
servations heavily depends upon the domain. In this paper,
the total value of all observations is a sub-linear function of
the sum of the squares of the values of all observations.
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s
a
X
i

Vi
2 − a
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i
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where a is a constant, Vi is the value of the information
gained from the use of CubeSat i, and Ci is the cost of ac-
quiring resources from CubeSat i. This nonlinear objective
function provides diminishing returns for increasing levels of
information. As in many real world problem domains, there
exists a saturation point, beyond which additional informa-
tion or resources become less beneficial for the system, even
if the per unit cost remains constant.

3. EXPERIMENTS
We tested five different types of agents, and compared

their effectiveness in optimizing system objective.

3.1 Agent Types
In these experiments, the five types of agents used are as

follows:

1. Random: Agents take random actions (R).

2. Strawman: An agent’s bid is precisely equal to the
value of a satellite to its university (S).

3. Local: Agents try to maximize a local objective (L).

4. Global: Agents try to maximize system objective (G).

5. Difference: Agents try to maximize difference objec-
tive (D), shown previously to lead to fast learning [5].

3.2 Experimental Results
This set of experiments tests the performance of the five

types of agents (R, L, S, G, D) in a noisy environment with
100 satellites. Figure 2 shows the performance of each re-
ward function. In all cases, performance is measured by
the same global reward function, regardless of the reward
function used to reward the agents in the system. As seen,
both agents using G and D performed adequately in this in-
stance, although agents using D perform better. Agents us-
ing D are able to perform better because an individual agent
has more influence over its own difference reward than on
the system reward, allowing it to learn faster. L performs
the worst, showing that greedy self-interested agents do not
always perform well in coordination tasks. S and R also
perform poorly.
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Figure 2: Performance of a 100-satellite system for
R, L, S, D, and G agents within a noisy environment.
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