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ABSTRACT
Researchers in the field of multiagent sequential decision
making have commonly used the terms “weakly-coupled” and
“loosely-coupled” to qualitatively classify problems involving
agents whose interactions are limited, and to identify various
structural restrictions that yield computational advantages
to decomposing agents’ centralized planning and reasoning
into largely-decentralized planning and reasoning. Together,
these restrictions make up a heterogeneous collection of facets
of “weakly-coupled” structure that are conceptually related,
but whose purported computational benefits are hard to
compare evenhandedly. The contribution of this paper is a
unified characterization of weak coupling that brings together
three complementary aspects of agent interaction structure.
By considering these aspects in combination, we derive new
bounds on the computational complexity of optimal Dec-
POMDP planning, that together quantify the relative ben-
efits of exploiting different forms of interaction structure.
Further, we demonstrate how our characterizations can be
used to explain why existing classes of decoupled solution
algorithms perform well on some problems but poorly on
others, as well as to predict the performance of a particular
algorithm from identifiable problem attributes.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems

General Terms
Theory, Performance

Keywords
Multiagent Planning, Coordination, Weak Coupling, Loose
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1. INTRODUCTION
The Decentralized Partially-Observable Markov Decision

Process (Dec-POMDP) has emerged as a popular theoretical
model for planning coordinated decisions for teams of agents
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under uncertainty, but its well-established general NEXP
hardness (reviewed by Goldman [6]) has raised concerns
about its practical applicability beyond small toy problems.
In response, researchers have defined a variety of subclasses
amenable to efficient, scalable solution methods, but that
impose various constraints on problem structure [2, 11, 15].
In this paper, we endeavor to illuminate significant aspects
of Dec-POMDP interaction structure that make one prob-
lem easier than another, and to quantify the computational
advantages of exploiting these aspects in concert.

Authors in the multiagent sequential decision making liter-
ature commonly use the terms “weakly-coupled” or “loosely-
coupled” to classify problems involving agents whose interac-
tions are limited (e.g., [8, 12, 13, 22]). Intuitively, weakly-
coupled interaction structure engenders conditional indepen-
dencies among individual agents’ decisions that allow for
efficient decomposition of joint planning and reasoning. How-
ever, different authors’ uses of these terms refer to slightly
different structural conditions, and often frame the conse-
quences of the structure in slightly different algorithmic
contexts. Given the heterogeneity of structural conditions
for weak coupling, and the diverse contexts of published re-
sults, it is difficult to ascertain the computational advantages
of the various structures in relation to one another.

Here, we generalize and synthesize several elements of prob-
lem structure into a more unified characterization of weak
coupling. In particular, we highlight three complementary
aspects of weakly-coupled problem structure: agent scope
size, state factor scope domain size, and degree of influence.
Not only does our characterization highlight useful relation-
ships between these three aspects, but it also concretely
quantifies the relative computational benefits of exploiting
each. By considering these three aspects in concert, we de-
rive new bounds on the worst-case complexity of optimal
Dec-POMDP planning (the context of which we describe in
Section 2). After presenting our characterization and theo-
retical results in Section 3, we illustrate the usefulness of this
contribution in Section 4 by demonstrating that our theory
helps (1) to better explain trends observed in past work, and
(2) to predict the performance of solution algorithms based
on the degree to which test problems are weakly coupled. As
a case study, we illustrate how our theoretical results can be
used in conjunction with empirical analysis to extrapolate
the relative performance of a particular algorithm, Optimal
Influence-space Search [22], on 4-agent problems. In Sec-
tion 5, we relate our characterization to foundational and
alternative analyses from past work, and conclude with a
discussion of our results and future work in Section 6.
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2. CONTEXT
We are considering the problem of planning optimal policies

for a group of agents whose behavior is modeled as a Dec-
POMDP. To illustrate the interaction structure that we are
characterizing, we refer to several examples expressed using a
particular Dec-POMDP model called a Transition-Decoupled
POMDP (TD-POMDP) [22], whose specification emphasizes
conditional independencies among agents.

Figure 1a shows a simple problem involving a three-agent
team whose objective is to plan the coordinated executions
of tasks. Here, task interdependencies called enablements
each represent the constraint that one task must have com-
pleted with positive outcome quality before another task can
begin. The execution of each task, by the agent that owns
that task, is also constrained by a window that expresses
the task’s earliest start time and latest finish time (after
which the task will “fail” by achieving zero outcome qual-
ity). The uncertainty of each task’s execution is conveyed
by its outcome distribution, which assigns a probability (P)
to each possible duration (D) and quality (Q). In the past,
Dec-POMDP researchers have studied examples of this flavor
that were geared towards application domains such as Mars
rover control [13, 22] and disaster response [11].

2.1 Decentralized POMDP
A (finite-horizon) Dec-POMDP [1, 6, 16, 22] is specified

with a tupleM = 〈N , S,A,Ω, O,R, P, T 〉, whereN is a set of
n agents, S is a finite set of world states, with a distinguished
initial state, and A = ×i∈NAi is the joint action space,
each component of which refers to the set of actions of an
agent i ∈ N . The transition function P (s′|s, a) specifies
the probability distribution over next states given that joint
action a = 〈a1, a2, . . . , an〉 ∈ A is taken in state s ∈ S.
The reward function R (s, a, s′) specifies the immediate value
of taking joint action a in state s and arriving in state s′.
Observation function O (o′|a, s′) specifies the probability of
the joint observation o ∈ (Ω = ×i∈NΩi), observed upon
taking a and transitioning into s′.

The team’s behavior is specified with a joint policy π =
〈π1, . . . , πn〉, where each component πi (agent i’s local policy)
maps agent i’s observation history ~o ti to an action ai, thereby
encoding a deterministic decision rule for any sequence of
observations that each agent might encounter. The set of
possible joint policies Π denotes the policy space, and Πi

agent i’s local policy space. The value V (π) of a joint policy
π ∈ Π is the expected cumulative reward received by the
team (from times 1 to T ) when executing that policy from the
initial state. Finally, Dec-POMDP planning is the problem
of computing the optimal joint policy π∗, which can be
expressed as a maximization: π∗ = arg maxπ∈Π V (π).

2.2 Transition-Decoupled POMDP
The Dec-POMDP is an extremely general representation

of joint behavior, allowing for arbitrary dependencies among
agents’ observations and action consequences. As such, the
näıve Dec-POMDP specification is oblivious to any interac-
tion structure that may exist among agents. To express some
of the structure (which we find useful in Section 3) that is
present in problems like the one depicted in Figure 1a, we
turn to the TD-POMDP model [22].

The TD-POMDP assumes an inherent decomposition of
the joint model into transition-dependent local agent models.
The world state s is factored into individual state features

that are distributed among agents’ local states 〈s1, ..., sn〉 ∈
S = ×i∈NSi; however, each feature does not necessarily
reside exclusively in a single agent’s local state si. Figure 1b
depicts the decomposition of world state for the example
problem as a two-stage dynamic Bayesian network, wherein
feature “Den” (encoding whether or not Task D is enabled) is
shared among agent 1’s and agent 2’s local states, and time
is shared among all agents’ local states. These features are
referred to as mutually-modeled features, comprising set m̄.

Similarly, the TD-POMDP specifies decomposable obser-
vation functions and decomposable local rewards [22]. In
this paper, we consider TD-POMDP problems for which the
joint value function decomposes into local value functions
V (π) =

∑
i∈N Vi(π), each of which, Vi(π), is equal to one

agent i’s expected cumulative local reward. In the example
problem, local rewards account for the quality accrued when-
ever an agent finishes one of its tasks. The TD-POMDP
explicitly distinguishes features in an agent j’s local state that
are controlled by agent i as a nonlocal features n̄j , wherein
each serves as an attribute through which i can affect j’s lo-
cal state, observations, and subsequent local transitions [22].
For instance, in Figure 1b, when agent 1 completes task C,
nonlocal feature Fen (Fenabled) changes from false to true,
thereby altering how agent 3’s actions can affect feature F .

A TD-POMDP’s transition-dependent interactions may be
illustrated graphically using an agent interaction digraph [22],
examples of which are shown in Figure 2. The interaction
digraph contains a vertex for each agent, and an edge for each
nonlocal feature that connects the controlling agent with the
affected agent. For any two agents i and j, there may be
more than one edge leading from i to j, one for each nonlocal
feature controlled by i and affecting j. For the purpose of our
analysis we shall denote the digraph ancestors of an agent j
as Λj = {i 6= j| there is a directed path from i to j}, and the
set of digraph descendants of agent i as Ψi = {j 6= i| there is
a directed path from i to j}. In contrast, we shall use the
word peer to refer to “some other agent” in N without the
implication of any particular graphical relationship.

2.3 Relationship Between Dec-POMDP
Planning and Constraint Optimization

Our analysis in Section 3 makes use of a reformulation
of the Dec-POMDP planning problem into a constraint op-
timization problem (COP). The reformulation is a slight
generalization of that explored in past work [2, 15]. In re-
view, a classical COP [4] is specified as a tuple C = 〈X,D,C〉,
where X = {x1, ..., xn} is a set of n variables with possible as-
signments ā = 〈a1, ..., an〉 ∈ D = {D1, ..., Dn}, and C is a set
of constraints. Each constraint represents a cost function Ck
with a restricted (variable) scope Qk ⊆ {1, ..., n}, such that
Ck : [×i∈QkDi] 7→ {R,∞}. The restricted scopes of COP
constraints constitute graphical structure that is naturally
expressed using a constraint graph G. Illustrated in Figure 2,
there is a hyperedge for each constraint Ck that connects
those vertices (which we refer to as neighbors) corresponding
to the variables indexed by Qk.

In solving a COP, and obtaining solution ā∗, the objective
is to minimize the summation of cost values of the vari-
able assignments: ā∗ = arg minā

∑‖C‖
k=1 Ck(ā). Analogously,

the objective of Dec-POMDP planning is to maximize the
expected utility of the joint policy, which can often be de-
composed into component value functions [11, 15, 16, 22],
one for each agent in the case of the TD-POMDP.
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Figure 1: An example problem (a) and corresponding TD-POMDP specification (b).

Observation 1. A Dec-POMDP M, whose value func-
tion V (π = 〈π1, ..., πn〉) decomposes into a summation of
component value functions V (π) =

∑
k Vk(π), reduces to a

COP CM = 〈X,D,C〉 structured as follows:

• X contains exactly one variable xi for each agent i,

• the domain of xi is agent i’s local policy space: Di ≡ Πi,

• an assignment ā = 〈πi, ..., πn〉 is a joint policy,

• C consists of a single constraint Ck(ā ≡ π) = −Vk(π) for
each component Vk of M’s value function,

• and the solution ā∗ is an optimal joint policy π∗.

This reformulation gives rise to a decoupled joint policy
search methodology (such as that employed in past work [2,
14, 22]). In contrast to centralized methods that optimize all
components of the optimal joint policy at once, a decoupled
joint policy search is an iterative process where, at each step,
an each agent i computes one possible local policy, π∗i (π̄ 6=i) =
arg maxπi V (πi, π̄6=i), referred to as a best response to
proposed local policies π̄6=i of i’s peers. Equation 1 below
reduces the computation of an optimal joint policy for a
three agent Dec-POMDP problem (such as in Figure 1) to a
series of best response calculations.

π∗= arg max
〈π1,π2,π3〉

V (π1, π2, π3)

= arg max
〈π1,π2〉

V (π1, π2, π
∗
3(π1, π2))

= arg max
π1

V (π1, π
∗
2(π1), π∗3(π1, π

∗
2(π1)))

(where π∗2(π1) = arg maxπ2
V (π1, π2, π

∗
3(π1, π2)))

(1)

The search implied by the arg max invocations in Eq. 1,
which enumerates all combinations of local policies, serves
as the basis for more advanced decoupled solution methods
cited in the next section.

3. DIMENSIONS OF WEAKLY COUPLING
Intuitively, the computational benefit of solving a problem

with a decoupled solution method instead of a centralized
method depends upon the presence of problem structure
that renders agents more or less independent of each other.
Here, we generalize and formally characterize three different
previously-studied aspects of weakly-coupled problem struc-
ture whose exploitation has been shown to be beneficial in

past work (which we review in Section 5). Our characteriza-
tion takes the form of a three-dimensional landscape that can
be used to quantify the advantage gained through exploiting
a problem’s interaction structure and, ultimately, to predict
the amount of computation needed to solve the problem. We
describe each dimension in Sections 3.1–3.3, over the course
of which we gradually refine a bound on the computational
complexity of Dec-POMDP planning, and then in Section 3.4
we bring these terms together into a unified characterization.

3.1 Agent Scope Size
The first aspect that we examine lies in the graphical

structure present in a Dec-POMDP M’s equivalent COP
constraint graph GM. The connectivity of each hyperedge is
dictated by the scope Qk of a constraint Ck, which is equal
to the agent scope [7, 16] of component value function Vk.

Definition 1. The agent scope, denoted Qk, of a (com-
ponent) value function Vk() is the subset of agents on whose
policies its value depends, such that Vk : [×i∈QkΠi] 7→ R.

In a TD-POMDP agent, for instance, the scope Qi of an
agent i’s local value function contains all agents that can
affect i’s rewards through their actions, which are i and
its interaction digraph ancestors: Qi = {i} ∪ Λi [21]. In a
Network-Distributed POMDP (ND-POMDP), the size of the
agent scope corresponds to local neighborhood size [15].

At one extreme of the weak coupling spectrum, agents are
uncoupled : they do not interact, so the constraint graph con-
sists of n unconnected vertices. In this case, the optimal joint
policy is simply the combination of independently-computed
optimal local policies: π∗ =

〈
arg maxπi Vi(πi), ∀i ∈ N

〉
, and

agent scope Qi = {i}, ∀i. At the opposite extreme, all agents’
decisions are affected by all other agents, and hence no agent
can optimize its local policy without considering the potential
policies of all other agents. In between these two extremes,
there exist conditional independencies that allow agents to
plan independently of some peers but not others.

Definition 2. An agent i is conditionally decision-inde-
pendent of agent j conditioned on peer agents K ⊆ (N −
{i, j}) if: ∀{πxj , πyj } ⊆ Πj ,∀π̄K ∈ (×k∈KΠk),

arg maxπi∈Πi
V
(
πi, π

x
j , π̄K

)
= arg maxπi∈Πi

V
(
πi, π

y
j , π̄K

)
.

In the example from Figure 1, agents 2 and 3 are condi-
tionally decision-independent of each other conditioned on
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Figure 2: Examples of constraint graphs (right) de-
rived from TD-POMDP interaction digraphs (left).

agent 1. Intuitively, this is because agent 2 cannot affect
the values of agent 3’s local state features nor vice versa, no
matter what actions they decide to take. Mathematically, it
is because, from the constraint graph in Figure 2 (upper-left),
agent 3’s best response π∗3(π1, π2) is independent of π2:

π∗3(π1, π2) = arg maxπ3
V (π1, π2, π3)

= arg maxπ3
[V1(π1) + V2(π1, π2) + V3(π1, π3)]

= arg maxπ3
V3(π1, π3) ≡ π∗3(π1)

and vice versa. The practical benefit of this conditional deci-
sion independence relationship is a simpler optimal solution
computation. Substituting π∗3(π1) (as well as the equivalently-
reduced π∗2(π1)) into Equation 1 significantly reduces the
combinations of local policies that need be considered:

π∗ = arg maxπ1
V (π1, π

∗
2(π1), π∗3(π1)) (2)

Whereas Equation 1 required ‖Π1‖‖Π2‖‖Π3‖ evaluations
of V(), Equation 2 requires only (‖Π1‖‖Π2‖+ ‖Π1‖‖Π3‖+
‖Π1‖) evaluations due to the reduction in the number of best
responses, given the restricted agent scopes of V2() and V3().

Using COP theory, we can generalize the computational
reduction as well as the methodology of exploiting graphical
structure beyond our simple example problem. The compu-
tation performed in Equation 2 is an instance of bucket elim-
ination (essentially, nonserial dynamic programming) [4], a
general solution methodology that performs well on sparsely-
connected constraint graphs. Dechter has proven that the
worst-case time and space complexity of bucket elimination is
O
(‖C‖‖Dmax

i ‖ω+1
)
, where ‖C‖ is the number of cost func-

tions, Dmax
i is the largest domain size of any COP variable

and ω is the induced width of the constraint graph [4].

Observation 2. The worst-case time and space complex-
ity of optimal planning for Dec-POMDP M is bounded by
O
(
n · ‖Πmax

i ‖ω+1
)
, where n is the number of component

value functions, Πmax
i is the largest local policy space, and ω

is the induced width of the equivalent constraint graph GM.

By Observation 2, a lower induced width implies an exponen-
tial reduction in worst-case computation time. However, note
that the local policy space size ‖Πmax

i ‖, at the base of the
exponent, is itself exponentially dependent on the number of

local observations histories: ‖Πmax
i ‖ = O

(
‖Ai‖‖Oi‖T

)
[14].

By Dechter’s definition [4], the induced width ω may be
calculated by taking the minimum, over all possible orderings
of vertices in GM, of the following measure: process vertices
in order from last to first, for each vertex connecting its
earlier-ordered neighbors, then return the largest number of
earlier-ordered neighbors of any vertex. Alternatively, we
can estimate ω using agent scope size. While in general,
ω ≥ (maxk ‖Qk‖ − 1) (which follows from the definitions of
ω and Qk), for a wide variety of TD-POMDP interaction
digraph topologies (some of which are shown in Figure 2),
ω = (maxk ‖Qk‖ − 1).

3.2 State Factor Scope Domain Size
The theoretical results presented thus far assume a näıve

algorithm for performing best response calculations: enu-
meration of all local policies πi ∈ Πi and explicit evaluation
of V (πi, π̄6=i) for each. In a classical COP, enumeration of
variable domains would be the only way to compute a best
response. However, the COP that we are solving involves
policy variables with structured domains. To exploit this
structure, several algorithms have been developed for comput-
ing a best response by solving a single-agent POMDP model
seeded with peers’ policy information [14, 15, 22]. Aside from
harnessing the efficiencies of state-of-the-art POMDP solvers,
a best-response model can also exploit weakly-coupled prob-
lem structure. In particular, a best-response model does not
necessarily need to represent all world state features [15, 22].

Intuitively, there may be features that have no bearing on
the value ascribed to the agent’s own behavior. For instance,
in Figure 1b, the enabling of Task F (encoded by feature Fen,
appearing in agent 1’s local state, but unobservable to agent
2) is inconsequential to agent 2 as it plans its best response
policy π∗2(π1). Using Definition 3, which we have adapted
from previous work [7, 16] to fit this context, feature Fen is
not in agent 2’s state factor scope.

Definition 3. An agent i’s state factor scope Xi is the
minimal1 set of features sufficient for modeling the (belief)
state used to compute i’s optimal best response.

Becker et al. have derived that a Transition-Independent
Dec-MDP (TI-Dec-MDP) agent i’s best response may be cal-
culated with an augmented MDP whose state space includes
only i’s local state features (but whose rewards are modified
to account for peer agent j’s proposed policy) [2]. In this case,
even though the joint utility is dependent upon features from
both agents’ local state representations, it suffices for agent
i to reason over a greatly-reduced space of features when
computing a best response. In earlier work [22], we have
developed a POMDP for computing the best response for
a TD-POMDP agent i that includes (at most) the features
from i’s local state si and the histories of mutually-modeled
features ~mi. A TD-POMDP agent i’s state factor scope is
thus Xi ⊆ {si, ~mi}.

Intuitively, the smaller the portion of the world state that
an agent observes and interacts with, the smaller its state
factor scope, and the easier its local planning and reasoning
becomes. Accounting for the sizes of the domains of features
in the state factor scope, denoted Dom(Xi), we can refine
our bound on computational complexity as follows.
1Given that multiple flavors of best response model may
be applicable [14, 22], we are most interested in those that
exploit weakly-coupled problem structure by reducing their
modeled set of features as much as possible.
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Theorem 1. The worst-case complexity of Dec-POMDP
planning is O (n · EXP(‖Dom(Xmaxi )‖) · ‖Πmax

i ‖ω), where
‖Dom(Xmaxi )‖ = maxi∈N ‖Dom(Xi)‖.

Proof Sketch. The derivation of the complexity result
from Observation 2 entails every best response computation
requiring an arg maxπi to be taken, enumerating the local
policy space bounded by ‖Πmax

i ‖, for all combinations of
policies of ω peers, yielding complexity ‖Πmax

i ‖‖Πmax
i ‖ω

for each of the n agents. By replacing each best response
calculation with one POMDP solution, we can substitute
the first term ‖Πmax

i ‖ in our complexity computation with
the complexity of solving a finite-horizon POMDP, which is
O(EXP(‖S‖) = EXP(‖Dom(Xmaxi )‖) given that the state
space is bounded by ‖Dom(Xmaxi )‖ [21].

3.3 Degree Of Influence
Making use of Definition 2, for any two agents i and j, i

is either decision-dependent on j or decision-independent of
j (possibly conditioned on some other agents). Considering
the rich space of dependencies that may exist between the
two agents, a binary relation such as decision-independent
lacks the precision to characterize weakly-coupled problems
satisfactorily. For instance, in the example problem from
Figure 1a, agent 2 is decision-dependent on agent 1, but only
dependent on those decisions relating to the execution of
Task A. Whether agent 1 executes Task B after completing
Task A, or simply idles, cannot impact agents 2’s decisions in
any way. Moreover, any two of agent 1’s possible policies, πx1
and πy1 that differ only in the decisions made after completing
Task A induce the same best response from agent 2.

Definition 4. Two policies, πxi and πyi , of agent i are

impact-equivalent, denoted πxi
I≡ πyi , if πxi and πyi re-

sult in the same peer best responses: ∀j 6= i, ∀π̄(K=N−{i,j}),

πxi
I≡ πyi ⇔

[
arg max

πj

V (πxi , πj , π̄K) = arg max
πj

V (πyi , πj , π̄K)
]
.

Definition 5. An impact equivalence class Ei,x is a set

of impact-equivalent policies: ∀ {πxi , πyi } ∈ Ei,x, πxi
I≡ πyi .

In essence, an agent i’s local policy space can be partitioned
into disjoint equivalence classes, each of which may impact
other agents in the system in a different way, thereby (po-
tentially) inducing a different combination of best responses
from i’s peers. Definitions 4–5 elicit a spectrum of varying
degrees of agent dependence. At one end of the spectrum,
all of agent i’s policies are grouped into a single impact
equivalence class, indicating that any given peer j’s behavior
is unaffected by i’s decisions. At the opposite end of the
spectrum, agent j’s best response is highly sensitive to the
policy that i adopts, such that no two policies of agent i are
impact-equivalent, and the number of i’s impact equivalence
classes is equal to the size of its policy space ‖Πi‖.

There are several Dec-POMDP planning algorithms that
take advantage of this kind of weak agent coupling [2, 22].
Each algorithm employs what we shall call a partitioning
scheme that implicitly partitions each agent i’s local policy
space into a set of impact equivalence classes Pi = {Eix},
parameterizing each class with information representative of
the policies from that class. The key is that to compute the
optimal joint policy, it suffices for each agent j to compute a
best response to just one of the local policies from each of

agent i’s ‖Pi‖ impact equivalence classes. This set of best
responses is referred to as agent j’s optimal coverage set [2]
because it sufficiently covers every possible policy of agent i.

Definition 6. For a given problem, the degree of influ-
ence dP, afforded by a partitioning P, is the maximum ratio
of impact equivalence classes to local policies:

dP = max
i∈N

‖Pi‖
‖Πi‖ . (3)

By Definition 6, if a very coarse partitioning is found
for a particular problem, wherein partitions contain large
numbers of local policies, a low degree of influence dP has
been achieved. All else being equal, problems with a low
degree of influence should be easier to solve than problems
with a high degree of influence because of the reduction,
from ‖Πi‖ to ‖Pi‖, in the number of necessary best responses
per step of a distributed joint policy search. However, the
computational benefit of a coarse partitioning could be offset
by the computational overhead required to partition each
agent’s local policy space, whose worst case we denote CP.

3.4 Unified Characterization
In the past three subsections, we have quantified three

problem characteristics associated with the degree of coupling.
Conceptually, agent scope size refers to the number of agents
in the system that are affecting each others’ decisions, state
factor scope domain size refers to the portion of state feature
values that must be considered by each individual agent when
coordinating its decisions, and degree of influence refers to the
proportion of unique ways that agents can impact each others’
decisions (subject to a given partitioning scheme). Each
aspect manifests itself in a different set of problem attributes,
and each affects the overall complexity in a different manner.
However, we can formally characterize the combination of
their effects as follows:

Theorem 2. The worst-case time and space complexity
of Dec-POMDP planning, using a decoupled solution method
that partitions agents’ policy spaces, is bounded by:

O (n · EXP(‖Dom(Xmaxi )‖) · (dP‖Πmax
i ‖)ω + n·CP) (4)

where n denotes the number of component value functions,
Dom(Xmaxi ) denotes the largest domain of any agent’s state
factor scope (Def. 3), dP denotes the degree of influence
(Def. 6) given partitioning P, CP is the worst-case complexity
of computing P, Πmax

i denotes the largest local policy space,
and ω is the induced width.

Proof Sketch. Equation 4 is straightforwardly derived
by manipulating the bound from Theorem 1. The base of the
exponent is replaced with dP due to the worst-case reduction
in the number of best response computations afforded by P.
Next, a second term is added accounting for the accumulation
of computation required by the partitioning process.

Parameters {ω,Xmax
i , dP} can be thought of as separate

dimensions whose combination provides a concrete measure
of the weakness (or strength) of coupling of a problem. A
problem’s worst-case complexity depends on where it lies
along the spectra of agent scope size, state factor scope do-
main size, and degree of influence. For any two problems, we
can now compare their worst case complexities by estimating
the values of the three parameters and positioning each in the
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3-dimensional space. Given a factored representation of Dec-
POMDP problem structure (such as a TD-POMDP [22], ND-
POMDP [15], or a more general factored Dec-POMDP [16]),
the first two parameters, ω and Xmax

i , can be evaluated di-
rectly from the problem specification. The third dimension,
dP, is not readily assessable from any Dec-POMDP problem
specification that we are aware of. Moreover, dP is inher-
ently tied to the partitioning scheme used by the solution
algorithm. Thus, for any given algorithm, we propose to
estimate dP through empirical profiling of the partitioning
scheme (as we demonstrate in Section 4.2).

4. EVALUATION
A significant contribution of the theory we presented in

Section 3 lies in its explanatory and predictive power, a
claim which we now defend (anecdotally in Section 4.1, and
empirically in Section 4.2).

4.1 Explaining Trends
Researchers have developed a number of different algo-

rithms for exploiting the kinds weakly-coupled problem struc-
tured formalized above [2, 9, 10, 13, 14, 15, 16, 22]. Our
unified characterization can explain some of the trends ob-
served in the performance of these algorithms that are not
easily explained without considering combinations of dimen-
sions of agent coupling.

For instance, the successes of a family of ND-POMDP algo-
rithms [9, 15] in scaling to many agents has been attributed to
the reduced agent scope associated with ND-POMDP agents’
local neighborhoods [9, 10, 15]. That is, as long as the agent
scope remains small, these algorithms are expected to be
practical. However, a generalized version of one of these algo-
rithms (JESP [14]) has recently been reported as intractable
for a test set of Distributed POMDPs with Coordination
Locales (DPCLs) containing just two agents, even when gen-
erating an approximate solution [20]. A likely explanation
for this phenomenon is contained within Equation 4, which
suggests that it was not the agent scope of the problems
that foiled JESP but instead the cost of JESP’s best re-
sponse calculation. Whereas ND-POMDP problems have an
inherently restricted state factor scope due to the strict sep-
aration of transition-independent agents’ local states, DPCL
problems involve transition-dependent agents that need to
reason about each others’ state variables in order to compute
optimal best responses (which JESP employs in computing
approximate solutions), making the DPCL more strongly
coupled even in its two-agent incarnation.

Transition dependence alone does not make a problem
strongly coupled, however. In earlier work, we demonstrated
the capability of an algorithm inspired by JESP, Optimal
Influence-Space search (OIS), to scale optimally to sets of TD-
POMDP problems with four transition-dependent agents [22].
At the time, little was understood about the structure of
these problems that OIS was exploiting, especially given
the wide range of OIS runtimes reported for a single set of
problems. The theory developed in Section 3 leads us to
attribute the successes of OIS to a low degree of influence
in the test problems, a claim that is supported by empirical
evidence presented in Section 4.2.1.

4.2 Predicting Performance of OIS
Our theory can also be used to make detailed predic-

tions about the computational overhead of algorithms such

as OIS that exploit weakly-coupled problem structure. In-
stead of presenting a comprehensive empirical analysis of all
the dimensions of weak coupling, we use the limited space
here to illustrate how to use Equation 4 to predict the rel-
ative computation time taken by OIS to solve variations
of two example problems, named fanout and fanin, whose
interaction digraphs are shown in Figure 2 (bottom). The
two examples differ in their topology, but both include four
agents connected by three enablement features, each linking
randomly-selected tasks from the task sets of the correspond-
ing agents. Each agent’s task set contains three tasks, each
with three randomly-selected outcomes whose qualities are
random integers ∈ (1, 10) and whose durations are random
integers ∈ (1, 5) selected without replacement.

Aside from demonstrating how to make empirically-guided
theory-driven predictions, this experiment serves to elucidate
the relationship between the window sizes of agents’ tasks
(examples of which appear in Figure 1a) and the computation
time of OIS that we observed in an earlier analysis [22]. As
such, we have generated sets of problems (of both the fanin
and fanout flavors) whose task window sizes were fixed at
{1, 2, 3, 4, and 5} and whose earliest start time and latest
end times were selected so as to position the task’s fixed-size
window uniformly randomly in the interval (0, 5).

4.2.1 Profiling Partitioner and Best-Response Solver
Whereas Equation 4 conveys a general bound, OIS em-

ploys a specific form of impact equivalence partitioning. In
order to estimate the degree of influence dP and partitioning
complexity CP that OIS will achieve on fanin and fanout, we
profile OIS’s partitioner and best response solver on two sets
of smaller 2-agent enabler-enablee problems, one in which
the enabler controls a single enablement (as do the enablers
in fanin), and one in which the enabler controls three enable-
ments (as does the enabler in fanout).

Figure 3 (top-left) shows dP‖Πmax
i ‖ plotted as a function

of window size. Each point represents the mean value of
20 randomly-generated profiling problems. Both flavors of
problems exhibit an exponential trend in the number of equiv-
alence classes, which explains why, in previously-reported
results [22], OIS appeared to compute optimal solutions in
exponentially less time as the window size was decreased.
However, a striking feature of these plots is the high vari-
ance2 (indicated by the error bars). This suggests that, in
addition to window size, there are other factors at play that
have a significant effect on the degree of influence. We ran an
additional experiment in which we held the window size con-
stant at 3 and varied the earliest start time of one enabling
task, the results of which are shown in Figure 3 (top-right).
From this plot, it appears that the temporal placement of
agents’ interactions is also a good predictor of the degree of
influence, though analysis beyond the scope of this paper is
required to verify this supposition.

Upon measuring the computation time taken by the enabler
to perform its impact equivalence partitioning (represented
as CP in Eq. 4), we observed that it did not consume more
than 70 percent of the total solve time on any given problem.
We thereby deduced that for this particular suite of prob-
lems, the first term of Equation 4, n ·EXP(‖Dom(Xmaxi )‖) ·
(dP‖Πmax

i ‖)ω, would be just as strong a predictor of OIS’s

2To verify that the means were not simply driven up by
outliers, we also examined the medians (not shown here),
and observed the same exponential trend.
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Figure 3: Profiling: dP‖Πi‖ (top-left), dP‖Πi‖ vs. ear-
liest start time (top-right), ‖Dom(Xmaxi )‖ (bottom-
left), and best-response comp. time (bottom-right).

relative computation time as the sum of both terms.
Whereas EXP(‖Dom(Xmaxi )‖) in Equation 4 is a worst-

case bound on the complexity that makes no assumptions
about the POMDP solver, OIS uses a particular solver whose
computation time we measured on the problems in our pro-
filing set. Figure 3 (bottom-left) plots the state factor scope
domain size (‖Dom(Xi)‖), measured as the actual size of the
state space of the best-response model, as well as the mean
computation time per best response (bottom-right). Note
that, due to their topologies, the “3 enablement” problem
profiles the best response computation of fanin, whereas the
“1 enablement” problem profiles that of fanout. For both
flavors, we observe a slight increase in both state factor scope
domain size and best response computation time (which
for these problems appear to be linearly, not exponentially,
related in practice).

4.2.2 Predicting Relative Computation Time
Next, we evaluated n ·EXP(‖Dom(Xmaxi )‖) ·(dP‖Πmax

i ‖)ω
for both fanin and fanout across all window sizes, replacing
EXP(‖Dom(Xmaxi )‖) with the profiled best response compu-
tation time shown in Figure 3 (bottom-right) and dP‖Πmax

i ‖
with its profiled value (top-left). For fanin problems, ω was
set to 3, and for fanout, 1; for all problems, n = 4. Figure 4
shows the computation time predicted by our theory (left),
and the mean values of actual runtime of OIS (right) on 20
random fanin and fanout problems per window size.

1 2 3 4 5
100

101

102

103

104

105

106

window size

se
co

nd
s

Predicted Runtime

 

 

fanin
fanout

1 2 3 4 5
100

101

102

103

104

105

106

window size

m
ea

n 
# 

se
co

nd
s

Actual Runtime

 

 

fanin
fanout

Student Version of MATLAB

Figure 4: Predicted (left) and actual (right) OIS
computation time vs. window size.

At a high level, the trend we predicted using our theoret-
ical characterization matches the trend observed in actual
data: for weakly-coupled problems that have a low degree of
influence (because of their small task windows), the agent
scope size has little effect on the computation time. How-
ever, as the window size increases, the size of the agent scope
makes exponentially more difference. Such a prediction could
not have been made, nor this trend well understood, without
taking into account two different aspects of weak coupling:
degree of influence and agent scope size. While our predicted
runtimes appear to overestimate the actual runtimes in both
cases, we do not expect the actual runtimes to precisely
match predictions made using worst-case complexity bounds.
For instance, Equation 4 does not account for the fact that
in fanin problems, only a single agent is computing a best
response. (In general, ω = 3 topologies would require that
all agents compute best responses.)

5. RELATED WORK
The first author’s dissertation [21] includes a more rigor-

ous, though less general, treatment of the theory presented
in Sections 2–3. Compared to other treatments of weak cou-
pling in multiagent sequential decision making, the primary
distinctions of our analysis are (1) its synthesis of three as-
pects of weak coupling into a single unified characterization,
and (2) its quantification of the computational benefits of
exploiting weakly-coupled structure in a general context of
optimal Dec-POMDP planning. Each of these aspects has
appeared in the literature in some shape or form. For exam-
ple, the work of Guestrin et al. [7] on exploiting restricted
state factor scope and agent scope (both of which have also
been referred to under the heading locality of interaction [9,
15, 16]) in factored value functions, though limited in context
to approximate solution computation, plays a foundational
role in our analysis.

The effect of restricted agent scope on problem hardness
has been previously explored in MMDPs [5] (assuming fully-
jointly-observable state), and also in ND-POMDPs [9, 10,
15] (assuming transition and observation independence). In
the latter, Kumar and Zilberstein [10] make an explicit con-
nection between induced width and complexity. Oliehoek et
al. [16] analyze the stage-by-stage dynamics of state factor
scope and agent scope in factored Dec-POMDPs, treating
the planning problem as a series of collaborative graphical
Bayesian games. Degree of influence, is grounded in the work
of Becker et al. [2], who identify the coverage set as a subset of
local policies that need be considered in a joint policy search,
and the works of Rathnasabapathy et al. [18] and Pynadath
and Marsella [17], who define behavior(al) equivalence over
candidate models of an agent’s peers. Our earlier work [22]
on influence-based abstraction can be viewed as a means of
partitioning the policy space into impact equivalence classes,
each of which is summarized by an influence.

Aside from the three aspects on which our characteriza-
tion concentrates, researchers have analyzed the relationships
between other forms of interaction structure and problem
hardness. For instance, Goldman and Zilberstein [6] charac-
terize the complexity of various Dec-POMDP subclasses by
classifying agents’ direct communication and indirect sharing
of information through observation. Shen et al. [19] charac-
terize complexity of optimal Dec-MDP planning according
to the complexity of the minimal encoding of agents’ local
policies. Allen and Zilberstein [1] develop an information-
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theoretic metric, influence gap, that quantifies the difference
in the degree to which each agent can affect world state
transitions and joint rewards in a two-agent Dec-POMDP.
Though the semantics of influence in Allen and Zilberstein’s
work differ substantially from ours, their results express the
same general sentiment that varying levels of impact result
in varying problem hardness.

Lastly, there is a strong connection between our analysis
and that of Brafman and Domshlak [3], who transform the
classical planning problem into one of constraint satisfaction.
As in our analysis of joint policy computation as constraint
optimization, they incorporate a parameter ω corresponding
to the induced width of the constraint graph.

6. CONCLUSIONS AND FUTURE WORK
This paper takes an important step towards gaining a bet-

ter understanding of what makes some Dec-POMDP prob-
lems so much harder to solve than others. We have jointly
characterized three aspects of the weakly-coupled problem
structure that, when exploited, accommodate quantifiable
computational gains. By studying these aspects in a unified
context, we have derived new bounds on the complexity of
optimal multiagent planning.

Our theoretical results complement the abundance of recent
algorithmic development geared towards solving problems
with structured agent interactions [2, 9, 10, 13, 14, 15, 16,
22], by providing a gauge of problem difficulty based upon
the degree to which a problem is weakly-coupled. We have
demonstrated that our theory can explain observations about
algorithm performance, as well as predict the relative compu-
tational overhead of algorithms that exploit some or all of the
elements of weakly-coupled problem structure that we have
characterized. These explanations and predictions could not
have been formed without considering the combination of
different aspects of weakly-coupled structure.

In the process of predicting the computation time of one
such algorithm, OIS [22], our empirical analysis illustrated
that OIS’s past success was due, in part, to its exploitation of
structure in problems with a low degree of influence. However,
our analysis also exposed the need for a better understanding
of the identifiable problem attributes that affect degree of
influence, whose underlying structure is less discernible than
that of state factor scope domain size and agent scope size.
Moreover, in the future, we hope to find other advantageous
structural aspects that would improve the predictive power of
our characterization. Such a pursuit could not only expand
our understanding of the performance of existing algorithms,
but guide the design of better algorithms.
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