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ABSTRACT
Motivated by a machine learning perspective—that game-
theoretic equilibria constraints should serve as guidelines for
predicting agents’ strategies, we introduce maximum causal
entropy correlated equilibria (MCECE), a novel solution
concept for general-sum Markov games. In line with this
perspective, a MCECE strategy profile is a uniquely-defined
joint probability distribution over actions for each game
state that minimizes the worst-case prediction of agents’ ac-
tions under log-loss. Equivalently, it maximizes the worst-
case growth rate for gambling on the sequences of agents’
joint actions under uniform odds. We present a convex op-
timization technique for obtaining MCECE strategy profiles
that resembles value iteration in finite-horizon games. We
assess the predictive benefits of our approach by predicting
the strategies generated by previously proposed correlated
equilibria solution concepts, and compare against those pre-
vious approaches on that same prediction task.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Theory, Algorithms

Keywords
Game theory, correlated equilibria, maximum entropy

1. INTRODUCTION
Agents often need to predict the future behavior of other

agents [9] to appropriately choose their own actions. Equi-
libria solution concepts, such as Nash equilibria [22], and
the more general correlated equilibria (CE) [1], which al-
low agents to coordinate their actions, are important con-
structs for multi-agent games that provide certain individual
or group performance guarantees based on assumed rational-
ity. Agents playing many decentralized, adaptive strategies
(such as no-regret learning) will converge to CE [23, 10,
14, 11], but the particular set of convergence CE will vary
depending on the strategies employed. From an applied ma-
chine learning perspective, existing equilibria concepts are
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often not useful for prediction. First, they generally do
not fully specify a unique strategy profile, making strategy
prediction under-specified without additional assumptions.
Second, they are typically not designed to provide any pre-
dictive performance guarantees.

We introduce the maximum causal entropy correlated
equilibria (MCECE) solution concept to enable equilibria-
based prediction for general-sum Markov games. It ex-
tends maximum entropy correlated equilibria (MaxEntCE)
for normal-form games [24] to the dynamic game setting by
specifying the unique CE strategy profile with the fewest
additional assumptions. This property is useful for three
main purposes. First, for prescriptive settings, the resulting
MCECE strategy profile best conceals the underlying mo-
tives of agents in a manner we specify in Section 3. This
can often be an important consideration when revealing too
much information can lead to future exploitation. Second,
for predictive purposes, the MCECE strategy profile mini-
mizes the worst-case log-loss when predicting the actions of
agents assumed to act according to an unknown CE strategy.
Thus, it is theoretically justified for predicting the actions of
agents assumed to be jointly behaving rationally. Third, for
gambling on the sequence of agents’ actions, the MCECE
strategy profile maximizes the worst-case expected invest-
ment growth rate under uniform odds.

We present in Section 4 an efficient algorithm for obtain-
ing MCECE based on convex optimization that ultimately
reduces to a dynamic programming algorithm over time
steps of finite games. In contrast with our predictive ap-
proach, previously developed CE solution concepts impose
very strong assumptions on agents’ preference over possible
CE strategy profiles to provide unique payoffs [20, 15, 12]. In
Section 5, we evaluate the predictive benefits of the MCECE
and other strategy profiles at predicting the strategies of one
another.

2. BACKGROUND
We first review concepts in game theory and information

theory to properly situate the contributions of this paper.

2.1 Games and Equilibria
The canonical set of games studied within game theory

are one-shot games with matrices of payoffs.

Definition 1. A normal-form game, is defined by a set
of agents N , a set of joint agent actions A, and a utility
vector U : A 7→ RN , specifying the payoffs for each agent
i ∈ N for joint action a ∈ A. Each agent controls a portion
ai ∈ Ai of the joint action a = ×i∈Nai.
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In a normal-form game (Definition 1), each agent (i ∈ N)
simultaneously selects an action (ai ∈ Ai) and receives a
numerical payoff, Ua,i ∈ R, based on the combination of
actions, a ∈ A.

Figure 1: The sequence of states and (Markovian)
actions of a Markov game.

Markov games (Definition 2) generalize normal-form
games to sequential settings. In a Markov game, the joint
actions of N agents at time t, denoted at, stochastically lead
to a next state as shown in Figure 1.

Definition 2. A Markov game is defined by a set of
states (S) representing the joint states of N agents, a set
of actions (A), a probabilistic state transition function, T :
S×A 7→ ∆S, and a utility function, Utilityi : N×S×A 7→ R.

Agents choose strategy profiles, π ∈ ∆A, specifying
next actions for each situation that are either mixed (i.e.,
stochastic) or pure (i.e., deterministic); and either corre-
lated (i.e., joint functions) or independent based on a
(discounted, 0 < γ ≤ 1) cumulative expected utility:

ExpUtilπi (at, st) (1)

, ESt+1:T,At+1:T

[∑
τ≥t

γτUtilityi(s
τ , aτ )

∣∣∣∣∣at, st, π
]
,

where we denote the variables being marginalized over in
the expectation using subscript. We assume in Equation 1
and throughout this paper that the strategy profile is mixed
and Markovian1, meaning it depends only on the current
state and time step.

To obtain strategy profiles, it is useful to consider the
amount of utility gained by switching from a provided ac-
tion, ati, to an alternate action, ati

′
, called a deviation ac-

tion, when: all agents’ actions, at, are known (Equation 2);
or when other agents’ actions, denoted at−i ∈ At−i, are un-
known and averaged over according to the strategy profile,
π (Equation 3):

ExpDevGainπi (at, st, ati
′
) (2)

, ExpUtilπi ({at−i, ati ′}, st)− ExpUtilπi (at, st)

ExpRegretπi (ati, a
t
i
′
, st) (3)

, EAt−i
[
ExpDevGainπi (at, st, ati

′
)
∣∣∣ati, st] .

Definition 3. A correlated equilibrium (CE) for a
Markov game is a mixed joint strategy profile, πCE, where

1Markovian strategy profiles are a consequence of the
MCECE formulation and commonly assumed in other so-
lution concept formulations.

no expected gain is obtained for any agent by substituting an
action, ati

′
that deviates from the strategy. This is guaran-

teed with the following set of constraints:

∀t∈T,i∈N,st∈S,ati∈S,ati′∈S ExpRegretπ
CE

i (ati, a
t
i
′
, st) ≤ 0. (4)

CE (Definition 3) generalize Nash equilibria [22], which
further require agents’ actions in each state to be indepen-
dent. Agents in a CE can coordinate their actions to ob-
tain higher expected utilities. Conceptually, each agent is
provided an action, ati, and knows the conditional distribu-
tion of other agents’ actions, P (at−i|ati). To be in correlated
equilibrium requires that no agent has an incentive to switch
from action ati to a deviation action, ati

′
. Traffic lights are a

canonical example of a signaling device designed to pro-
duce CE strategies. Given other agents’ prescribed strate-
gies (go on green), an agent will have incentive (equivalently,
non-positive deviation regret) to obey its prescribed action
(stop on red) rather than deviating (go on red). this coor-
dination mechanism is not required as long as players have
access to a public communications channel [6]. Past research
has shown that many decentralized, adaptive strategies will
converge to a CE [23, 10, 14, 11], and not necessarily to
more restrictive equilibria, such as the Nash equilibrium.

Figure 2: A CE polytope with a CE-Q equilibria
(point A) maximizing average utility and a Max-
EntCE (point B).

The deviation regret constraints (Equation 4) define an
N-dimensional convex polytope of CE solutions in the space
of agents’ joint utility payoffs (Figure 2). Exactly represent-
ing this polytope is generally intractable for Markov games,
because the number of corners of the polytope grows expo-
nentially with the game’s time horizon. Efficient approxima-
tion approaches have been employed [21, 5], but tractable
applicability has been limited to small games (15 or fewer
joint actions combinations per state) [5]. For the far more
modest goal of finding an arbitrary CE in a range of com-
pact games, algorithms that are polynomial in the number
of agents have been developed [25, 18] and extended to se-
quential games [16].

Our objective is different; we desire neither the (approx-
imate) entire convex polytope of CE strategy profiles nor
an arbitrary CE strategy profile. Rather, we desire a single
CE strategy profile with certain properties that are useful
for predictive purposes. This can be approached using opti-
mization techniques. For a single-shot (i.e., normal-form)
game, there are O(N |Ai|2) regret constraints that are lin-
ear in a total of O(|A|) strategy variables, {π(a)}a∈A, and
CE solutions can be efficiently obtained by solving a linear
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program or a convex program:

max
π

f0(π(A)) such that: (5)

∀i,ai,ai′
∑
a−i

π(a)
(
Utility

({a−i, ai′})−Utility(a)
) ≤ 0,

∀aπ(a) ≥ 0, and
∑
a

π(a) = 1.

depending on the objective function, f0.
A correlated-Q equilibria (CE-Q) [12] employs a linear

or convex function of strategy probabilities for the selection
metric objective of Equation 5 to obtain utility-unique strat-
egy profiles2. A number of objectives have been proposed:

• Utilitarian (uCE-Q) maximizes the sum of agents’

utilities,
∑N
i=1 E[Utilityi(a)|π];

• Dictatorial (dCE-Q) maximizes a specific agent’s
utility, E[Utilityi(a)|π];

• Republican (rCE-Q) maximizes the highest agent’s
utility, maxi E[Utilityi(a)|π]; and

• Egalitarian (eCE-Q) maximizes lowest agent’s util-
ity, mini E[Utilityi(a)|π].

More generally, strategies that penalize one or more agents
are also possible. For example, grim-trigger strategies have
been recognized as viable sub-game strategies that disin-
centivize an agent’s undesirable actions. Two punishment-
based selection criteria that we consider in this work are:

• Disciplinarian (xCE-Q) minimizes a specific agent’s
utility, E[Utilityi(a)|π]; and

• Inegalitarian (iCE-Q) maximizes utility differences
between two (groups of) agents, E[Utilityi(a) −
Utilityj(a)|π].

The strong assumptions about agents’ preferences con-
strain CE-Q solutions to cover corners of the CE polytope
(Figure 2).

2.2 Entropy, Prediction, and Gambling
Information theory provides powerful tools for construct-

ing predictive probability distributions. One of its basic
measures is Shannon’s information entropy, H(P ) ,
−∑x∈X P (x) log2 P (x), which measures the uncertainty of
distribution P . Information theory has many connections to
problems in gambling. For example, the entropy of distri-
bution P , and the exponential rate at which a gambler who
knows P can expect his investment to grow are related by
Theorem 4.

Theorem 4 ([4]). The doubling rate, which specifies

the wealth growth rate, O(2W (P,b)), for random outcomes
distributed according to P with bets in proportion to b and
payoff multipliers, o, such that ∀xo(x) ≥ 1 and

∑
x o(x)−1 =

1, is:

W (P, b) =
∑
x∈X

P (x) log(b(x)o(x)).

It is maximized by b(x)∗ = P (x) for uniform odds and pro-
vides an optimal doubling rate, W ∗(P ) = log |X| −H(P ).
2Unique strategy profiles are not guaranteed by the CE-
Q solution concept—multiple actions can provide the same
agent utility vector. We ignore this ambiguity and employ
a single CE-Q from the possible set.

More generally, a gambler (or predictor) may not know the
distribution P , but instead knows some constraints that P
satisfies. For example, linear equality constraints, g(P ) = 0,
and inequality constraints, h(P ) ≤ 0, are common.

Definition 5. The principle of maximum entropy [17]
prescribes the maximum entropy probability distribu-
tion subject to equality and inequality constraints:

argmax
P

H(P ) such that: g(P ) = 0 and h(P ) ≤ 0.

The maximum entropy distribution (Definition 5) pro-
vides important predictive guarantees (Theorem 6).

Theorem 6 ([13]). The maximum entropy distri-
bution minimizes the worst case predictive log-loss,

inf
P (X)

sup
P̃ (X)

−
∑
x∈X

P̃ (x) logP (x),

subject to constraints g(P ) = 0 and h(P ) ≤ 0.

Additionally, the gambling asset allocation that maxi-
mizes the worst-case growth-rate for this setting is:

b(X)∗ = argmax
b(X)

min
P (X)

W (X) (6)

subject to equality and inequality constraints.

Corollary 7 (Theorem 6 and Theorem 4). The
optimal gambling asset allocation, b(X)∗, is proportional
to the maximum entropy distribution when the payoff
multipliers are uniform.

2.3 Maximum Entropy Correlated Equilibria
The maximum entropy correlated equilibria (Max-

EntCE) solution concept for normal-form games [24] selects
the unique joint strategy profile that satisfies the principle
of maximum entropy (Definition 5) subject to linear devi-
ation regret inequality constraints (Equation 4). This ap-
proach provides the predictive and gambling guarantees of
maximum entropy (Theorem 6 and Corollary 7) to the
one-shot, normal-form multi-agent game setting.

Table 1: The game of Chicken and four strategy
profiles that are in correlated equilibrium.

Stay Swerve
Stay 0,0 4,1

Swerve 1,4 3, 3

CE 1
0 1
0 0

CE 2
0 0
1 0

CE 3
0 1

3
1
3

1
3

CE 4
1
4

1
4

1
4

1
4

Consider the game of Chicken (where each agent hopes
the other will Swerve) and the correlated equilibria that de-
fine its utility polytope in Table 1. We relate these strategy
profiles to the more specific equilibria described in Section
2.1. CE 1 and CE 2 are both dictatorial, disciplinarian,
and inegalitarian CE (for different agents) and republican
CE (but ambiguous). CE 3 is a utilitarian CE and an egali-
tarian CE. CE 4 is the maximum entropy CE. Its predictive
guarantee is apparent: all other CE have infinite log-loss
for at least one other CE; the MaxEntCE is the only CE
that assigns positive probability to the {Stay, Stay} action
combination. We extend these predictive guarantees to the
Markov setting in this work.
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3. MAXIMUM CAUSAL ENTROPY COR-
RELATED EQUILIBRIA

Extension of the MaxEntCE solution concept [24] to the
Markov game setting is not straight-forward. The first diffi-
culty is that the deviation regret constraints of normal-form
games (Equation 5), contain expectations over future actions
(Equation 4) when extended to the Markov game setting.
This creates non-linear constraints that are products of the
unknown variables, making optimization difficult.

Theorem 8. A linear/convex program formulation of CE
for Markov games is possible by considering as variables the
entire sequence of joint agent actions for the sequence of
revealed states, η(A1:T |S1:T ), and employing appropriate in-
equality constraints (deviation regret guarantees) and equal-
ity constraints (forcing the strategy over sequences to factor
into products of Markovian strategies) on marginal distribu-
tions using linear function of η(A1:T |S1:T ) variables.

Näıvely formulating the Markov game CE strategy profiles
into a linear/convex program is possible (Theorem 8), but
the number of constraints and variables grow exponentially
with the time horizon.

The second difficulty is that there are many entropy mea-
sures that could be applied as objective functions. For ex-
ample, the conditional entropy and joint entropy are
natural entropy measures to consider. However, neither ap-
propriately extends the predictive and gambling guarantees
of the maximum entropy approach to the sequential Markov
game setting. They either assume the availability of future
outcome information (violating the problem setting), or are
not risk-neutral to the stochasticity of the Markov game’s
transition dynamics.

We instead advocate the less common causally condi-
tioned entropy measure [19],

H(AT ||ST ) ,
∑
t

H(At|A1:t−1, S1:t). (7)

For the possible sequences of states and actions through
a Markov game, it corresponds to the uncertainty associ-
ated with only the actions in such sequences. It is based
on the causally conditioned probability distribution,
P (AT ||ST ) ,

∏
t P (At|A1:t−1, S1:t), which conditions each

set of correlated actions only on actions and states that
have been revealed at that point in time and not on fu-
ture states, as in the conditional probability distribution
P (A|S) =

∏
t P (At|A1:t−1, S1:t, St+1:T ).

Definition 9. A maximum causal entropy correlated
equilibrium (MCECE) solution maximizes the causal en-
tropy while being constrained to have no action deviation
regrets3:

πMCECE , argmax
π

H(AT ||ST ) (8)

= argmax
π

EA1:T ,S1:T

[
T∑
t=1

− logP (at|st)
]

3Markovian policies are a consequence of the MCECE for-
mulation. See Lemma 13.

such that: ∀t, i, ati, ati′, st ExpRegretπi (ati, a
t
i
′
, st) ≤ 0,

∀t, st, at P (at|st) ≥ 0, ∀t, st
∑
at

P (at|st) = 1,

π factors as: P (AT ||ST ) and given: P (St+1|St, At).
We further constrain the strategy profile to have sub-game
equilibria, meaning that even in states that are unreachable
under the strategy profile and state dynamics, the strategy
profile is constrained to satisfy Equation 8 in all sub-games
starting from those states.

Maximizing the causal entropy (Equation 8) has been pre-
viously employed to match characteristics of demonstrated
behavior in decision settings using equality constraints [26].
MCECE represents the first inequality-constrained applica-
tion of the principle of maximum causal entropy

Based on the view of conditional entropy as a measure of
predictability [4], the MCECE solution concept offers two
important predictive guarantees:

Theorem 10 (extension of [24]). Given an MCECE
strategy profile, no agent may decrease the predictability of
her action sequence without creating deviation regret for her-
self.

Theorem 11 (extension of [13]). The MCECE solu-
tion strategy profile, πMCECE minimizes the worst-case log
prediction loss for the sequences of joint actions, i.e.,

inf
P (AT ||ST )

sup
P̃ (AT ||ST )

−
∑

a∈A,s∈S

P̃ (a, s) logP (aT ||sT ), (9)

of all the CE satisfying deviation regret constraints, where
P̃ (AT ||ST ) is the (worst possible for prediction) empirical

CE strategy and the joint, P̃ (A,S), is the distribution of
states and actions under that strategy profile and the known
state transition dynamics.

The second result (Theorem 11) is particularly relevant
to our machine learning perspective, because it justifies the
MCECE strategy profile as a robust predictive model of
agents’ actions when they jointly behave rationally.

4. CORRELATED EQUILIBRIA FINDING
We turn our attention from the theoretical properties of

the MCECE solution concept to developing an algorithm
that obtains the MCECE for a fixed-horizon Markov game
more efficiently than the näıve convex optimization that
follows the formulation of Theorem 8. Despite the non-
compact formulation of the näive MCECE convex program,
the strategy profile can be expressed compactly.

Lemma 12. The MCECE strategy profile for a Markov
game is also Markovian.

Proof (sketch). Intuitively, independence maximizes en-
tropy. Since the utility structure and game dynamics are
history-independent, nothing prevents the MCECE from
also being history-independent.

Theorem 13. The MCECE strategy profile,
πMCECE
λ (at|st), has the following recursive form (with
λ ≥ 0):

πλ(at|st) ∝ e−
(∑

i,at
i
′ λi,st,at

i
,at
i
′ ExpDevGainπi (at,st,ati

′)
)

+ExpEnt(at,st), (10)
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where ExpEnt(at, st) ,
EP (At+1,St+1)

[
ExpEnt(at+1, st+1) +H(at+1|st+1)

∣∣at, st].
We obtain optimal Lagrange variables, {λ∗i,s,ai,a′i} ≥ 0, by

optimizing the Lagrange dual,

LD(λ) = EA1:T ,S1:T

[
− logPλ(a1:T ||s1:T )

]
(11)

−
∑

t,i,st,ati,a
t
i
′
λt,i,st,ati,ati

′ ExpRegret
πλ
i (ati, a

t
i
′
, st),

using gradient-based optimization and the dual’s gradient,

∇λLD(λ) =

{∑
at−i

P (at|st)
(

ExpUtil
πλ
i ({at−i, ati ′}, st)

−ExpUtil
πλ
i (at, st)

)}
, (12)

as shown in Algorithm 1.

Algorithm 1 Find MCECE equilibria for finite horizon

1: λ(1) = {λ(1)

t,i,st,ati,a
t
i
′} ← (arbitrary) positive initial val-

ues.
2: x← 1
3: while not converged do

4: Compute π
(x)
λ = {πλ(at|st)} from λ(x) using a sub-

routine.
5: Compute LD(λ(x)) and ∇λLD(λ(x)) directly via

Equation 11 and Equation 12 using π
(x)
λ

6: Update λ(x+1) from {λ, LD, ∇λLD}(1:x) using
gradient-based optimization update rules

7: x← x+ 1
8: end while

Remark 14. For time-varying policies, future strategy
probabilities (and dual parameters) are independent of ear-
lier strategy and dual parameters given the state. As a result,
the “parallel” updates for dual parameters across time (Algo-
rithm 1) can be sequentially ordered for improved efficiency.

Following Remark 14, Algorithm 1 can be re-expressed
as a sequential dynamic programming algorithm (Algorithm
2) resembling value iteration [2] that iteratively computes
both future expected utilities and expected entropies. It
also suggests the parallel updating of the dual parameters
(or the primal policy) as a general approach for overcoming
the limitations of value iteration for finding stationary CE
strategy profiles in general-sum Markov games. However,
full discussion is beyond this paper’s scope.

Using interior-point methods, an ε−optimal MCECE

strategy profile is obtained in O(|S|T2 |A|T2 log 1
ε
) time us-

ing the näıve formulation of Theorem 8. Using Algorithm 2,

this is reduced to O(|S|T |A| 12 log |S|T
2ε

) time.
We employ existing sub-gradient optimization methods [3]

for the convex objective and linear inequality constraints
to obtain the strategy profiles for the interior optimiza-
tion (Line 4) of Algorithm 2. This provides looser run-
time bounds than interior-point optimization methods, but
is simpler to implement and still practical for the purposes
of this paper.

Algorithm 2 Value iteration approach for obtaining
MCECE
1: ∀i,a,s ExpUtili(a, s)← Utilityi(a, s)
2: ∀a,s ExpEnt(a, s)← 0
3: for t = T to 1 do
4: For each state, st, obtain {πλ(at|st)} using ExpUtil

and ExpEnt values in the following optimization:

argmax
π(at|st)

H(at|st) + E
[
ExpEnt(a, s)|st, π(at|st)]

such that:
∑

a−i∈A−i
P (at|st)

(
ExpRegret({at−i, ati}, st)

− ExpRegret(at, st)

)
≤ 0

∀atP (at|st) ≥ 0 and
∑
at∈At

P (at|st) = 1.

5: ∀i∈N,a∈A,s∈S ExpUtil′i(a, s) ←
γ
∑
at∈A,st∈S π(at|s)P (st|s, a) ExpUtili(a

t, st)

6: ∀s∈S,a∈A ExpEnt′(a, s) ←
γ
∑
at,st π(at|st)P (st|s, a)

(
ExpEnt(a′, s′)+H(a′|s′))

7: ∀i∈N,a∈A,s∈S ExpUtili(a, s) ← ExpUtil′i(a, s) +
Utilityi(a, s)

8: ∀a∈A,s∈S ExpEnt(a, s)← ExpEnt′(a, s)
9: end for

5. EXPERIMENTAL EVALUATION
In this section, we demonstrate that the theoretical robust

predictive guarantees of the MCECE are realized in practice.
Following Zinkevich et al. [27], we generate random Markov
games for evaluation. We compute different strategy profiles
for each generated game using existing CE solution concepts
and evaluate how well they predict one another.

5.1 Setup
We generate random stochastic Markov games according

to the following procedure. For each of |S| states in the
Markov game, each agent has |Ai| actions from which to
choose, and there are |A| joint actions total. The state tran-
sition dynamics, P (St+1|St, At), depend on the combination
of agents’ actions (and state) and are drawn uniformly from
the simplex of probabilities. The utility obtained by each
agent in each state, Utilityi(s), is drawn uniformly from
{0, 0.1, 0.2, ..., 0.9}. A discount factor of γ = .75 is incor-
porated in each game. It’s important to note that we did
not optimize these random game parameters to obtain de-
sired results; we expect the results for the games we evaluate
to extend to a wide range of games—random or otherwise.

We generate time-varying strategy profiles for MCECE us-
ing Algorithm 2 and for the CE-Q variants using projected
sub-gradient optimization. The CE-Q strategies we evalu-
ate are a subset of those described in Section 2.1. iC-EQ
maximizes the positive margin of agent 1’s utility over agent
2’s utility. We repeat this process for 100 random games for
each choice of game parameters and investigate the proper-
ties of the resulting CE strategy profiles.

As shown in Figure 3, the uncertainty of action sequences
increases linearly with the size of the action set, as one
might expect. Previous experiments have primarily consid-
ered two-player Markov games [12, 27]. The larger number
of players we consider in this paper greatly increases the
game complexity since the game description grows exponen-
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Table 2: Predictive bake-off evaluation of the first action in a ten timestep horizon using 100 random Markov
games. Log-loss and non-support measures (equivalent to total gambling loss) are evaluated.
Seven equilibria strategy profiles evaluated on random Markov games with three agents, two states, and two actions/agent.

MCECE uCE-Q d1CE-Q d2CE-Q x1CE-Q x2CE-Q iCE-Q Average

MCECE ——–
1.951 1.951 1.967 2.010 1.992 1.974 1.974
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

uCE-Q
3.377

——–
2.039 1.888 2.647 3.072 2.444 2.578

22.3% 4.5% 5.7% 21.2% 20.8% 13.8% 14.7%

d1CE-Q
3.442 1.866

——–
2.511 3.328 2.321 1.798 2.544

18.9% 3.5% 5.6% 18.8% 17.6% 9.8% 12.4%

d2CE-Q
3.462 1.872 2.536

——–
2.576 3.489 3.060 2.833

17.0% 1.7% 3.3% 15.6% 17.2% 12.1% 11.2%

x1CE-Q
2.897 2.472 2.798 2.450

——–
2.375 2.764 2.626

0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x2CE-Q
2.877 2.605 2.251 2.905 2.373

——–
2.116 2.521

0.5% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1%

iCE-Q
3.378 2.279 1.902 2.989 3.116 2.276

——–
2.657

5.3% 1.9% 0.0% 2.5% 5.1% 4.2% 3.2%

Seven equilibria strategy profiles evaluated on random Markov games with four agents, two states, and two actions/agent.
MCECE uCE-Q d1CE-Q d2CE-Q x1CE-Q x2CE-Q iCE-Q Average

MCECE ——–
3.451 3.468 3.476 3.518 3.509 3.475 3.483
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

uCE-Q
7.308

——–
3.955 3.652 6.495 6.814 5.591 5.636

25.8% 9.4% 8.5% 21.8% 22.0% 17.9% 17.6%

d1CE-Q
6.914 3.831

——–
4.746 7.566 5.536 3.895 5.415

22.5% 5.8% 10.2% 21.2% 17.6% 11.2% 14.8%

d2CE-Q
7.109 3.408 4.767

——–
5.643 7.651 6.976 5.926

23.1% 6.4% 10.7% 18.3% 21.5% 19.7% 16.6%

x1CE-Q
4.603 4.300 5.000 3.849

——–
3.918 4.372 4.340

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

x2CE-Q
4.633 4.401 3.917 4.986 3.944

——–
3.171 4.175

0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

iCE-Q
6.380 5.070 3.884 6.501 5.991 4.311

——–
5.356

11.5% 5.0% 2.8% 8.0% 8.7% 5.5% 6.9%

Figure 3: The average causal entropy measure of the
10 time step action sequences that are generated by
different correlated equilibria solution concepts for
random 2-state, 2-action Markov games.

tially with the number of players. In our experiments, the
MCECE strategy profile is the most uncertain (by design)
and many of the previously investigated CE-Q solutions are
the most deterministic.

5.2 Evaluation Metrics
The predictive guarantees of the MCECE strategy pro-

files relate to the log-loss of predicting actions distributed
according to Pobs with distribution Ppred:

−
∑
a∈A

Pobs(a) logPpred(a).

In the context of this work, Pobs and Ppred are each proba-

bilities in CE strategy profiles for Markov games. Unfortu-
nately, many of the strategy profiles provide no support for
some action combinations that are possible in other strat-
egy profiles. In other words, they predict that some action
combinations occur with 0% probability when they do in
fact occur with positive probability. This corresponds to an
infinite log-loss.

Instead of using the typical log-loss measures, which is
often infinite except for the MCECE strategy profile, we in-
stead employ two measures. The first is the log-loss on the
action combinations that do have support4. The second is
the percentage of action combinations that have no support.
The latter can be interpreted as the degree of infiniteness
that the log loss would have. Equivalently, under the gam-
bling perspective, it can be interpreted as the percentage of
instances all of a gambler’s money would be lost.

5.3 Action Prediction Comparison
The results of this comparison across strategy profiles are

shown in Table 2 (for three and four agents). We note that
in some cases one C-EQ strategy profile may better predict
another than the MCECE strategy profile when their objec-
tives are closely aligned. For example, the x2CE-Q predicts
iCE-Q fairly accurately since both are punishing agent 2 to
some degree. However, overall the MCECE solution profile
provides a much more robust prediction of other strategy
profiles (and full support) on average (right column).

We employ the relationships between log-loss and dou-

4To address ε approximation error, we employ a minimum
Pobs threshold of 0.1% for assessing non-support and a maxi-
mum penalty threshold of 16.6 bits (− log2 0.00001) for small
support—both to the benefit of CE-Q strategy profiles.
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Table 3: Doubling rates of CE as gambling alloca-
tions in the three and four player game settings.

Three players Four players
MCECE 1.026 0.517
µCE-Q 0.422 -1.636

d1CE-Q 0.456 -1.415
d2CE-Q 0.167 -1.926
x1CE-Q 0.374 -0.346
x2CE-Q 0.479 -0.175

iCE-Q 0.343 -1.356

bling rate from Section 2.2 to illustrate the benefits of dif-
ferent CE for gambling in Table 3. For the three player
experimental setting, all CE strategies are expected to have
positive investment growth rate (under uniform, fair odds).
However, many also have a probability of losing all money
(Table 2). Betting according to the MCECE distribution
provides the largest growth rate—with the expectation of
doubling an investment after each bet. For the four player
setting, the MCECE distribution is the only one with pos-
itive expected investment growth. Thus, the theoretical
properties for prediction under log-loss and gambling un-
der uniform odds provided by the MCECE are realized in
practice.

6. CONCLUSIONS
This paper was motivated by a fundamental question:

given that agents act rationally (i.e., according to an
unknown correlated equilibrium) within a known Markov
game, and no other information is available, what predic-
tions of agents’ action sequences should be employed? We
employed an extension of information theory and the prin-
ciple of maximum entropy to develop a predictive solution
concept that addresses this question. We demonstrated the
robustness of its predictions across a wide range of exist-
ing value-based CE solution concepts. In many settings
where decisions are made based on the action sequences of
self-interested, communicating autonomous agents, this as-
sumption is reasonable. We have shown in theory and in
practice the predictive guarantees of the approach and con-
nected its guarantees to the gambling setting. Generalizing
this approach to extensive form games is of interest, how-
ever it introduces non-convexity. We could replace the joint
entropy measure of past coordinate descent approaches with
the causal entropy measure [7].

Our view in this paper has been agnostic, apart from as-
suming joint rationality. Often, past agent behavior may
be known. Important future work extends this approach
to when such additional information is available. This can
be accomplished with the addition of behavior-matching
equality constraints to the MCECE solution concept opti-
mization. Additionally, since actual behavior may only be
approximately jointly rational, relaxing the inequality con-
straints using dual regularization [8] is another important
direction. Extending the maximum entropy approach to be-
havior that is guided by unknown utility functions remains
as an important future problem.
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APPENDIX
A. PROOFS OF THEOREMS
Theorem 8 (Proof). Consider optimizing over conditional
strategy sequence variables, η(a1:T |s1:T ), that represent the
probability of an entire sequence of actions given the en-
tire sequence of states. Action-state strategy probabilities,
π(at|st:T ), can be obtained by marginalizing over a linear
function of conditional sequence variables:

π(at|st:T ) =
∑
s1:t−1

∑
a1:t−1

∑
at+1:T

P (a1:T , s1:t−1|st:T ) (13)

=
∑
s1:t−1

∑
a1:t−1

∑
at+1:T

η(a1:T |s1:T )

t−1∏
τ=1

P (sτ |aτ−1, sτ−1).

Crucially, to match the Markov game setting, the condi-
tional distribution of actions at time step t should be equiv-
alent regardless of future state variables, st+1:T , since those
variables are not yet known in the Markov game:

∀t,at,st,st+1:T ,s̃t+1:T

π(at|st, st+1:T ) = π(at|st, s̃t+1:T ). (14)

The constraints (Equation 14) are linear of conditional strat-
egy sequence variables via the steps of Equation 13.

The expected regret can similarly be expressed as a linear
function of conditional strategy sequence variables:

ExpRegretπi (ati, a
t
i
′
, st)

=
∑

at−i,at+1:T ,s1:t−1,st+1:T

η(a1:T |s1:T )

∏T
τ=1 P (sτ+1|sτ , aτ )

P (st+1|st, at) ×

(
P (st+1|st, at′)

(∑
τ>t

Util(sτ , aτ ) + Util(st, at
′
)

)

− P (st+1|st, at)
(∑
τ>t

Util(sτ , aτ ) + Util(st, at)

))
All constraints are linear in conditional variables, so when
−f0 is a linear or convex function, the MCECE optimization
(Equation 15) is a linear program or convex program.

argmax
{η(a1:T |s1:T )}

f0({η(a1:T |s1:T )}) (15)

such that: ∀t,i,st,ati,ati′ExpRegretπi (ati, a
t
i
′
, st) ≤ 0

∀t,st,atπ(at|st:T ) ≥ 0, ∀t,st
∑
at

π(at|st:T ) = 1

∀t,at,st,st+1:T ,s̃t+1:T π(at|st, st+1:T ) = π(at|st, s̃t+1:T ).

This formulation has O(T |S|T |A|) non-redundant con-
straints and a total of O(|S|T |A|T ) variables.

Theorem 10 (Proof). Ignoring all the deviation regret con-
straints in our notation, consider the decomposition of the

causally conditioned entropy using the chain rule:

argmax
{π(at|st)}

H(AT ||ST )

= argmax
{π(at|st)}

(
H(ATi ||ST ) +H(AT−i||ST )

)

=
{
πMCECE(at−i|st)

}
∪ argmax
{π(ati|st)}

H(ATi ||ST , AT−i).

As shown, this is equivalent to a causally conditioned en-
tropy maximization of agent i’s strategy profile (with the
suppressed deviation regret constraints) given the combined
MCECE strategy profile of the other agents. By definition
this is the least predictable strategy profile that agent i can
employ (subject to any deviation regret constraints).

Theorem 11 (Proof sketch). As a special case of [13], the
causal entropy can be expressed as:
H(P̃ (AT ||ST )) = infP (AT ||ST ) EP̃ (A,S)[− logP (AT ||ST )].

Choosing P̃ (YT ||XT ) that maximizes this is then:
supP̃ (AT ||ST ) infP (AT ||ST ) EP̃ (A,S)[− logP (AT ||ST )], which
is invariant to swapping the sup and inf operation order.

Theorem 13 (Proof). We find the form of the probability
distribution by finding the optimal point of the Lagrangian.

argmax
π

H(AT ||ST ) such that: (16)

∀t,i,ati,ati′,s1:t,a1:t−1 ExpRegretπi (ati, a
t
i
′
, s1:t, a1:t−1) ≤ 0

and probabilistic/causal constraints on π.

The Lagrangian for the optimization of Equation 16 when
using entire history-dependent probability distributions and
parameters is:

Λ(π, λ) = H(a
1:T ||s1:T )

−
∑
t,i,at

i
,at
i
′,s1:t,a1:t−1

λ
t,i,at

i
,at
i
′,s1:t,a1:t−1 ExpRegret

π
i (a

t
i, a

t
i
′
, s

1:t
, a

1:t−1
) (17)

Taking the partial derivative with respect to a history-
dependent action probability for a particular state, we have:

∂Λ(π, λ)

∂P (at|s1:t, a1:t−1)
= − logP (a

t|s1:t, a1:t−1
) (18)

−
∑

st+1:T ,at+1:T

P (s
t+1:T

, a
t+1:T

) log

T∏
τ=t

P (a
τ |s1:τ , a1:τ−1

)

−
∑
i,at
i
′
λ
t,i,at

i
,at
i
′,s1:t,a1:t−1 ExpDevGain

π
i (a

t
i, a

t
i
′
, s

1:t
, a

1:t−1
).

Equating Equation 18 to zero provides the form of the his-
tory dependent distribution:

P (at|s1:t, a1:t−1) ∝ exp
{

(19)

∑
st+1:T ,at+1:T

P (st+1:T , at+1:T ) log

T∏
τ=t

P (aτ |s1:τ , a1:τ−1)

−
∑
i,ati
′
λt,i,ati,a

t
i
′,s1:t,a1:t−1 ExpDevGainπi (ati, a

t
i
′
, s1:t, a1:t−1)

}
.

Convex duality in this optimization relies on a feasible so-
lution on the relative interior of the constraint set. This can
be accomplished by adding an infinitesimally small amount
of slack, ε, to the constraint set [24]. Following the argu-
ment that the MCECE is Markovian (Lemma 12), Equation
19 reduces to the Markovian form of the theorem.
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