
GUARDS - Game Theoretic Security Allocation on a
National Scale

James Pita, Milind Tambe, Chris Kiekintveld*, Shane Cullen**, Erin Steigerwald***
University of Southern California, Los Angeles, CA 90089

*University of Texas at El Paso, El Paso, TX 79968
**APEX STORE-Technology Lead: Science and Technology Directorate,

Department of Homeland Security
***Program Manager: Transportation Security Administration

ABSTRACT
Building on research previously reported at AAMAS conferences,
this paper describes an innovative application of a novel game-
theoretic approach for a national scale security deployment. Work-
ing with the United States Transportation Security Administration
(TSA), we have developed a new application called GUARDS to
assist in resource allocation tasks for airport protection at over 400
United States airports. In contrast with previous efforts such as AR-
MOR and IRIS, which focused on one-off tailored applications and
one security activity (e.g. canine patrol or checkpoints) per applica-
tion, GUARDS faces three key issues: (i) reasoning about hundreds
of heterogeneous security activities; (ii) reasoning over diverse po-
tential threats; (iii) developing a system designed for hundreds of
end-users. Since a national deployment precludes tailoring to spe-
cific airports, our key ideas are: (i) creating a new game-theoretic
framework that allows for heterogeneous defender activities and
compact modeling of a large number of threats; (ii) developing
an efficient solution technique based on general purpose Stackel-
berg game solvers; (iii) taking a partially centralized approach for
knowledge acquisition and development of the system. In doing so
we develop a software scheduling assistant, GUARDS, designed to
reason over two agents — the TSA and a potential adversary —
and allocate the TSA’s limited resources across hundreds of secu-
rity activities in order to provide protection within airports.

The scheduling assistant has been delivered to the TSA and is
currently under evaluation and testing for scheduling practices at
an undisclosed airport. If successful, the TSA intends to incorpo-
rate the system into their unpredictable scheduling practices nation-
wide. In this paper we discuss the design choices and challenges
encountered during the implementation of GUARDS. GUARDS
represents promising potential for transitioning years of academic
research into a nationally deployed system.

Categories and Subject Descriptors
J.m [Computer Applications]: MISCELLANEOUS

General Terms
Security, Design, Performance
Cite as: GUARDS - Game Theoretic Security Allocation on a National
Scale, James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen and
Erin Steigerwald, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems – Innovative Applications Track (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp.  37-44.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Applications, Game Theory, Security, Resource Allocation

1. INTRODUCTION
The United States Transportation Security Administration (TSA)

is tasked with protecting the nation’s transportation systems [2].
These systems are often large in scale and require many personnel
and security activities to protect them. One set of systems in partic-
ular is the over 400 airports [2]. These airports serve approximately
28,000 commercial flights per day and up to approximately 87,000
total flights [1]. To protect this large transportation network, the
TSA employs approximately 48,000 Transportation Security Offi-
cers [2]. These Security Officers are responsible for implementing
security activities at each individual airport in order to provide se-
curity for the transportation network.

While many people are aware of common security activities,
such as individual passenger screening, this is just one of many
security layers TSA personnel implement to help prevent potential
threats [2]. These layers can involve hundreds of heterogeneous
security activities executed by limited TSA personnel leading to a
complex resource allocation challenge. Unfortunately, TSA cannot
possibly run every security activity all the time and thus must de-
cide how to appropriately allocate its resources among the layers of
security to protect against a number of potential threats.

To aid the TSA in scheduling resources in a risk-based manner,
we take a multi-agent game-theoretic approach. Motivated by ad-
vantages of such an approach reported at AAMAS conferences (see
Section 2.2), we utilize Stackelberg games where one agent (the
leader) must commit to some strategy first and a second agent (the
follower) can make his decision with knowledge of this commit-
ment. Here, the TSA acts as a defender (i.e. the leader) who has
a set of targets to protect, a number of security activities to protect
each target, and a limited number of resources to assign to these se-
curity activities. This approach then models a motivated attacker’s
ability to observe the TSA’s resource allocations before choosing
a potential threat to execute in an attempt to attack an airport tar-
get. The advantage of our approach is in finding the optimal mixed
strategy for the TSA to commit to in order to provide them with
a risk-based, randomized schedule for allocating their limited re-
sources. From the perspective of the underlying game-theoretic
model, a crucial difference of our novel approach and previous ap-
proaches is this: we allow for both heterogeneous security activi-
ties and threats whereas previous “security games” approaches re-
ported at AAMAS [14, 15] are only able to consider homogeneous
security activities and threats, leading to a new game model called
“Security Circumvention Games” (SCGs).

37



In conjunction with TSA subject matter experts, we developed
a software system, Game-theoretic Unpredictable and Randomly
Deployed Security (GUARDS), that utilizes a Stackelberg frame-
work to aid in protecting the airport transportation network. From
an application perspective, the fundamental novelty in GUARDS,
compared to previous applications [14, 15] of such game-theoretic
approaches, is the potential national scale deployment at over 400
airports. Given that previous approaches only dealt with a single
standalone location, this scale raises three new issues. The first is-
sue is in appropriately modeling the TSA’s security challenges in
order to achieve the best security policies (mixed strategy). Due to
the complex nature of TSA’s security challenges, traditional models
of security games [17] are no longer appropriate models. Specif-
ically, the TSA’s domain has the following additional features be-
yond traditional security games: (i) heterogeneous security activ-
ities for each potential target; (ii) heterogeneous threats for each
potential target; (iii) unique security activities for individual air-
ports. The second issue is in efficiently solving the model we devel-
oped where, because we consider a national deployment, a special-
purpose solver may not be appropriate. In fact, previous solution
techniques [8, 9] for traditional security games are no longer di-
rectly applicable. The final issue is in knowledge acquisition for
the many variables involved in TSA’s security challenges.

In consideration of national deployment for the TSA, we face
two unique constraints. First, headquarters cannot do centralized
planning where they create a single optimal mixed strategy (secu-
rity policy) that will be applicable to all airports. Each airport is
unique and thus will require its own individual security policy. Sec-
ond, TSA wants to maintain a common standard of security among
airports. This precludes an entirely decentralized approach where
each individual airport is completely in charge of creating their se-
curity policy. Even so, due to the possibility of over 400 end-users,
it is not practical to sit down with each location and tailor the sys-
tem to their individual needs. This presents a challenge in acquir-
ing the necessary domain knowledge for such a large network of
airports to appropriately model their security challenge.

To address these issues, we developed both a new formal model
of security games and techniques to solve this class of games. We
also had to incorporate a new methodology for knowledge acqui-
sition. To appropriately model the TSA’s security challenges we
created a novel game-theoretic model, which is referred to as Secu-
rity Circumvention Games (SCGs), and cast the TSA’s challenges
within this model. In the creation of SCGs we provide the follow-
ing contributions: (i) the ability for defenders to guard targets with
more than one type of security activity (heterogeneous activities);
(ii) the ability for attackers to choose threats designed to circum-
vent specific security activities. Given our new model, we designed
an efficient solution technique in which we create a compact repre-
sentation of SCGs. This allows us to avoid using a tailored Stackel-
berg solver and instead utilize a general purpose Stackelberg solver
to compute solutions efficiently. Finally, we took a partially cen-
tralized approach to knowledge acquisition for the TSA domain.
We integrated a two phase knowledge acquisition process in which
we acquire common information, standards, and practices directly
from TSA headquarters and then developed the GUARDS system
itself to acquire the necessary information that is unique to individ-
ual airports.

These key issues present a novel and exciting problem in transi-
tioning years of research from the AAMAS conference to a highly
complex domain [9, 12, 14, 15, 17]. GUARDS is currently under
evaluation by the TSA with the goal of incorporating its scheduling
practices into their unpredictable security programs across airports
nationwide.

2. BACKGROUND
Game theory is well known to be a useful foundation in multi-

agent systems to reason about multiple agents each pursuing their
own interests [7]. Game-theoretic approaches, specifically based
on Stackelberg games, have recently become popular as approaches
to address security problems (e.g. assigning checkpoints, air mar-
shals, or canine patrols). These approaches reason about two agents
pursuing opposing interests (i.e. a security force and an adversary)
in an attempt to optimize the security force’s goals. Specifically,
they model the commitment a security force must make in provid-
ing security and the attacker’s capability of observing this commit-
ment before attacking. The objective is to find the optimal mixed
strategy to commit to given that an attacker will optimize his reward
after observing this strategy. At this point we will describe how se-
curity games, as defined in [17], fit into the Stackelberg paradigm.
In Section 3.1 we will define SCGs to account for the challenges
that the TSA faces.

2.1 Security Games
In a security game there are two agents – the defender (security

force) and an attacker – who act as the leader and the follower in
a Stackelberg game. There are also a set of targets, which the de-
fender is trying to protect. Each of these targets has a unique reward
and penalty to both the defender and attacker. Thus, some targets
may be more valuable to the defender then others. To protect these
targets the defender has a number, K, of resources at her disposal.
There is a single security activity being considered and these re-
sources can be allocated to execute this activity on any target. Once
a resource is allocated to a target it is marked as covered, otherwise
it is marked as uncovered. If the attacker attacks an uncovered tar-
get he gets his reward and the defender her corresponding penalty
else vice versa. The defender’s goal is to maximize her reward
given that the attacker will attack with knowledge of the defensive
strategy the defender has chosen. In most cases, the optimal strat-
egy for the defender is a randomized strategy in which she chooses
a mixed strategy over all her possible resource assignments.

There exist a number of algorithms and techniques for solving
security games [6, 8, 9, 12]. DOBSS, a mixed-integer linear pro-
gram, and the Multiple Linear Programs methods are the most gen-
eral and are capable of solving any Stackelberg game optimally [6,
12]. The other algorithms are tailored to security games specifically
and are much faster in practice for these games.

2.2 Assistants for Security Games
A number of tools have been designed to assist in security prob-

lems that fall under the security game paradigm. ARMOR and
IRIS are two such tools which take a game-theoretic approach for
scheduling checkpoints and canine patrols (ARMOR) and Federal
Air Marshals (IRIS). In fact, ARMOR and IRIS have been de-
ployed to aid with security operations for the Los Angeles World
Airport Police at Los Angeles International airport and for the Fed-
eral Air Marshals Service respectively [14, 15]. These systems of-
fer two sets of advantages. The first set of advantages deal with
solution quality: (i) they provide an optimal mixed strategy for
the single security activity they consider such as assigning check-
points or air marshals; (ii) the randomized solutions produced both
avoid deterministic strategies that are easily exploitable and remove
the human element in randomization since humans are well known
to be poor randomizers [16]; (iii) they reason over difficult prob-
lems that are often impossible for humans to reason over optimally.
These advantages are useful for any tool being utilized in the field
to help with randomized resource allocation in security problems
and we incorporate them into GUARDS as well.

38



The second set of advantages are specific to the problems they
address: (i) they develop unique and useful preference elicitation
systems and knowledge acquisition techniques for the specific prob-
lem they address; (ii) based on practical requirements, they apply
state of the art algorithms tailored to solving the Stackelberg games
they consider efficiently. Unfortunately, previous methods are too
specific to the standalone location they consider and thus cannot
directly be applied in GUARDS; indeed GUARDS requires us to
address a novel set of challenges described in the next section.

3. NATIONAL DEPLOYMENT
CHALLENGES

We now describe in detail the three major issues in potentially
deploying game-theoretic randomization for airport security on a
national scale, including modeling, computational, and knowledge
acquisition challenges and our solutions to them.

3.1 Modeling the TSA Resource Allocation
Challenges

While we are motivated by an existing model of security games
[17], there are three critical aspects of the new TSA domain that
raise new challenges. First, the defender now reasons over het-
erogeneous security activities for each potential area within an air-
port1. For example, airports have ticketing areas, waiting areas,
and cargo holding areas. Within each of these areas, TSA has a
number of security activities to choose from such as perimeter pa-
trols, screening cargo, screening employees and many others. Sec-
ond, given the multiple possible security activities, the defender
may allocate more than one resource per area (i.e. areas are no
longer covered or uncovered). Finally, the defender now considers
an adversary who can execute heterogeneous attacks on an area.
The TSA must reason about a large number of potential threats in
each area such as chemical weapons, active shooters, and bombs.
The key challenge is then how to allocate limited TSA security re-
sources to specific activities in particular areas, taking into account
an attacker’s response.

To address this challenge it is necessary to create a more ex-
pressive model than outlined in security games; one that is able
to reason over the numerous areas, security activities, and threats
within an individual airport. We refer to this new class of security
games as Security Circumvention Games (SCGs). SCGs are more
expressive than traditional security games and thus can represent
both traditional security games and the games we considered for
the TSA. In SCGs, the TSA must choose some combination of se-
curity activities to execute within each area and the attacker must
reason over both which area to attack and which method of attack to
execute based on the defender’s strategy. At this time we elaborate
on the defender’s and attacker’s possible strategies.

3.1.1 Defender Strategies
We denote the defender by Θ, and the set of defender’s pure

strategies by σΘ ∈ ΣΘ. The TSA is able to execute a variety of
security activities, which we denote by S = {s1, . . . , sm}. Each
security activity has two components. The first is the type of ac-
tivity it represents, and the second is the area where the activity is
performed. We denote the set of areas by A = {a1, . . . , an}.

The defender has K resources available and thus can run any
K security activities. The TSA’s task is to consider how to allo-
cate these resources among security activities in order to provide
the optimal protection to their potential areas. An assignment of
1Due to the nature of the TSA’s security challenge, we will refer to
targets in the TSA’s domain as areas henceforth.

K resources to K security activities represents a single strategy
σΘ ∈ ΣΘ. For example, if there are three security activities,
S = {s1, s2, s3} and two resources available, one possible pure
strategy for the defender is to assign these two resources to s1 and
s3. Given that the number of possible combinations of K security
activities at an airport can be on the order of 1013 or greater for the
TSA, we develop a compact representation of the possible strate-
gies that we present in Section 3.2. The defender’s mixed strategies
δΘ ∈ ∆Θ are the possible probability distributions over ΣΘ. Sim-
ilar to previous work, a mixed strategy (randomized solution) is
typically the optimal strategy.

3.1.2 Attacker Actions
Defending a target against terrorist attacks is complicated by the

diversity of the potential threats. For example, an attacker may try
to use a vehicle borne explosive device, an active shooter, a suitcase
bomb, and many others in any given area. Not all methods of attack
would make sense in all areas. For example, using a vehicle borne
explosive device in the checked baggage screening area in some
airport configurations would not be a viable method of attack. We
denote the attacker by Ψ, and the set of pure strategies for the at-
tacker is given by σΨ ∈ ΣΨ. Each pure strategy for the attacker
corresponds to selecting a single area ai ∈ A to attack, and a spe-
cific mode of attack. However, given that each airport considers its
own potential threats, enumerating all threats for each individual
airport through the software may not be practical. To handle the
national deployment challenge we face and avoid this difficulty, we
developed a novel way to represent threats for TSA’s domain that
we describe in Section 3.2.1.

3.2 Compact Representation for Efficiency
While we have developed a model that appropriately captures the

TSA’s security challenge, one issue with this model is that both the
attacker and defender strategy spaces grow combinatorially as the
number of defender security activities increases. Also, listing such
a large number of potential threats would lead to extreme mem-
ory and runtime inefficiencies. Furthermore, existing solution tech-
niques that have been developed for security games [8, 9] are not
directly applicable to Security Circumvention Games (SCGs).

With this in mind, we looked at an alternate approach to finding
optimal solutions efficiently. Specifically, we looked at represent-
ing threats in a more intelligent manner and creating a compact
representation for the defender strategy space. By utilizing both of
these techniques, we achieved large reductions in run-time. We uti-
lized a general Stackelberg solver known as DOBSS [12] to solve
our compact representation and avoided creating a tailored algo-
rithm for each specific airport. At this time we will explain both
how we model threats and how we achieve a compact representa-
tion of the defender’s full strategy space.

3.2.1 Threat Modeling for TSA
While it is important that we reason over all the security activ-

ities that are available to an individual airport, enumerating all of
the large number of potential threats they face can lead to severe
memory and runtime inefficiencies. Thus, the problem we face is
how to model attack methods in a way that limits the number of
threats GUARDS needs to reason over, but appropriately captures
both an attacker’s capabilities and his goals. In particular, we au-
tomatically generate attack methods for the adversary that capture
two key goals: (i) an attacker wants to avoid the security activities
that are in place; (ii) an attacker wants to cause maximal damage
with minimum cost.

In order to achieve these goals an intelligent adversary will ob-

39



serve security over time and design his attack method based on his
observations. The attacker’s plan will be designed to avoid security
activities that he believes will be in place. We will refer to this as
circumventing security activities. For example, imagine there is a
single area with three security activities such as passenger screen-
ing, luggage screening, and perimeter patrol. In this example, TSA
only has one resource available and thus can only execute one of
these activities at a time. While passenger screening may have the
highest probability of success, if TSA never screens luggage or pa-
trols the perimeter, the adversary can choose an attack path that
avoids passenger screening such as utilizing a suitcase bomb or an
attack from the perimeter.

On the defender side, we know that dedicating more resources to
security activities in an area increases the security afforded to that
area. However, even with more resources, we want to avoid being
predictable since attackers can exploit this predictability; avoiding
the security activities they know will be in place. Thus, we needed
to represent threats in a way that accounts for the attacker’s ability
to observe security in advance and avoid specific security activities,
but still represents the benefit of dedicating more resources.

A naïve approach is to represent only a single threat per area and
decrease the likelihood of success for that threat as more security
activities are put in place. This captures the increase in security
for additional security activities, however, it does not account for
the attacker’s ability to circumvent security activities. With this
method you would simply choose security activities in the order of
their relative success making it predictable and exploitable.

The alternative that we chose is to create a list of potential threats
that circumvent different combinations of specific security activi-
ties. By basing threats on circumventing particular combinations
of security activities, we avoid the issue of enumerating all the pos-
sible potential threats. Instead the threats are automatically created
based on the security activities in an area. However, we also in-
corporate a cost to the attacker for circumventing more activities to
capture the idea of causing maximal damage at minimal cost. Each
individual activity has a specific circumvention cost associated with
it and more activities circumvented leads to a higher circumvention
cost. This cost reflects the additional difficultly of executing an
attack against increased security. This difficulty could be due to
requiring additional resources, time and other factors for execut-
ing an attack. Since attackers can now actively circumvent specific
security activities, randomization becomes a key factor in the solu-
tions that are produced because any deterministic strategies can be
circumvented.

3.2.2 Compact Representation
We introduce a compact representation that exploits similarities

in defender security activities to reduce the number of strategies
that must be enumerated and considered when finding an optimal
solution to SCGs. First, we identify security activities that provide
coverage to the same areas, and have the same circumvention costs
(i.e. have identical properties). Let γi ∈ Γ represent the sets of
security activities that can be grouped together because they have
identical properties. Now, instead of reasoning over individual se-
curity activities, we reason about groups of identical security activ-
ities γi ∈ Γ. A strategy σΘ ∈ ΣΘ is represented by the number of
resources assigned to each set of identical security activities γi.

To illustrate this new representation, we provide a concrete ex-
ample of the full representation versus the compact representation
in Tables 1 and 2. In this example there are 4 security activities and
2 resources. Here, s1 and s2 have identical circumvention costs
and affect a1 while s3 and s4 have identical circumvention costs
and affect a2. Table 1 presents the full representation with corre-

sponding payoffs and Table 2 represents the compact form of the
same where γ1 represents the group s1 and s2 and γ2 represents
the group s3 and s4. In both tables, each row represents a single
pure strategy for the defender and each column the same for the
attacker. Notice in Table 1 each strategy σΘ ∈ ΣΘ is represented
by the exact security activities being executed while in Table 2 it is
only which set γi ∈ Γ each resource has been allocated to.

The key to the compact representation is that each of the secu-
rity activities from a set γi ∈ Γ will have the same effect on the
payoffs. Therefore, it is optimal for the defender to distribute prob-
ability uniformly at random across all security activities within a
set γi, so that all security activities are chosen with equal proba-
bility in the solution. Given that the defender strategy uniformly
distributes resources among all security activities sj ∈ γi we also
know that it does not matter which specific security activities the
attacker chooses to circumvent from the set γi. For any given num-
ber of security activities circumvented, the expected payoff to the
attacker is identical regardless of which specific activities within
the set are chosen. This is because we are selecting security activi-
ties uniformly at random within the set γi. Therefore, we can use a
similar compact representation for the attacker strategy space as for
the defender, reasoning only over the aggregate number of security
activities of each type rather than specific security activities.

Given this, we only need to know how many security activities
are selected from each set in order to compute the expected payoffs
for each player in the compact representation. For example, exam-
ining the second row and second column of Table 2 we see that the
reward to the defender is -2 and the reward to the attacker is 0. In
this case, the defender strategy is to assign 1 resource to activities
in γ1 and 1 resource to activities in γ2. Given that she is uniformly
distributing these resources, it follows that she will execute s1 half
of the time and s2 the other half. On the attacker side, we know that
the attacker is circumventing one security activity from the set γ1.
If he circumvents either s1 or s2 he will only succeed half of the
time. Thus, half of the time the defender receives 4 and the other
half -8 for an expectation of -2 (4 ∗ .5 + (−8) ∗ .5). We compute
the attacker’s reward in the same manner.

a1 : ∅ a1 : s1 a1 : s2 a2 : ∅ a2 : s3 a2 : s4
s1, s2 2, -1 4, -3 4, -3 -20, 10 -17, 7 -17, 7
s1, s3 2, -1 -8, 3 4, -3 5, -5 -17, 7 8, -8
s1, s4 2, -1 -8, 3 4, -3 5, -5 8, -8 -17, 7
s2, s3 2, -1 4, -3 -8, 3 5, -5 -17, 7 8, -8
s2, s4 2, -1 4, -3 -8, 3 5, -5 8, -8 -17, 7
s3, s4 -10, 5 -8, 3 -8, 3 5, -5 8, -8 8, -8

Table 1: Example payoffs for sample game.

a1 : ∅ a1 : γ1 a2 : ∅ a2 : γ2

γ1, γ1 2, -1 4, -3 -20, 10 -17, 7
γ1, γ2 2, -1 -2, 0 5, -5 -4.5, -5
γ2, γ2 -10, 5 -8, 3 5, -5 8, -8

Table 2: Example compact version of sample game.

Given this compact representation for both the defender and at-
tacker, we can compute an optimal mixed strategy of assigning re-
sources over Γ. Once we have this mixed strategy, we will need
to determine an actual strategy for the TSA to execute by sampling
one of the possible strategies from the mixed strategy we have de-
termined for our compact representation (e.g. one sample may be
γ2γ2). Once sampled, we will know exactly how many resources
are available to each set γi ∈ Γ. Given this resource assignment,

40



we can then sample security activities by selecting k uniformly at
random where k is the number of resources assigned to γi ∈ Γ.
This specific set of security activities for each area under the cur-
rent resource assignment is a full strategy for the TSA to execute.

3.3 Knowledge Acquisition
One of the most difficult issues we faced from a potential na-

tional deployment perspective was in acquiring the appropriate knowl-
edge for the security challenge being considered. In the past, tools
such as ARMOR and IRIS [14, 15] have been developed to be used
for a single security activity in a standalone location. That approach
gave the advantage of being able to sit down with domain experts
who will be using the system and develop a knowledge acquisition
process for the specific domain at hand. Unfortunately, with hun-
dreds of airports to consider, it is not possible to sit down at each
location and acquire the exact needs for each of them. To over-
come this obstacle, in close collaboration with TSA headquarters
we developed a two phase knowledge acquisition process.

In phase one, we take an approach similar to previous central-
ized approaches. In particular, we met with domain experts to ac-
quire knowledge that is common among all airports. This included
area definitions, defining security activities, and determining re-
source capabilities among others. In collaboration with headquar-
ters, we then decided how individual airports can customize these
components in their individual games while maintaining standards
set forth by headquarters (as discussed below). Additionally, we
collaborated with headquarters to limit the amount of customiza-
tion inputs so users at individual airports are not overwhelmed – a
key to organizational acceptance as discussed in Section 6.

In phase two of our knowledge acquisition, we took a decentral-
ized approach where it is the responsibility of individual airports to
input customized information. For this phase we could not create a
rigid system that was designed with one specific game instance in
mind for a single airport. Instead, we rely on SCGs and developed
a system in collaboration with headquarters that allows individual
airports to manipulate specific components within this framework
to create unique game instances. These inputs are designed to en-
sure that individual airports maintain standards set forth by head-
quarters in phase one. For example, individual airports are respon-
sible for determining the unique reward and penalty associated with
each area for the defender and attacker given a successful or unsuc-
cessful attack. However, TSA headquarters requires a standardized
method for determining these values to ensure that resources are
being appropriately distributed. To this end, we designed an input
module within GUARDS to reflect a risk evaluation process de-
veloped by the TSA where a series of quantifiable questions are
answered for each area by individual airports. These questions in-
clude such things as the number of fatalities that may result from an
attack in an area, whether the area has access control, and others.
The answers to these questions are then combined in a mathemat-
ical formula to decide the values for a particular area for both the
defender and attacker2. This input process ensures that airports are
appropriately valuing the areas they protect within an airport ac-
cording to headquarters guidelines. In general, using the customiz-
able input airports generate, we can then create the unique game
instance for that particular airport.

Our two phase knowledge acquisition process follows a partially
centralized approach and provides the following advantages: (i) it
allows domain experts from TSA headquarters to assure that the
system meets the required needs of the challenge being considered;

2Previous work [14, 15, 17] has shown that security problems are
not necessarily zero-sum for a number of potential reasons. In
GUARDS, for similar reasons, games are not necessarily zero-sum.

(ii) it focuses on creating customizable inputs instead of a system
tailored to a highly specific problem instance; (iii) it allows TSA
headquarters control while still enabling individual airports to cus-
tomize the system to meet their individual needs. For the third ad-
vantage, there is an important trade-off between system customiza-
tion and standardization among airports. Determining this trade-off
is an important part of the first phase in this two phase knowledge
acquisition process.

4. SYSTEM ARCHITECTURE
The GUARDS system consists of three modules. First, there

is an input module designed to acquire the necessary information
for one unique instance of the complex security game we consider.
Second, there is a back-end module that is designed to both create
and solve the unique game instance based on the inputs. Finally,
there is a display/output module that presents a sample schedule to
TSA officials based on the optimal solution. We now describe each
individual module and its operations in TSA’s airport domain.

Input Module: The input module is composed of three classes
of inputs that are required by the system in order to generate a rep-
resentative Stackelberg game and create an optimal allocation of
resources. All inputs are quantifiable and tangible so that headquar-
ters is able to maintain standards and guidelines on the way security
policies are created. The first input is the area data. First, airports
must input each of their potential areas. Second, for each area the
airport must go through the risk evaluation process (see Section
3.3) which involves answering a series of quantifiable questions.
The second set of input is the security activities data. For each area
the airport must list all of the security activities that are available
to execute in that area. While there is a standard list of activities
airports can select from, they are also able to input new security
activities that may be unique to that airport. The third input is the
resource data. This includes the number of days to create a sched-
ule for and the number of resources available each day.

Back-end Module: The back-end module has three primary
components. These are generating the game, solving the game,
and returning one sample schedule for TSA’s use. First, based on
the inputs from the input module, there is a component that creates
a compact representation of the specific game instance the system
is considering. This game instance is based on the compact form
of the model we presented in Section 3.1. Second, we compute
the solution to the Stackelberg game model using DOBSS, a gen-
eral Stackelberg solver [12]. This produces a solution, which is
a mixed strategy over the possible action space as defined in Sec-
tion 3.2. Finally, using the optimal mixed strategy we sample one
possible resource assignment that can be implemented by TSA.

Display/Output Module: The actual resource assignment se-
lected is presented to the user via the display/output module. The
schedule created is shown in the interface first as a summary of the
number of resources assigned to each area similar to the mockup in
Figure 13. Once the schedule is created, TSA personnel can pro-
ceed to a more in depth report of the schedule. This report lists
each of the specific security activities that were chosen for each lo-
cation along with specific details of these security activities. After
reviewing the report, TSA personnel can also choose to examine the
distribution of resources over areas that the optimal mixed strategy
provides as in Figure 2.

5. EVALUATION
3We are unable to show actual screen shots from our system due
to security concerns. For the remainder of this paper we will show
only basic visual representations of what GUARDS displays.

41



Figure 1: Summary of sample schedule

Figure 2: Summary of probability distribution over areas

When evaluating a system like GUARDS there are two important
issues that are raised. The first issue is with scalability and run-
times. To be useful in practice, the system needs to be able to solve
real world challenges. The second issue is evaluating the value of
the security policies generated against alternative approaches. In
the following sections we present each of these evaluations.

5.1 Run-time Analysis
We present simulation results focusing on the computational ef-

ficiency of our compact method versus the full representation. All
experiments are run on a system with an Intel 2 GHz processor and
1 GB of RAM. We used a publicly available linear programming
package called GLPK to solve optimization problems as specified
in the original DOBSS procedure. For the compact version we use
a slightly altered version of DOBSS that is designed specifically for
efficiency in the compact representation. The solver was allowed
to use up to 700 MB of memory during the solution process. For
larger game instances, solving the problem with the full represen-
tation runs out of memory and solutions cannot be found. In the
results presented below we exclude results for cases where the full
representation was not able to produce a result using the allotted
memory. We also note that in all experiments both the solution
found by the full representation and the solution found by the com-
pact representation are optimal.

To test the solution methods we generated random game instances
by randomly selecting payoff values from 1 to 50 and circumven-
tion costs from 1 to 5 for each area. For each experiment we gen-
erated 20 random game instances and averaged the results (there
is little variance in the run-times for different problem instances).
We considered three different scenarios. The first scenario presents
results for the case where there is an increasing number of areas,
and each area has exactly 3 security activities associated with it.
There are 5 resources available for the defender, and each secu-
rity activity has identical properties (i.e. no security activity has a
higher cost for circumvention or higher probability of success) for
the area it is associated with. Given the M possible areas, for the
full representation there are

�
3∗M

5

�
possible defender pure strate-

gies and 8 ∗M possible attacker pure strategies. Thus, in the 10
area case there are 142,506 defender pure strategies and 80 attacker

pure strategies. Examining Figure 3 (a), we show the improvement
in run-time of our compact representation over the full representa-
tion. For more than 4 areas, the full representation failed to achieve
a solution within the memory bounds. For 4 areas, the compact
representation runs much faster than the full representation, with a
run-time of less than 1 second versus the 177 seconds required by
the full representation. In fact, for 10 areas, the compact represen-
tation has an average run-time of approximately 1 second, which
is still much faster than the full representation for only 4 areas.
Even if the number of security activities associated with each area
is a relatively small constant our compact representation provides
substantial benefits. As the number of similar security activities
associated with an area increases, this advantage grows.

In our second scenario, we considered a situation where security
activities are distributed randomly across possible areas. The total
number of security activities is set similarly to the previous exper-
iment, in that that the total number of security activities is three
times the number of areas. However, we randomly assigned secu-
rity activities to areas (with each area having at least one security
activity) so the number is no longer uniform across areas. Once
again the defender has 5 resources available and security activities
have identical properties within an area. It follows that in the full
representation, the number of defender pure strategies and attacker
pure strategies are identical to the previous scenario. However, the
number of strategies in the compact representation for both the de-
fender and attacker may vary. Looking at Figure 3 (b), we see
similar benefits for the compact representation in this case as in the
previous experiment with a uniform distribution of activities.

In the final scenario, we considered a situation in which there
are 10 areas to protect, each area has 3 identical security activities,
and we increased the number of resources available to distribute
between these areas. Thus, in the full representation, assuming
there areK resources available, the defender has

�
30
K

�
possible pure

strategies and the attacker has 80 possible pure strategies. In Figure
4, we increase the number of resources available along the x-axis
and show the time to compute a solution in seconds on the y-axis.
The full representation is unable to compute a solution for more
than 4 resources under these conditions within the allotted mem-
ory. On the other hand, the compact representation is able to arrive
at a solution for 10 available resources in less than 30 seconds.

These results show the benefits of our compact representation in
terms of efficiency. We obtained further efficiency gains by caching
results: specifically, the inputs into the game do not change on a
daily basis. Thus, we can cache the resulting mixed strategy, and
present results from sampling this mixed strategy, as long as the
program users have not changed the inputs. When they do change
inputs, we resolve the game using our compact representation.

(a) Three activities per area (b) Random activities per area

Figure 3: X-axis: Areas, Y-axis: Run-time

5.2 Security Policy Analysis
For this analysis we examined the security policies generated by

our game representation against two other possible solution strate-
gies. The first strategy is a solution concept where resources are
distributed uniformly among areas (uniformly random), an approach

42



Figure 4: Run-time: Increasing resources for 10 areas with 3
security activities per area

sometimes used in lieu of a game-theoretic approach. The second
strategy uses our new representation, however, it does not allow
attackers to circumvent security activities (SCGs without circum-
vention). That is, we allow the attacker only a single attack strategy
per area and simply reduce the value of that strategy as the number
of security activities increases. This is a simplified model of an at-
tacker as mentioned in Section 3.2.1. Finally, we included our new
representation and allow an intelligent attacker to circumvent spe-
cific security activities when planning his mode of attack (SCGs).

We generated 20 random game instances with 10 areas and 3 se-
curity activities per area. In each game instance the payoff value
of each area for both the defender and attacker are randomly se-
lected from 1 to 50 and the circumvention costs are similarly se-
lected from 1 to 5. We then calculated the optimal solution under
the current solution strategy (i.e. uniformly random, SCGs with-
out circumvention, and SCGs). After finding the optimal solution,
we determined the expected reward for each solution given the as-
sumptions made in SCGs (i.e. attackers are allowed to circumvent
specific security activities when planning their attack). For each
game instance, we computed the optimal solution varying the num-
ber of resources available from 1 to 10 as seen on the x-axis of
Figure 5. On the y-axis, we present the average expected reward
obtained by each solution strategy across all 20 game instances. In
Figure 5 we see that the uniform policy is outperformed by both
game-theoretic approaches with the approach accounting for cir-
cumvention strategies performing the best. In fact, an approach that
accounts for circumvention strategies is the only one that was able
to obtain a positive reward for the defender in the 20 randomly gen-
erated game instances and in the 10 resource case obtains a 200%
improvement in reward over any other strategy. This shows the
benefits of reasoning about an intelligent attacker who will research
and exploit deterministic security activities.

Figure 5: Policy Analysis: Increasing resources for 10 areas
with 3 security activities per area

6. LESSONS IN TRANSITIONING
RESEARCH INTO PRACTICE

GUARDS is the result of a unique collaboration where university
researchers worked directly with a security agency for the purpose

of creating a useful product to potentially deploy outcomes of re-
search on a national scale. This collaboration to transition research
to such a large-scale deployment has presented valuable lessons.
This section outlines the three areas of insights we have gained in
the process: (i) acceptance of GUARDS at headquarters; (ii) accep-
tance of GUARDS by a variety of end-users at numerous airports;
(iii) obtaining correct input from users. Some of these insights are
contrary to accepted wisdom in the research community.

In a large organization like the TSA, it is important that they
are able to provide quality guarantees. A key implication is that
a system such as GUARDS must be very clear-cut in terms of
its assumptions and its solution quality guarantees based on these
assumptions. Researchers often assume that speedy heuristic so-
lutions that are on average high quality may be adequate “in the
field”, but we have learned in contrast that when dealing with secu-
rity agencies it is important that we provide guarantees on this so-
lution quality. More importantly, these guarantees may even be re-
quired to be optimal (i.e. even if we can guarantee solutions within
some bound of the optimal solution it may not be enough). Without
guarantees, the TSA may be unable to justify the use of any partic-
ular security strategy. In accordance with this requirement, we use
a solver known as DOBSS, which provides game-theoretic optimal
solutions in Stackelberg games.

With respect to acceptance of GUARDS at individual airports,
one major lesson learned is bridging the culture gap in academic
research and real-world operations. Indeed, what researchers may
consider small uninteresting issues may nullify all their major re-
search advances. For example, in an initial version of GUARDS,
we displayed the final probabilities of our mixed strategies, but
truncated the presentation of real numbers (i.e. truncating all dec-
imal values). Unfortunately, this single display issue turned out to
be a major headache for users who assumed incorrectness on part
of GUARDS when the distribution of resources appeared to be less
than 100%. Specifically, instead of considering the truncation of all
real values, users might assume that some resources were not being
utilized. A second major lesson learned is the continued need for
efficiency of game-theoretic algorithms. While significant research
has gone into speeding up these algorithms, we are still not able
to get off-the shelf algorithms and deploy; GUARDS required the
use of new compact representations. We have outlined our key ad-
vances in this regard in Section 5.1; including the need for caching.

A third lesson learned in user acceptance is careful design of the
user interface so as to reduce the amount of user workload to pro-
vide inputs: this must be kept at a manageable level. For instance,
if users are required to directly enter values into the generated game
matrix it can require thousands of inputs. Instead, it is important to
provide a user-friendly method of conveying the necessary infor-
mation. We used a simple interface where users are only required
to input the base information that is then used to generate the larger
game matrix. By base information, we mean such things as the ar-
eas and security activities. This is information that they have direct
access to and can easily be input by the individual airports.

Finally, in any collaboration, it is important that researchers are
able to obtain the appropriate input from their collaborators. This
includes understanding what information is available versus what
is not and accounting for this in modeling of the problem. For
the available information, often end-users will not understand the
techniques being applied and thus are prone to providing vague or
incorrect information. For example, when asking a security agency
such as the TSA to provide a utility for an attacker and for them-
selves as a defender on a successful attack, they may always say
that is it very bad for themselves and very good for the attacker.
Specifically, if there are 5 areas and they provide a utility for each

43



on a 10 point scale, they may always claim that it is -10 for the
defender and 10 for the attacker. In practice, this feedback may
not be useful because attacks on different areas may actually have
very different impact in terms of economic damage, casualties, and
many other factors. To aid in preventing this scenario, it is impor-
tant to convey the impact that inputs will have on outputs; aiding
their understanding of how their inputs will affect the results.

7. RELATED WORK AND SUMMARY
To the best of our knowledge, this paper presents the first-ever ef-

fort to transition any research reported at AAMAS conferences to
an application designed for potential national scale deployment to
hundreds of locations. This contrasts with previous efforts, includ-
ing efforts that focus on application of game-theoretic approaches
such as ARMOR and IRIS [14, 15], as detailed earlier in the pa-
per. It also contrasts alternative models based on Markov Decision
Processes (MDPs), queuing theory, or game theoretic approaches
that would enumerate all possible defender actions and attacker
threats [11, 13]. To accomplish this transition, we outlined novel
contributions to game modeling and compact representations of
games, because of the scale-up in defender and attacker strategies.
This research complements other solution techniques for Stackel-
berg games [5, 10], which have traditionally not focused on such
a scale-up. Our work also complements research actually applied
to randomize patrolling strategies in robot patrol [3, 4], given our
emphasis on modeling adversaries in a game-theoretic setting.

TSA is charged with protecting over 400 airports in the US.
The key challenge is how to intelligently deploy limited security
resources to unpredictable security activities within the airport in
a risk-based manner to provide the maximum possible protection.
These decisions may be made on a daily basis, based on the local
information available at each airport.

This paper describes a scheduling assistant for TSA, GUARDS,
which takes a game-theoretic approach to this resource allocation
task. In creating GUARDS, we address three key issues that arise
from a potential national deployment case. These issues are: (i)
knowledge acquisition for hundreds of end-users under one orga-
nization; (ii) appropriately modeling TSA’s security challenge to
achieve the best security policies; (iii) efficiently finding solutions
to the problem we consider. We addressed the first challenge by
using a two phase knowledge acquisition process in which we ac-
quire common information, standards, and practices directly from
TSA headquarters. We then constructed the GUARDS system it-
self to reflect a risk evaluation process designed by TSA to acquire
the necessary information that is unique to individual airports. To
address the second challenge we developed a novel game-theoretic
model, which we refer to as Security Circumvention Games (SCGs),
and cast TSA’s security challenge within this model. In creating
this model we provided the following contributions: (i) the ability
for defenders to guard targets with more than one type of secu-
rity activity (heterogeneous activities); (ii) the ability for attackers
to choose threats designed to mitigate specific security activities.
Finally, we designed an efficient solution technique for reasoning
over our new game model where we rely on creating a compact
representation of each game instance and solving it using a general
purpose Stackelberg solver. This is in contrast to tailored algo-
rithms of the past that are designed for specific problem instances
for standalone locations. To conclude, we present results demon-
strating the benefits of our contributions along with lessons learned
in creating GUARDS. The scheduling assistant has been delivered
to the TSA and is currently under evaluation and testing for unpre-
dictable scheduling practices at an undisclosed airport.

8. ACKNOWLEDGMENTS
The development of GUARDS has only been possible due to the

exceptional collaboration with the Transportation Security Admin-
istration. This research was supported by the United States Depart-
ment of Homeland Security through the Center for Risk and Eco-
nomic Analysis of Terrorism Events (CREATE) under grant num-
ber 2007-ST-061-000001. However, any opinions, findings, and
conclusions or recommendations in this document are those of the
authors and do not necessarily reflect views of the United States
Department of Homeland Security.

9. REFERENCES
[1] Air traffic control: By the numbers. In

http://www.natca.org/mediacenter/bythenumbers.msp#1.
[2] TSA | Transportation Security Administration | U.S.

Department of Homeland Security. In http://www.tsa.gov/.
[3] N. Agmon. On events in multi-robot patrol in adversarial

environments. In AAMAS, 2010.
[4] N. Agmon, S. Kraus, G. Kaminka, and V. Sadov. Adversarial

uncertainty in multi-robot patrol. In IJCAI, 2009.
[5] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, and F. Amigoni.

Extending algorithms for mobile robot patrolling in the
presence of adversaries to more realistic settings. In IAT,
2009.

[6] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In EC, 2006.

[7] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[8] M. Jain, E. Kardes, C. Kiekintveld, M. Tambe, and

F. Ordóñez. Security games with arbitrary schedules: A
branch and price approach. In AAAI, 2010.

[9] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, M. Tambe, and
F. Ordóñez. Computing optimal randomized resource
allocations for massive security games. In AAMAS, 2009.

[10] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of
computing optimal Stackelberg strategies in security
resource allocation games. In AAAI, 2010.

[11] R. C. Larson. A hypercube queueing model for facility
location and redistricting in urban emergency services.
Computers and OR, 1(1):67–95, 1974.

[12] P. Paruchuri, J. Marecki, J. Pearce, M. Tambe, F. Ordóñez,
and S. Kraus. Playing games for security: An efficient exact
algorithm for solving Bayesian Stackelberg games. In
AAMAS, 2008.

[13] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security
in multiagent systems by policy randomization. In AAMAS,
2006.

[14] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus. Deployed
ARMOR protection: The application of a game theoretic
model for security at the Los Angeles International Airport.
In AAMAS, 2008.

[15] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe.
IRIS - a tool for strategic security allocation in transportation
networks. In AAMAS, 2009.

[16] W. A. Wagenaar. Generation of random sequences by human
subjects: A critical survey of literature. 1972.

[17] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in security games:
Interchangeability, equivalence, and uniqueness. In AAMAS,
2010.

44


