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ABSTRACT
The class of simulation–based games, in which the payoffs
are generated as an output of a simulation process, recently
received a lot of attention in literature. In this paper, we ex-
tend such class to games in extensive form with continuous
actions and perfect information. We design two convergent
algorithms to find an approximate subgame perfect equilib-
rium (SPE) and an approximate Nash equilibrium (NE) re-
spectively. Our algorithms can exploit different optimization
techniques. In particular, we use: simulated annealing, cross
entropy method, and Lipschitz optimization. We produce an
extensive experimental evaluation of the performance of our
algorithms in terms of approximation degree of the optimal
solution and number of evaluated samples. Finding approx-
imate NE and SPE requires exponential time in the game
tree depth: an SPE can be computed in game trees with a
small depth, while the computation of an NE is easier.

Categories and Subject Descriptors
I.2.11 [Computating Methodologies]: Distributed Arti-
ficial Intelligence.

General Terms
Algorithms, Economics.

Keywords
Game Theory (cooperative and non-cooperative).

1. INTRODUCTION
Non–cooperative game theory provides formal tools to

model situations wherein rational agents interact and de-
scribes the pertinent solution concepts [5]. The central so-
lution concepts are the Nash equilibrium for games in which
agents play simultaneously (said in strategic form) and the
subgame perfect equilibrium when agents play sequentially
(said in extensive form). Game theory proves that any fi-
nite game admits at least an equilibrium (Nash and subgame
perfect), however it leaves open the problem to compute it.
Equilibrium computation is currently one of the most chal-
lenging problem in computer science [17].

Cite as: Equilibrium Approximation in Simulation–Based Extensive–
Form Games, Gatti, Restelli,Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
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wan, pp. 199-206.
Copyright © 2011, International Foundation for Autonomous Agents and
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The formal model of a game is based on the concept of
mechanism. It defines the rules of the game, specifying the
number of roles of the agents, the actions available to the
agents, the sequential structure of the game, and the pref-
erences of the agents over the outcomes (usually expressed
as utility functions). Almost the entire game theory deals
with games where the agents’ utility functions are known
in analytical form. Recently, the class of simulation–based
games have been proposed, in which the agents’ utility are
not analytical known, but they are the result of a (usually
continuous) simulation process. The main interest in study-
ing these games lays in developing algorithms able to find
agents’ (approximate) equilibrium strategies without having
any information about the simulation process.

The main work on equilibrium computation for simulation–
based games is described in [21]. The authors provide al-
gorithms based on best response iteration to find an ap-
proximate Nash equilibrium, where the best responses are
approximated by using stochastic optimization techniques
(precisely, simulated annealing). The authors discuss also
the conditions that assure their algorithms to converge (in
probability) to an equilibrium. However, this work is ap-
plicable only to games in strategic form. The study of
simulation–based games in extensive form has not received
enough attention. To the best of our knowledge, the unique
pertinent result is provided in [20], where the authors em-
ploy the simulation–based framework for mechanism design.

In this paper, we provide the first study of simulation–
based (continuous) extensive–form games. After having de-
fined the class of simulation–based extensive–form games
(Section 2), we provide two algorithms to compute an ap-
proximate Nash equilibrium (NE) and an approximate sub-
game perfect (SPE) respectively, that work directly on the
game tree (Section 3). These algorithms exploit black–box
(stochastic) optimization techniques. We develop our algo-
rithms with three different optimization techniques: sim-
ulated annealing (as in [21]), cross entropy method, and
Lipschitz optimization. Then, we experimentally evaluate
the performance of our algorithms (and optimization tech-
niques) in terms of: ǫ value of the found ǫ-approximate equi-
librium, number of evaluated samples, and time (Section 5).
We experimentally show that an NE can be found in game
trees deeper than in the SPE case.

2. SIMULATION-BASED AND EXTENSIVE-
FORM GAMES

The class of simulation–based games was introduced in [21]
and captures situations where the agents’ utility functions
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Figure 1: A two–level continuous game with two
agents: game tree (left), and agents’ utility functions
(middle and right).

are not analytically known, but they are given as the result
of a simulation process. Formally, there is an oracle O that,
given an outcome of the game, produces a (possibly noisy)
sample from the agents’ joint utility functions. Since most
of simulation processes are based on real–valued variables,
a very interesting class of simulation–based games is that
of games where the agents’ actions are continuous. In these
games, the actions available to the agents are the assignment
of values to one or more real–valued variables. In what fol-
lows, we define the concept of simulation–based extensive–
form games and we review the appropriate solution concepts.
As customary in game theory, we distinguish the mechanism,
that specifies the game rules, from the strategies, that spec-
ify the agents’ behavior during the game.

2.1 Mechanism
A finite perfect–information extensive–form game is a tu-

ple (N,A,V,T, ι, ρ,χ,u), where: N is the set of n agents,
A is a set of actions, V is the set of decision nodes of
the game tree, T is the set of terminal nodes of the game
tree, ι ∶ V → N is the agent function that specifies the
agent that acts at a given decision node, ρ ∶ V → ℘(A) re-
turns the actions available to agent ι(v) at decision node v,
χ ∶ V ×A→ V ∪T assigns the next (decision or terminal) node
to each pair composed of a decision node v and an action a
available at v, and u = (u1, . . . , un) is the set of agents’ util-
ity functions where ui ∶ T → R. An extensive–form game is
with imperfect–information when some action of some agent
is not perfectly observable by the agent’s opponents. In
this paper, we limit our study to perfect–information games.
Furthermore, we focus on games with perfect recall, where
every agent recalls all the previously undertaken actions.

In our work, we consider continuous perfect–information
extensive–form games. In these games, sets A, V , and T
are compact. Given a decision node v, agent ι(v) has a
continuous set of actions ⊆ A. Each action can lead to a
different decision or terminal node. (The model can be easily
extended to the case in which A, V , and T are mixed sets
composed of continuous and discrete elements.)

Example 2.1. Consider Figure 1, there are two agents
(i.e., agent 1 and agent 2) that play according to a two–level
game tree where the first agent to play is agent 1. Agent 1
can assign a real value to x1 from the range [0,1]. After the
assignment by agent 1, agent 2 can assign a real value to x2
from the range [0,1]. Agents’ utility functions are defined
on x1 and x2 as shown in figure.
In a simulation–based extensive–form game, players’ utility
functions u are not known. Formally, the component u in the
tuple (N,A,V,T, ι, ρ,χ,u) is substituted by oracle O whose
argument is t ∈ T . We say that (N,A,V,T, ι, ρ,χ,u) where

u = E[O] is the underlying game of the simulation–based
game where the oracle is O. Given u(t), we denote by ui(t)
the component of u reporting the utility of agent i.

2.2 Strategies
In an extensive–form game, a pure strategy σi is a plan

of actions specifying one action for each decision node of
agent i. A mixed strategy σi is a randomization over pure
strategies (plans). When the game is continuous, the def-
inition of a single plan is extremely complex and cannot
be conveniently used. An alternative and more compact
representation is given by behavioral strategies. These de-
fine the behavior of an agent at each node independently of
the choices taken at other nodes. Essentially, a behavioral
strategy σi assigns each decision node v ∈ V a probability
distribution over the actions available at v. With perfect
recall, the two representations (plans and behavioral) are
equivalent. A strategy profile collects the strategies of all
the agents and is defied as σ = (σ1, . . . , σn).

With continuous games, behavioral strategies are usually
expressed as functions that map actions played at previous
nodes to an action (or a probability distribution) available
at the current node.

Example 2.2. Consider the game in Fig. 1, possible strate-
gies for agent 1 and agent 2 are:

σ1 = {x1 = .3

σ2 = {x2 = .6 if x1 ≤ .2

x2 = .9 if x1 > .2

Solving a game means to find a strategy profile in which
agents’ strategies are somehow in equilibrium. Under the
assumption that information is complete and common we
can define the concept of Nash equilibrium (NE) as a strat-
egy profile σ such that for all i ∈ N : σi is a best response to
σ−i where σ−i is given by σ once σi has been removed (eas-
ily, a strategy σi is a best response when no other strategy
provides a larger utility). It is well known that in extensive–
form games some Nash equilibria may be not reasonable with
respect to the sequential structure of the game [5]. When
information is perfect, the appropriate refinement of Nash
for extensive–form games is the subgame perfect equilibrium
(SPE) [5]. With perfect information, a subgame is a subtree
of the game tree. Obviously, in continuous games, there
are infinite subgames. A subgame perfect equilibrium is a
strategy profile that is a Nash equilibrium in every subgame.
Every finite extensive–form with perfect information has at
least one subgame perfect equilibrium in pure strategies [5].
The same result holds when the game is continuous with
bounded utility functions [8]. Since the subgame perfect
equilibrium is a refinement of the Nash equilibrium, every
continuous perfect–information extensive–form game always
admits at least one Nash equilibrium (instead, continuous
one–shot games may not admit any Nash equilibrium).

Example 2.3. Consider the game depicted in Fig. 1. There
is ‘essentially’ a unique SPE (rigorously speaking, there are
infinite SPEs, but they are all equivalent in terms of utili-
ties), represented in Fig. 2 where:

σ1 = {x1 > .5

σ2 = {x2 ≤ .5 if x1 ≤ .5

x2 > .5 if x1 > .5

This game does not admit additional NEs in pure strategies.

200



<.5

<.5

<.
5
>.
5

>.5

agent 1 (x1)

agent 2 (x2) agent 2 (x2)

1,2

3,0 3,
0

2,
1

>.5

SPE

Figure 2: A representation of the unique SPE of the
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Figure 3: Agents’ utility functions and equilibrium
strategies (an SPE and an NE that is not an SPE).
The black slices represent the agents’ optimal strate-
gies.

Example 2.4. Consider a variation of the game in Fig. 1,
where utilities are reported in Fig. 3. There is ‘essentially’ a
unique SPE and an additional NE in pure strategies. In the
(non–SPE) NE , agent 2 makes a non–credible threat, com-
mitting to play x2 = z with z > .5 when agent 1 play x1 = w
with w > 0.5, to force agent 1 to play x1 = w with w ≤ 0.5.

Since our aim is to approximate equilibrium strategies in
simulation–based games, we resort to the concepts of ap-
proximate equilibrium. Several concepts are available in the
literature: ǫ–close, ǫ–Nash, and ǫ–perfect equilibria. An ǫ–
close equilibrium is a strategy profile σ in which the dis-
tance (according to some metric) between every σi and σ∗i
is smaller than ǫ, where σ∗i is the optimal strategy of i in an
NE σ∗. This concept provides a measure of the approxima-
tion degree of the strategy. However, it is usually considered
non–satisfactory and it is preferred the provision of the ap-
proximation degree of the expected utility. An ǫ–Nash equi-
librium is a strategy profile σ where no agent can improve
more than ǫ her utility by a unilateral deviation, while an
ǫ–perfect equilibrium takes into account also the deviations
of the opponents at all the subgames.

3. ALGORITHMS
The approximation of an equilibrium in simulation–based

extensive–form games cannot be tackled with the algorithms
proposed for strategic–form games. To use these algorithms,
we need to represent the agents’ strategies as plans of actions
and this is impractical.1 This pushes for the development of
ad–hoc algorithms that work directly on the game tree.

1
Notice that the game cannot be solved by using the algorithm de-

scribed [21] assuming that agent 1 and agent 2 assign values to x1 and
x2 respectively. This would neglect the game sequential structure.

Algorithm 1 spe approximation(v)

1: if v is terminal then
2: return O(v)
3: else
4: {σk(v)} ← sample initialization(ρ(v))
5: while true do
6: for each σk(v), assign uk = spe approximation(χ(v, σk(v)))
7: if termination condition ({σk(v)}, {uk}) then

8: return arg max
u∈{uk}

uι(v)

9: else
10: {σk(v)} ← samples generation(ρ(v), {σk(v)}, {uk})
11: end if
12: end while

13: end if

We provide two algorithms to compute an approximate
NE and an approximate SPE respectively. For sake of ex-
position, at first we present the algorithm for finding an ap-
proximate SPE. The algorithm for finding an approximate
NE is an extension of the previous one. In both algorithms,
we use σ(v) to specify the agent ι(v)’s strategy at node v.

3.1 Computing an approximate SPE
Formally, for each node v ∈ V an SPE is defined as follows:

σ
SPE(v) = arg max

σ∈ρ(v)
u

SPE
ι(v) (χ(v, σ)) , (1)

where uSPE(v) is defined as

u
SPE(v) = { O(v) if v is terminal

u
SPE (χ(v, σ

SPE(v))) otherwise.

Algorithm 1 reports the pseudo–code to compute an approx-
imate SPE. The algorithm, that works recursively, receives,
as input, the current node v. Initially, the algorithm is called
with v as the root node. If the current node v is terminal,
then the oracle is called and a sample of agents’ utilities are
returned (Line 2). Otherwise, the optimal strategy at v is
searched as follows. Initially, one or more action samples are
generated (Line 4). Then, each sample σk(v) is evaluated by
recursively calling spe approximation on the node reach-
able by application of action σk(v) to node v (Line 6). Given
the evaluation of all the samples, if a termination condition
holds (Line 7), the largest utility among those of all the sam-
ples is returned (Line 8). Otherwise, new samples are gen-
erated (Line 11). Functions sample initialization, sam-
ples generation, and termination condition are based
on black–box non–linear optimization techniques (their de-
scription is provided in Section 4).

Example 3.1. Consider the game in Fig. 1. Algorithm 1
works as follows. At first some samples of x1 are generated,
e.g., {.2, .4, .8}. For each sample, the algorithm is recursively
called and samples for x2 are produced, e.g., {.3, .5, .8} for
x1 = .2. Then, an iterative optimization process based on re-
sampling is carried on to optimize the value of x2 (i.e., ≤ .5
for x1 = .2) and, finally, to return the evaluation of utility
associated with the sample of x1 = .2 (i.e., u1 = 1). Once
utility associated with all the generated samples of x1 are
evaluated, an iterative optimization process based on resam-
pling is carried on to optimize the value of x1 (i.e., u1 = 2).

Provided that the black–box non–linear optimization tech-
nique converges to the global optimum (see Section 4.4), it
is easy to show that the proposed algorithm computes the
solution of problem in Equation 1.
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Algorithm 2 ne approximation (v)

1: if v is non–preterminal then
2: σ(v) ← a random value uniformly distributed in ρ(v)
3: u← ne approximation(χ(v, σ(v)))
4: while true do
5: [û, σ̂(v)]← ne validation(v, v)
6: if ûι(v) ≤ u(v) then

7: return u
8: else
9: σ(v) ← σ̂(v)

10: u← ne approximation(χ(v, σ(v)))
11: end if
12: end while
13: else
14: {σk(v)}← sample initialization(ρ(v))
15: while true do
16: for each σk(v), assign uk = O (χ(v, σk(v)))
17: if termination condition({σk(v)}, {uk}) then

18: return arg max
u∈{uk}

uι(v)

19: else
20: {σk(v)}← samples generation(ρ(v), {σk(v)}, {uk})
21: end if
22: end while

23: end if

3.2 Computing an approximate NE
Surprisingly, although the NE concept poses constraints

less hard than the SPE concept, the algorithm computing
an NE results to be more twisted than the one computing
an SPE. An NE can be formulated as in Equation 1 as far as
the nodes on the equilibrium path are considered, while off
the equilibrium path other agents may be non-maximizers.

Algorithm 2 depicts the pseudo–code computing an ap-
proximate NE. In the computation of an NE, two phases
can be recognized. During the first phase (entirely executed
by Algorithm 2), a strategy profile σ, limited to the equi-
librium path, is searched. During the second phase (mainly
executed by Algorithm 3), a possible strategy profile off the
equilibrium path is searched such that σ is an NE. Essen-
tially, the second phase validates that σ is an NE. The two
phases iteratively alternate during the execution until an
approximate NE has not been found. The details follow.

(First phase) In Algorithm 2, for each non–preterminal
node2 v a random strategy is assigned to σ(v) (Line 2) and
the algorithm is recursively called on the next node reached
by applying σ(v) to the current node (Line 3). If v is preter-
minal, the best strategy of agent ι(v) at v is searched by
using black-box optimization techniques (Lines 14–22). No-
tice that this optimization works exactly as Lines 6-13 of
Algorithm 1 except that here the evaluation of the sample
is directly accomplished by calling the oracle without any
recursive call of the algorithm. Once Line 18 is executed, a
complete strategy assignment σ from the root of the tree to
a terminal node (along a single path) is built.

Example 3.2. Consider the game depicted in Fig. 3. Al-
gorithm 2 randomly assigns a value to x1, e.g., x1 = 0.3, and
subsequently the optimal value of x2 is found, i.e., x2 ≥ .5.

(Second phase) The algorithm tries to validate that the
found strategy profile σ is an NE (Line 5). This is ac-
complished by Algorithm 3. Given a node v, Algorithm 3
searches for a strategy in the subgames such that agent ι(v)
cannot gain more by deviating from her strategy prescribed

2
A node v is preterminal if, once applied an action to v, a terminal

node is reached.

Algorithm 3 ne validation (v, v0)

1: if v is terminal then
2: return O(v)
3: else
4: {σk(v)}← sample initialization(ρ(v))
5: while true do
6: for each σk(v), assign uk = ne validation(χ(v, σk(v)), v0)
7: if ι(v) = ι(v0) then

8: if termination condition({σk(v)}, {uk
ι(v)}) then

9: return [arg max
u∈{uk}

uι(v),best σ
k(v)]

10: else
11: {σk(v)} ← samples generation

(ρ(v), {σk(v)}, {uk
ι(v)})

12: end if
13: else
14: if termination condition({σk(v)}, {−uk

ι(v0)}) then

15: return [arg min
u∈{uk}

uι(v0),best σ
k(v)]

16: else
17: {σk(v)} ← sam-

ples generation(ρ(v), {σk(v)}, {−uk
ι(v0)})

18: end if
19: end if
20: end while

21: end if

by σ. Differently from what happens in the case of SPE, the
strategy in the subgames of v does not need to be sequen-
tially rational. Practically, this means that, while agent ι(v)
will maximize her utility in such subgames, the behavior of
her opponents is free, they do not necessarily maximize their
utility. To assure that there is not any strategy such that
ι(v) can gain more by deviating form her strategy prescribed
by σ at v, we assume that all the opponents of ι(v) behave
in the attempt to minimize the utility of ι(v). In this way,
we find the maxmin value of agent ι(v) from the subgames.
If the maxmin value is larger than the utility given by the
strategy prescribed by σ, then σ is not an NE, otherwise
there is at least a strategy of the subgames such that the
strategy prescribed by σ is optimal. The validation process
must be repeated at every node v. If a strategy is not val-
idated at a given node v, Algorithm 2 assigns the maxmin
strategy of the subgames to σ(v) (Line 8) and phase 1 is
restarted.

Algorithm 3 works similarly to Algorithm 1 except that
the opponents of agent ι(v0), where v0 is the node whose
strategy we are validating, minimize agent ι(v0)’s utility
(Line 15). We use the same black–box optimization tech-
niques used in the previous algorithms, passing {−uk

ι(v0)
}

when we need to minimize (Lines 14 and 17).

Example 3.3. Consider the game depicted in Fig. 3. Sup-
pose that Algorithm 2 has assigned x1 = .3 and x2 = .1, and
that ne validation is executed to validate the strategy of
agent 1. A number of samples are generated for x1. For each
sample of x1, the optimal value of x2 minimizing agent 1’s
utility is found. It can be easily observed that the maxmin
utility of agent 1 from all the subgames is 1 and therefore
the initial strategy is validated.

The efficiency of Algorithm 3 can be improved by using a
pruning procedure similar to the alpha–beta pruning. More
precisely, call v0 the node whose strategy is to validate. To
assert that a given strategy σ is not an NE, we do not need
to compute the maxmin value of v0, but it is enough to find
a strategy σ̂ι(v0) such that agent ι(v0)’s utility is larger than
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the one provided by the strategy to validate. Moreover, in all
the subgames of v0, we do not strictly need that opponents
of agent ι(v0) find the minimum of agent ι(v0)’s utility, but
it is sufficient that they find an action such that agent ι(v0)’s
utility is not larger than the one provided by the strategy
to validate. Therefore, the termination condition at Line 8
can be safely modified in the following way: as soon as a
sample provides agent ι(v0) with a utility larger than the
one provided by the strategy to be validated, the algorithm
returns such utility and the corresponding sample. Similarly,
at Line 14 it is possible to make the algorithm return as soon
as a sample, that provides agent ι(v0) with a utility non–
larger than the one provided by the strategy to be validated,
is found.

Example 3.4. Consider Example 3.3. Every time a sam-
ple of x2 is evaluated and it provides a utility of 1 to agent 1,
no further samples are generated.

4. OPTIMIZATION ALGORITHMS
As shown in the previous section, the computation of an

SPE and an NE in extensive–form games requires to solve a
number of recursive optimization problems. For each node v
we need to maximize an unknown objective function which
depends on the solutions of other optimization problems de-
fined in the nodes of the sub–tree rooted at v. In a contin-
uous extensive–form game, this means to solve a number of
unconstrained continuous optimization problems. In the lit-
erature, researchers have proposed many optimization meth-
ods, which can be split into two main categories: determin-
istic methods (e.g., real algebraic geometry [2], Lipschitz op-
timization [18]) and non–deterministic (or stochastic) ones
(e.g., evolutionary algorithms [7], simulated annealing [10],
cross-entropy method [16], particle swarm optimization [9]).
The optimization process which is common to all these al-
gorithms is synthetically summarized in Algorithm 4. Start-
ing from one or more initial samples within the search space
D, at each iteration, new candidate solutions are generated
and, on the basis of their scores (i.e., the corresponding
objective function values) and eventually other information
about the objective function, the search is directed towards
the most promising regions in the search space. The search
process iterates until some termination condition is met: for
instance, many optimization algorithms stop when the im-
provement in a sequence of consecutive iterations falls be-
low a predefined threshold or a predefined maximum num-
ber of iterations is reached. In the following subsections
we will focus on one deterministic algorithm (Lipschitz op-
timization) and two random–search approaches (simulated
annealing and cross–entropy method), and we will describe
how the main steps of the search process are implemented in
each of them. For sake of simplicity, we will present the al-
gorithms for one–dimensional optimizations, but extensions
to multiple dimensions are straightforward [1].

4.1 Lipschitz optimization
Lipschitz optimization is a deterministic approach to the

global optimization problem. The basic assumption of this
approach is that the objective function u(x) satisfies the Lip-
schitz condition over the closed optimization interval [a, b].
A function is Lipschitz if there exists a finite bound α (called
Lipschitz constant) to its rate of change:

∣ u(x1) − u(x2) ∣≤ α ∣ x2 − x1 ∣, x1, x2 ∈ [a, b]. (2)

Algorithm 4 Optimization Algorithm

1: i ∶= 0
2: {xk

0}1≤k≤N
= sample initialization(D)

3: repeat
4: i ∶= i + 1

5: {xk
i }1≤k≤N

= sample g (D,{xk
[0∶i−1]}1≤k≤N

,{yk
[0∶i−1]}1≤k≤N

)
6: for j = 1 to N , assign yj

i
= u(xj

i
)

7: until termination condition ({xk
[0∶i]}1≤k≤N

,{yk
[0∶i]}1≤k≤N

)
8: return arg max

x∈{xk
i
}
1≤k≤N

u(x)

The key idea of Lipschitz optimization is to select the next
query point by maximizing an upper–bound function which
is built on the sequence of samples generated by the search
process.

Sample initialization. The algorithm starts by generating
two samples placed at the boundary of the optimization in-
terval [a, b]: {xk

0} = {a, b}, and computes the corresponding
scores u(a) and u(b).

Sample generation. In the following iterations, to select
the next sample of the search process, the algorithm, given
all the previously generated samples {x[0∶i−1]} (sorted by
value) and the associated scores {u(x[0∶i−1])}, determines

the interval [xj , xj+1] containing the highest value of the
upper–bound function:

[xj∗
, x

j+1∗ ] = arg max
xj,xj+1∈{x[0∶i−1]}

u(xj) +u(xj+1)
2

+α ⋅
xj+1

− xj

2
.

Once the interval has been identified, the new sample will
be generated in the following point:

xi = u(xj+1∗ ) − u(xj∗)
2α

+

xj∗
+ xj+1∗

2
.

Termination condition. The stop criterion for Lipschitz
optimization is that the difference between the actual objective-
function value and the upper–bound value is lower than a
specified global tolerance ǫstop.

4.2 Simulated Annealing
Simulated Annealing (SA) is a well–known probabilistic

metaheuristics algorithm for finding global maximum (or
minimum) of an objective function. It works by emulat-
ing the physics process whereby a solid is at first heated
and then slowly cooled to find a configuration with lower
internal energy than the initial one. The idea behind SA is
to take a random walk through the search space at succes-
sively lower temperatures (i.e., less exploration), where the
probability of taking a step is given by a Boltzmann distri-
bution. Although SA is often used when the search space
is discrete, here we consider its application to continuous
global optimization problems [12].

Sample initialization. The SA algorithm starts from a
random sample drawn from a uniform distribution over the
search space.

Sample generation. At each iteration i, a new candidate
sample x̂ is generated from a kernel distribution K(⋅, xi−1)
(whose definition is critical to the convergence of SA [6])
centered in the last available sample xi−1 (we used Gaussian
kernels). If the new sample x̂ has a score higher than the
one of xi−1 the sample is accepted. Otherwise, to avoid get-
ting trapped in local maxima, it can be still accepted with
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a likelihood that is proportional to the temperature param-
eter τ and the score difference u(x̂) − u(xi−1) (Metropolis
algorithm [15]):

xi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x̂ if p ≤min{1, e−
u(x̂)−u(xi−1)

τ }
xi−1 otherwise,

where p is a random number drawn uniformly in [0,1].
As the search process goes on, in order to converge to a so-
lution the temperature parameter should decrease according
to some cooling scheme [3].

Termination condition. Usually, SA algorithms stop when
new samples are consecutively rejected for a fixed number of
iterations. In this paper, we use a different criterion (similar
to the one adopted in [19]) based on the score of the sam-
ples considered in the last M iterations. In particular, the
algorithm is stopped at the i-th iteration if:

max
j∈[i−M,i]

u(xj) − 1

M

i∑
j=i−M

u(xj) < ǫSTOP .

In words, the algorithm is stopped when its progress is con-
sidered too small.

4.3 Cross-entropy method
The Cross-Entropy (CE) method is a Monte Carlo tech-

nique to solve optimization problems. The method con-
sists of two main steps: 1) generate samples according to
a probability density defined over the search space, 2) up-
date the probability density parameters by minimizing the
cross-entropy (i.e., Kullback-Lieber divergence [11]) with re-
spect to the best samples (elite samples). In this way, new
samples will be generated in the most promising regions of
the search space. Since considering distributions from an
exponential family such minimization can be solved analyti-
cally, in this paper we use Gaussian densities parameterized
by the mean µ and variance σ2.

Sample initialization. At the first iteration, since no prior
information is available, k samples are randomly generated
using a uniform distribution over the search space.

Sample generation. At each iteration i, given the sample
scores of the previous iteration {u(xk

i−1)}1≤k≤N , a percent-
age ρCE of the best samples is selected to estimate the new
probability density from which new samples will be drawn
in the next iteration. Using Gaussian densities, the mini-
mization of the cross–entropy measure leads to update the
parameters of the distribution by simply computing the sam-
ple mean and sample variance of the elite samples, i.e., the
best ⌈N ⋅ ρCE⌉ samples.

Termination condition. The algorithm is stopped when
the improvement in the (1 − ρCE)-quantile (i.e., the score
of the worst elite sample) does not exceed ǫSTOP for dCE

successive iterations, or when the maximum number of iter-
ations tmax is reached.

4.4 Convergence Properties
Lipschitz optimization allows one to approximate with ar-

bitrary precision the global maximum of Lipschitz functions
when an upper bound to the function derivative (the Lips-
chitz constant) is known. Since Lipschitz optimization is a
deterministic method with very few parameters, there is no
need for multiple runs and parameter tuning is minimized.
On the other hand, when the Lipschitz constant is unknown
or the objective function is not Lipschitz, no guarantees of
accuracy can be given. Furthermore, when objective func-

tions have large Lipschitz constants and/or are defined over
multiple dimensions, the convergence is very slow.

When no information about the objective function is avail-
able, randomized–search methods (e.g., simulated annealing
and cross–entropy method) are usually considered. Both the
algorithms described in this section are simple and effective
approaches to solve continuous optimization problems, even
if simulated annealing is a local search algorithm (whose per-
formance depends critically on a proper choice of the cooling
scheme), while the cross–entropy method is a global opti-
mization method. It is possible to show that, under quite
mild conditions on the kernel distributions and the objective
function, such methods converge to the optimum with prob-
ability approaching one as the number of samples grows to
infinity (for details refer to [6, 13]).

5. EXPERIMENTAL EVALUATION
We implemented our algorithms with Matlab R10 and we

executed them with a UNIX computer with dual quad-core
2.33GHz CPU and 8GB RAM. Our experimental activity
is structured as follows. Initially, we apply our algorithms
to a well–known practical economic problem (i.e., bargain-
ing) modeled as a continuous extensive–form game which
presents piecewise linear utility functions and whose exact
solution is known in closed form. Subsequently, we apply our
algorithms to ad–hoc games with a class of highly non–linear
utility functions widely studied in multi–agent systems.

5.1 The bargaining case study
We chose the alternating–offers game as case study, being

the principal model for strategic bargaining. The alternating–
offers game prescribes that two agents, a buyer b and a seller
s, play alternately at discrete time points. Time t is discrete
and ι(t) is defined as follows: ι(0) is a parameter of the
problem and for t > 0 it is such that ι(t) ≠ ι(t − 1). The
pure strategies available to agent ι(t) at t > 0 are: offer(x),
where x ∈ [0,1]; accept, that concludes the game with out-
come (x, t), where x is the value offered at t − 1, and t is
the time point at which the offer is accepted; and exit, that
concludes the game with outcome NoAgreement. At t = 0
only actions offer(x) and exit are available. Agents’ utility
functions are defined as follows. Each agent i has a dead-
line Ti. Before the deadlines, utility functions are defined as
Ub(x, t) = (1−x) ⋅ (δb)

t for the buyer and Us(x, t) = x ⋅ (δs)
t

for the seller. After the deadline of agent i, her utility is −1.
δi and Ti are parameters. The alternating–offers game ad-
mits a unique SPE that prescribes that at each time t there
is an optimal offer x∗(t) for every t ≤min{Tb, Ts} such that
agent ι(t) makes it and her opponent accepts it at t+1. (For
the computation of x∗ we point the interested reader to [4])
There is no optimal offer at t >min{Tb, Ts}, so agents’ opti-
mal action is exit. That is, the minimal deadline essentially
defines the depth of the game tree (exactly, the tree depth
is min{Tb, Ts} + 1).

We generated some game instances with different mini-
mal deadlines from the range {3,4,5,6}. We developed sim-
ple variations of our algorithms to capture the fact that ac-
tions are mixed, combining discrete and continuous actions.
Moreover, we force agents to exit when the minimal deadline
is expired (otherwise agents can indefinitely play).

At first, we have evaluated the performance of Algorithm 1
with different parameterizations when the minimal deadlines
is 3. The used parameterizations and the obtained results
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best samples per iteration
s.p.i. 2 4 6

E[⋅] std E[⋅] std E[⋅] std

0.078 0.084 0.082 0.157 0.195 0.186 ǫ

10 3⋅104 1⋅104 3⋅104 9⋅103 5⋅104 3⋅104 e.s.
0.763 0.329 1.684 0.613 2.111 0.864 time (s)

0.042 0.045 0.015 0.009 0.017 0.013 ǫ

20 5⋅104 2⋅104 2⋅105 3⋅104 3⋅105 7⋅104 e.s.
2.677 0.730 5.725 0.836 7.987 2.295 time (s)

0.036 0.038 0.0048 0.003 0.010 0.003 ǫ

30 4⋅105 9⋅104 6⋅105 9⋅104 8⋅105 6⋅104 e.s.
10.431 2.290 13.991 1.811 20.511 2.038 time (s)

0.024 0.016 0.015 0.025 0.005 0.007 ǫ

40 9⋅105 1⋅105 1⋅106 2⋅105 1⋅106 2⋅105 e.s.
18.983 3.789 31.244 7.848 36.310 6.102 time (s)

0.013 0.009 0.009 0.008 0.003 0.003 ǫ

50 2⋅106 3⋅105 3⋅106 4⋅105 3⋅106 4⋅105 e.s.
32.801 6.005 49.719 7.551 54.853 7.412 time (s)

Table 1: Experimental results with a bargaining
game with depth 3 obtained by applying CE to com-
pute SPE (‘s.p.i.’ means samples per iteration and
‘e.s.’ means evaluated samples).

temperature (τ)
M 0.3 0.5 0.7

E[⋅] std E[⋅] std E[⋅] std

0.042 0.030 0.082 0.133 0.031 0.033 ǫ

10 3⋅104 1⋅103 4⋅104 1⋅103 4⋅104 2⋅103 e.s.
0.915 0.051 0.946 0.024 0.956 0.055 time (s)

0.027 0.019 0.026 0.024 0.026 0.018 ǫ

20 3⋅105 3⋅103 3⋅105 9⋅103 3⋅105 1⋅104 e.s.
6.741 0.098 6.411 0.353 6.482 0.252 time (s)

0.023 0.017 0.020 0.017 0.029 0.024 ǫ

30 1⋅106 3⋅104 1⋅106 3⋅104 1⋅106 3⋅104 e.s.
22.650 0.782 22.820 0.910 24.390 0.623 time (s)

0.018 0.014 0.022 0.021 0.019 0.019 ǫ

40 2⋅106 5⋅104 2⋅106 7⋅104 2⋅106 7⋅104 e.s.
54.590 1.154 55.152 1.739 54.322 1.426 time (s)

0.018 0.017 0.013 0.181 0.035 0.062 ǫ

50 5⋅106 1⋅105 5⋅106 8⋅104 5⋅106 1⋅105 e.s.
108.627 1.903 107.689 2.865 106.613 2.781 time (s)

Table 2: Experimental results with a bargaining
game with depth 3 obtained by applying SA to com-
pute SPE (‘M ’ is defined in Section 4.2and ‘e.s.’
means evaluated samples).

related to CE optimization are reported in Tab. 1, those re-
lated to SA optimization are reported in Tab. 2, and those
related to Lipschitz optimization are reported in Tab. 3 (no-
tice that the utilities in the bargaining game are no Lips-
chitz, not being continuous). We evaluated our algorithm
in terms of ǫ value of the approximate ǫ–perfect equilibrium
found by the algorithms, number of evaluated samples (e.s.),
and computational time. The results reported in the tables
are averaged over 10 executions (ǫSTOP = 10−2 for CE and
SA).

CE and SA exhibit similar performance in terms of ǫ value.
This value reduces when the number of samples per itera-
tion (s.p.i.) and M increase, while there are not optimal
values of elite samples and temperature independently of
the number of samples per generation. Only with a Lip-
shitz constant larger than 3, Lipshitz optimization returns a
value of ǫ comparable to that returned by the other two op-
timization techniques. On the other hand, CE and SA eval-
uated a strictly smaller number of samples (ǫ being equal,
CE always outperforms SA). Finally, computational times
are proportional to the number of e.s. for all the optimiza-
tion techniques in the same way (for this reason, we omit
the computational time in the following evaluations).

Tab. 4 and Tab. 5 report the performance of Algorithm 1
with CE and SA with their fastest configurations (10 s.p.i.
and 2 elite samples for CE, and M = 2 and τ = 0.3 for SA)
for different values of the minimal deadline. The results are

Lipschitz constant (α)
1 2 3 4

0.221 0.143 0.073 – ǫ

138,359 1,127,485 6,692,909 > 107 e.s.
10.85 108.52 577.221 – time (s)

Table 3: Experimental results when computing SPE
with Lipshitz optimization in a bargaining game
with depth 3 (‘e.s.’ means evaluated samples).

minimal samples per iteration
deadline 10 15 20

ǫ e.s. ǫ e.s. ǫ e.s.

3 0.078 33,017 0.065 41,674 0.042 48,259
4 0.056 954,356 0.033 4,135,410 0.031 6,259,260
5 0.043 14,354,760 0.039 50,714,660 0.035 73,801,294
6 0.051 270,564,843 – > 109 – > 109

Table 4: Experimental results when computing SPE
in a bargaining game using CE with elite samples
equal to 2 (‘e.s.’ means evaluated samples).

averaged over 10 executions. We observe that the ǫ value
is rather small even with minimal deadline equal to 6. The
number of e.s. rises exponentially in the length of the mini-
mal deadline. Also in this case CE outperforms SA in terms
of evaluated samples.

We evaluate Algorithm 2 with the parameterizations used
in Tab. 4 for CE. We report only e.s. because the ǫ–Nash
value is zero for all the executions. Finding an NE requires
less samples than finding an SPE, thus allowing one to ap-
proximate a bargaining problem with deadline 20.

5.2 Games with rugged utility functions
We evaluate the performance of our algorithms when util-

ity functions are highly non–linear. Non–linear utility func-
tions are deeply studied in the negotiation field and a class
of utility functions that has received a lot of attention is
said rugged utility [14]. A rugged utility function is de-
fined as follows. Call (x1, . . . , xn) the arguments of util-
ity function U where xi ∈ [0,1]. Each domain [0,1] is di-
vided into k intervals where the j-th interval is [ j−1

k
, j

k
]. Call

int ∶ [0,1] → {1, . . . , k} the function that, given a continuous
value xi, returns the interval to which xi belongs. Utility
U is defined as U(x1, . . . , xn) = RAND 1

n ∑
n
i int(xi) where

RAND is a number randomly drawn from a uniform prob-
ability distribution over [0,1]. With these utility functions
SPEs can be computed exactly.

We generated game trees with a depth ∈ {3,4,5} and
rugged utility functions. We executed 10 times Algorithm 1
with cross entropy for each configuration reported in Tab 7
(the number of elite samples is equal to 2). We compared
the results returned by our algorithms with respect to the
SPE of the game. We report in Tab. 7 the results with tree
depth equal to 3 (the results with 4 and 5 are similar, but
they require a much larger number of e.s.): the success per-
centage (suc.), the ǫ value of the associated ǫ–approximate
equilibrium, and the number of evaluated samples.

It can be observed that the results with rugged utility
functions are worse than those obtained in the bargaining
case study. More precisely, the ǫ value and the number of
e.s. are larger than those obtained in Section 5.1. The per-
formance decreases with the increasing of k. In order to have
a satisfactory success percentage, the number of s.p.i. must
be rather larger than k. This poses severe limits to the size of
the game trees solvable by the algorithm within reasonable
time. We applied Algorithm 2 with CE using the same pa-
rameterization and with minimal deadline larger than 3. As
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minimal samples per iteration
deadline 10 15 20

ǫ e.s. ǫ e.s. ǫ e.s.

3 0.078 33,017 0.065 41,674 0.042 48,259
4 0.055 1,950,350 0.062 12,295,395 0.057 43,368,477
5 0.047 89,769,110 – > 109 – > 109

6 – > 109 – > 109 – > 109

Table 5: Experimental results when computing SPE
in a bargaining game using SA with τ = 0.3.

minimal samples per iteration
deadline 10 15 20

3 532 874 1,146
4 1,361 1,983 3,214
5 2,841 3,324 5,482
6 5,362 8,641 9,215
10 60,316 93,325 341,513
15 301,142 762,413 1,356,234
20 1,882,582 6,241,562 13,646,221

Table 6: Evaluated samples when computing an NE
in a bargaining game using CE with elite samples
equal to 2 .

in the bargaining case, the computation of an NE requires a
strictly smaller number of evaluated samples: (with 2 elite
samples) 103 e.s. with deadlines 3, 104 e.s. with deadlines
≤ 7, 105 e.s. with deadlines ≤ 12.

6. CONCLUSIONS
Simulation–based games (i.e., games in which the agents’

payoffs are provided as the result of a simulation process)
have received a lot of attention in the scientific commu-
nity. In this paper, we extended such class of games when
the games are in extensive form and have continuous ac-
tions. We provided two convergent algorithms to compute
an approximate subgame perfect and an approximate Nash
equilibrium respectively. We used different black–box op-
timization techniques (simulated annealing, cross entropy,
and Lipshitz optimization) in our algorithms and we experi-
mentally evaluated them with different settings. A subgame
perfect equilibrium can be computed in game trees with a
small depth, while the computation of a Nash equilibrium is
easier. Furthermore, the number of evaluated samples being
equal, cross–entropy optimization demonstrated to outper-
form simulate annealing and Lipshitz optimization.

In future works, we try to improve the efficiency of our
algorithms for all the situations wherein information on the
structure of the problem is available, e.g., when games have
an action–graphical structure.
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