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ABSTRACT
An important aspect in systems of multiple autonomous
agents is the exploitation of synergies via coalition forma-
tion. In this paper, we solve various open problems con-
cerning the computational complexity of stable partitions
in additively separable hedonic games. First, we propose a
polynomial-time algorithm to compute a contractually in-
dividually stable partition. This contrasts with previous
results such as the NP-hardness of computing individually
stable or Nash stable partitions. Secondly, we prove that
checking whether the core or the strict core exists is NP-
hard in the strong sense even if the preferences of the players
are symmetric. Finally, it is shown that verifying whether
a partition consisting of the grand coalition is contractual
strict core stable or Pareto optimal is coNP-complete.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Theory, Economics

Keywords
Game theory (cooperative and non-cooperative); teamwork,
coalition formation, coordination; incentives for cooperation

1. INTRODUCTION
Ever since the publication of von Neumann and

Morgenstern’s Theory of Games and Economic Behavior in
1944, coalitions have played a central role within game the-
ory. The crucial questions in coalitional game theory are
which coalitions can be expected to form and how the mem-
bers of coalitions should divide the proceeds of their coop-
eration. Traditionally the focus has been on the latter issue,
which led to the formulation and analysis of concepts such
as the core, the Shapley value, or the bargaining set. Which
coalitions are likely to form is commonly assumed to be set-
tled exogenously, either by explicitly specifying the coalition
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structure, a partition of the players in disjoint coalitions, or,
implicitly, by assuming that larger coalitions can invariably
guarantee better outcomes to its members than smaller ones
and that, as a consequence, the grand coalition of all players
will eventually form. The two questions, however, are clearly
interdependent: the individual players’ payoffs depend on
the coalitions that form just as much as the formation of
coalitions depends on how the payoffs are distributed.

Coalition formation games, as introduced by Drèze and
Greenberg [12], provide a simple but versatile formal model
that allows one to focus on coalition formation. In many
situations it is natural to assume that a player’s apprecia-
tion of a coalition structure only depends on the coalition
he is a member of and not on how the remaining players are
grouped. Initiated by Banerjee et al. [4] and Bogomolnaia
and Jackson [6], much of the work on coalition formation
now concentrates on these so-called hedonic games. Hedonic
games are relevant in modeling many settings such as forma-
tion of groups, clubs and societies [6], and also online social
networking [13]. The main focus in hedonic games has been
on notions of stability for coalition structures such as Nash
stability, individual stability, contractual individual stability,
or core stability and characterizing conditions under which
the set of stable partitions is guaranteed to be non-empty
(see, e.g., [6, 8]). Sung and Dimitrov [21] presented a tax-
onomy of stability concepts which includes the contractual
strict core, the most general stability concept that is guaran-
teed to exist. A well-studied special case of hedonic games
are two-sided matching games in which only coalitions of
size two are admissible [18]. We refer to Hajduková [16] for
a critical overview of hedonic games.

Hedonic games have recently been examined from an al-
gorithmic perspective (see, e.g., [3, 11]). Cechlárová [9] sur-
veyed the algorithmic problems related to stable partitions
in hedonic games in various representations. Ballester [3]
showed that for hedonic games represented by individually
rational list of coalitions, the complexity of checking whether
core stable, Nash stable, or individual stable partitions exist
is NP-complete. He also proved that every hedonic game ad-
mits a contractually individually stable partition. Coalition
formation games have also received attention in the artificial
intelligence community where the focus has generally been
on computing optimal partitions for general coalition forma-
tion games without any combinatorial structure [19]. Elkind
and Wooldridge [13] proposed a fully-expressive model to
represent hedonic games which encapsulates well-known rep-
resentations such as individually rational list of coalitions
and additive separability.
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Additively separable hedonic games (ASHGs) constitute a
particularly natural and succinctly representable class of he-
donic games. Each player in an ASHG has a value for any
other player and the value of a coalition to a particular player
is simply the sum of the values he assigns to the members
of his coalition. Additive separability satisfies a number of
desirable axiomatic properties [5] and ASHGs are the non-
transferable utility generalization of graph games studied by
Deng and Papadimitriou [10]. Olsen [17] showed that check-
ing whether a nontrivial Nash stable partition exists in an
ASHG is NP-complete if preferences are nonnegative and
symmetric. This result was improved by Sung and Dimitrov
[22] who showed that checking whether a core stable, strict
core stable, Nash stable, or individually stable partition ex-
ists in a general ASHG is NP-hard.

Dimitrov et al. [11] obtained positive algorithmic results
for subclasses of ASHGs in which each player merely di-
vides other players into friends and enemies. Branzei and
Larson [7] examined the tradeoff between stability and so-
cial welfare in ASHGs. Recently, Gairing and Savani [14]
showed that computing partitions that satisfy some vari-
ants of individual-based stability is PLS-complete, even for
very restricted preferences. In another paper, Aziz et al. [2]
studied the complexity of computing and verifying optimal
partitions in ASHGs.

In this paper, we settle the complexity of key prob-
lems regarding stable partitions of ASHGs. We present a
polynomial-time algorithm to compute a contractually in-
dividually stable partition. This is the first positive algo-
rithmic result (with respect to one of the standard stabil-
ity concepts put forward by Bogomolnaia and Jackson [6])
for general ASHGs with no restrictions on the preferences.
We strengthen recent results of Sung and Dimitrov [22] and
prove that checking whether the core or the strict core ex-
ists is NP-hard, even if the preferences of the players are
symmetric. Finally, it is shown that verifying whether a
partition is in the contractual strict core (CSC) is coNP-
complete, even if the partition under question consists of
the grand coalition. This is the first computational hard-
ness result concerning CSC stability in hedonic games of any
representation. The proof can be used to show that verify-
ing whether the partition consisting of the grand coalition is
Pareto optimal is coNP-complete, thereby answering a ques-
tion mentioned by Aziz et al. [2]. Our computational hard-
ness results imply computational hardness of the equivalent
questions for hedonic coalition nets [13].

2. PRELIMINARIES
In this section, we provide the terminology and notation

required for our results.
A hedonic coalition formation game is a pair (N,P) where

N is a set of players and P is a preference profile which
specifies for each player i ∈ N the preference relation %i, a
reflexive, complete, and transitive binary relation on the set
Ni = {S ⊆ N | i ∈ S}. The statement S �i T denotes that
i strictly prefers S over T whereas S ∼i T means that i is
indifferent between coalitions S and T . A partition π is a
partition of players N into disjoint coalitions. By π(i), we
denote the coalition of π that includes player i.

We consider utility-based models rather than purely or-
dinal models. In additively separable preferences, a player
i gets value vi(j) for player j being in the same coalition
as i and if i is in coalition S ∈ Ni, then i gets utility

∑
j∈S vi(j). A game (N,P) is additively separable if for each

player i ∈ N , there is a utility function vi : N → R such
that vi(i) = 0 and for coalitions S, T ∈ Ni, S %i T if and
only if

∑
j∈S vi(j) ≥

∑
j∈T vi(j). We will denote the utility

of player i in partition π by uπ(i).
A preference profile is symmetric if vi(j) = vj(i) for any

two players i, j ∈ N and is strict if vi(j) 6= 0 for all i, j ∈ N .
For any player i, let F (i, A) = {j ∈ A | vi(j) > 0} be the
set of friends of player i within A.

We now define important stability concepts used in the
context of coalition formation games.

• A partition is Nash stable (NS) if no player can benefit
by moving from his coalition S to another (possibly
empty) coalition T .

• A partition is individually stable (IS) if no player can
benefit by moving from his coalition S to another ex-
isting (possibly empty) coalition T while not making
the members of T worse off.

• A partition is contractually individually stable (CIS) if
no player can benefit by moving from his coalition S
to another existing (possibly empty) coalition T while
making neither the members of S nor the members of
T worse off.

• We say that a coalition S ⊆ N strongly blocks a par-
tition π, if each player i ∈ S strictly prefers S to his
current coalition π(i) in the partition π. A partition
which admits no blocking coalition is said to be in the
core (C).

• We say that a coalition S ⊆ N weakly blocks a parti-
tion π, if each player i ∈ S weakly prefers S to π(i)
and there exists at least one player j ∈ S who strictly
prefers S to his current coalition π(j). A partition
which admits no weakly blocking coalition is in the
strict core (SC).

• A partition π is in the contractual strict core (CSC)
if any weakly blocking coalition S makes at least one
player j ∈ N \ S worse off when breaking off.

The inclusion relationships between stability concepts de-
picted in Figure 1 follow from the definitions of the concepts.
We will also consider Pareto optimality. A partition π of N
is Pareto optimal if there exists no partition π′ of N such
that for all i ∈ N , π′(i) %i π(i) and there exists at least
one player j ∈ N such that π′(j) �j π(j). We say that a
partition π satisfies individual rationality if each player does
as well as by being alone, i.e., for all i ∈ N , π(i) %i {i}.

Throughout the paper, we assume familiarity with basic
concepts of computational complexity (see, e.g., [1]).

3. CONTRACTUAL INDIVIDUAL STABIL-
ITY

It is known that computing or even checking the existence
of Nash stable or individually stable partitions in an ASHG
is NP-hard. On the other hand, a potential function argu-
ment can be used to show that at least one CIS partition
exists for every hedonic game [3]. The potential function
argument does not imply that a CIS partition can be com-
puted in polynomial time. There are many cases in hedonic
games, where a solution is guaranteed to exist but computing
it is not feasible. For example, Bogomolnaia and Jackson [6]
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Figure 1: Inclusion relationships between stability
concepts. For example, every Nash stable partition
is also individually stable.

presented a potential function argument for the existence of
a Nash stable partition for ASHGs with symmetric prefer-
ences. However there are no known polynomial-time algo-
rithms to compute such partitions and there is evidence that
there may not be any polynomial-time algorithm [14]. In
this section, we show that a CIS partition can be computed
in polynomial time for ASHGs. The algorithm is formally
described as Algorithm 1.

Theorem 1. A CIS partition can be computed in polyno-
mial time.

Proof. Our algorithm to compute a CIS partition can be
viewed as successively giving a priority token to players to
form the best possible coalition among the remaining players
or join the best possible coalition which tolerates the player.
The basic idea of the algorithm is described informally as fol-
lows. Set variable R to N and consider an arbitrary player
a ∈ R. Call a the leader of the first coalition Si with i = 1.
Move any player j such that va(j) > 0 from R to Si. Such
players are called the leader’s helpers. Then keep moving
any player from R to Si which is tolerated by all players in
Si and strictly liked by at least one player in Si. Call such
players needed players. Now increment i and take another
player a from among the remaining players R and check the
maximum utility he can get from among R. If this util-
ity is less than the utility which can be obtained by joining
a previously formed coalition in {S1, . . . , Si−1}, then send
the player to such a coalition where he can get the maxi-
mum utility (as long all players in the coalition tolerate the
incoming player). Such players are called latecomers. Oth-
erwise, form a new coalition Si around a which is the best
possible coalition for player a taking only players from the
remaining players R. Repeat the process until all players
have been dealt with and R = ∅. We prove by induction
on the number of coalitions formed that no CIS deviation
can occur in the resulting partition. The hypothesis is the
following:

Consider the kth first formed coalitions S1, . . . , Sk. Then
neither of the following can happen:

1. There is a CIS deviation by a player from among
S1, . . . , Sk.

2. There is a CIS deviation by a player from among N \⋃
i∈{1,...,k} Si to a coalition in {S1, . . . , Sk}.

Input: additively separable hedonic game (N,P).
Output: CIS partition.

i← 0
R← N
while R 6= ∅ do

Take any player a ∈ R
h←∑

b∈F (a,R) va(b)
z ← i+ 1
for k ← 1 to i do
h′ ←∑

b∈Sk va(b)

if (h < h′) ∧ (∀b ∈ Sk, vb(a) = 0) then
h← h′

z ← k
end if

end for
if z 6= i+ 1 then // a is latecomer
Sz ← {a} ∪ Sz
R← R \ {a}

else // a is leader
i← z
Si ← {a}
Si ← Si ∪ F (a,R) // add leader’s helpers
R← R \ Si

end if
while ∃j ∈ R such that ∀i ∈ Sz, vi(j) ≥ 0 and ∃i ∈
Sz, vi(j) > 0 do
R← R \ {j}
Sz ← Sz ∪ {j} // add needed players

end while
end while
return {S1, . . . , Si}

Algorithm 1: CIS partition of an ASHG

Base case.
Consider the coalition S1. Then the leader of S1 has no

incentive to leave. The leader’s helpers are not allowed to
leave because, if they did, the leader’s utility would decrease.
For each of the needed players, there exists one player in S1

who does not allow the needed player to leave. Now let us
assume a latecomer i arrives in S1. This is only possible if
the maximum utility that the latecomer can derive from a
coalition C ⊆ (N \ S1) is less than

∑
j∈S1

vi(j). Therefore
once i joins S1, he will only become less happy by leaving
S1.

Any player i ∈ N \ S1 cannot have a CIS deviation to S1.
Either i is disliked by at least one player in S1 or i is disliked
by no player in S1. In the first case, i cannot deviate to S1

even he has an incentive to. In the second case, player i has
no incentive to move to S1 because if he had an incentive,
he would already have moved to S1 as a latecomer.

Induction step.
Assume that the hypothesis is true. Then we prove that

the same holds for the formed coalitions S1, . . . , Sk, Sk+1.
By the hypothesis, we know that players cannot leave coali-
tions S1, . . . , Sk. Now consider Sk+1. The leader a of Sk+1 is
either not allowed to join one of the coalitions in {S1, . . . , Sk}
or if he is, he has no incentive to join it. Player a would al-
ready have been member of Si for some i ∈ {1, . . . , k} if one
of the following was true:

• There is some i ∈ {1, . . . , k} such that the leader of Si
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likes a.

• There is some i ∈ {1, . . . , k} such that for all b ∈ Si,
vb(a) ≥ 0 and there exists b ∈ Si such that vb(a) > 0.

• There is some i ∈ {1, . . . , k}, such that for all b ∈ Si,
vb(a) = 0 and

∑
b∈Si va(b) >

∑
b∈F (i,N\∪ki=1Si)

va(b)

and
∑
b∈Si va(b) ≥∑

b∈Sj va(b) for all j ∈ {1, . . . , k}.

Therefore a has no incentive or is not allowed to move to
another Sj for j ∈ {1, . . . , k}. Also a will have no incentive
to move to any coalition formed after S1, . . . , Sk+1 because
he can do strictly better in Sk+1. Similarly, a’s helpers are
not allowed to leave Sk+1 even if they have an incentive
to. Their movement out of Sk+1 will cause a to become
less happy. Also each needed player in Sk+1 is not allowed
to leave because at least one player in Sk likes him. Now
consider a latecomer l in Sk+1. Latecomer l gets strictly less
utility in any coalition C ⊆ N \⋃k+1

i=1 Si. Therefore l has no
incentive to leave Sk+1.

Finally, we prove that there exists no player x ∈ N \⋃k+1
j=1 Si such that x has an incentive to and is allowed to

join Si for i ∈ {1, . . . k + 1}. By the hypothesis, we already
know that x does not have an incentive or is allowed to a join
a coalition Si for i ∈ {1, . . . k}. Since x is not a latecomer
for Sk+1, x either does not have an incentive to join Sk+1 or
is disliked by at least one player in Sk+1.

Algorithm 1 may also prove useful as a preprocessing or
intermediate routine in other algorithms for computing dif-
ferent types of stable partitions of hedonic games.

4. CORE AND STRICT CORE
For ASHGs, the problem of testing the core membership

of a partition is coNP-complete [20]. This fact does not im-
ply that checking the existence of a core stable partition is
NP-hard. Recently, Sung and Dimitrov [22] showed that for
ASHGs checking whether a core stable or strict core stable
partition exists is NP-hard in the strong sense. Their re-
duction relied on the asymmetry of the players’ preferences.
We prove that even with symmetric preferences, checking
whether a core stable or a strict core stable partition exists
is NP-hard in the strong sense. Symmetry is a natural, but
rather strong condition, that can often be exploited algo-
rithmically.

We first present an example of a six-player ASHG with
symmetric preferences for which the core (and thereby the
strict core) is empty.

Example 1. Consider a six player symmetric ASHG
adapted from an example by Banerjee et al. [4] where

• v1(2) = v3(4) = v5(6) = 6;

• v1(6) = v2(3) = v4(5) = 5;

• v1(3) = v3(5) = v1(5) = 4;

• v1(4) = v2(5) = v3(6) = −33; and

• v2(4) = v2(6) = v4(6) = −33

as depicted in Figure 2.
It can be checked that no partition is core stable for the

game.
Note that if vi(j) = −33, then i and j cannot be in

the same coalition of a core stable partition. Also, players

1

2

3

4

5

6

4 4

4

6

5 6

5

65

Figure 2: Graphical representation of Example 1.
All edges not shown in the figure have weight −33.

can do better than in a partition of singleton players. Let
coalitions which satisfy individual rationality be called fea-
sible coalitions. We note that the following are the feasible
coalitions: {1, 2}, {1, 3}, {1, 5}, {1, 6}, {1, 2, 3}, {1, 3, 5},
{1, 5, 6}, {2, 3}, {3, 4}, {3, 4, 5}, {3, 5}, {4, 5} and {5, 6}.

Consider partition

π = {{1, 2}, {3, 4, 5}, {6}}.
Then,

• uπ(1) = 6;

• uπ(2) = 6;

• uπ(3) = 10;

• uπ(4) = 11;

• uπ(5) = 9; and

• uπ(6) = 0.

Out of the feasible coalitions listed above, the only weakly
(and also strongly) blocking coalition is {1, 5, 6} in which
player 1 gets utility 9, player 5 gets utility 10, and player
6 gets utility 11. We note that the coalition {1, 2, 3} is not
a weakly or strongly blocking coalition because player 3 gets
utility 9 in it. Similarly {1, 3, 5} is not a weakly or strongly
blocking coalition because both player 3 and player 5 are
worse off. One way to prevent the deviation {1, 5, 6} is to
provide some incentive for player 6 not to deviate with 1 and
5. This idea will be used in the proof of Theorem 2.

We now define a problem that is NP-complete in the
strong sense:

Name: ExactCoverBy3Sets (E3C):
Instance: A pair (R,S), where R is a set and S is a
collection of subsets of R such that |R| = 3m for some
positive integer m and |s| = 3 for each s ∈ S.
Question: Is there a sub-collection S′ ⊆ S which is a
partition of R?

It is known that E3C remains NP-complete even if each
r ∈ R occurs in at most three members of S [15]. We will
use this assumption in the proof of Theorem 2, which will
be shown by a reduction from E3C.

Theorem 2. Checking whether a core stable or a strict
core stable partition exists is NP-hard in the strong sense,
even when preferences are symmetric.
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Figure 3: Graphical representation of an ASHG derived from an instance of E3C in the proof of Theorem 2.
Symmetric utilities other than −33 are given as edges. Thick edges indicate utility 10 1
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indicate utility 1/2. Each hexagon at the top looks like the one in Figure 4.
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Figure 4: Graphical representation of the ASHG
from Example 1 as used in the proof of Theorem 2.
All edges not shown in the figure have weight −33.

Proof. Let (R,S) be an instance of E3C where r ∈ R oc-
curs in at most three members of S. We reduce (R,S) to an
ASHGs with symmetric preferences (N,P) in which there
is a player ys corresponding to each s ∈ S and there are
six players xr1, . . . , x

r
6 corresponding to each r ∈ R. These

players have preferences over each other in exactly the way
players 1, . . . , 6 have preference over each other as in Exam-
ple 1.

So, N = {xr1, . . . , xr6 | r ∈ R} ∪ {ys | s ∈ S}. We assume
that all preferences are symmetric. The player preferences
are as follows:

• For i ∈ R,
vxi1

(xi2) = vxi3
(xi4) = vxi5

(xi6) = 6;

vxi1
(xi6) = vxi2

(xi3) = vxi4
(xi5) = 5; and

vxi1
(xi3) = vxi3

(xi5) = vxi1
(xi5) = 4;

• For any s = {k, l,m} ∈ S,
vxk6

(xl6) = vxl6
(xk6) = vxk6

(xm6 ) = vxm6 (xk6) =

vxl6
(xm6 ) = vxm6 (xl6) = 1/2; and

vxk6
(ys) = vxl6

(ys) = vxm6 (ys) = 10 1
4
;

• vi(j) = −33 for any i, j ∈ N for valuations not defined
above.

We prove that (N,P ) has a non-empty strict core (and
thereby core) if and only if there exists an S′ ⊆ S such that
S′ is a partition of R.

Assume that there exists an S′ ⊆ S such that S′ is a
partition of R. Then we prove that there exists a strict
core stable (and thereby core stable) partition π where π is
defined as follows:

{{xi1, xi2}, {xi3, xi4, xi5} | i ∈ R} ∪ {{ys} | s ∈ S \ S′}
∪ {{ys ∪ {xi6 | i ∈ s}} | s ∈ S′}.

For all i ∈ R,

• uπ(xi1) = 6;

• uπ(xi2) = 6;

• uπ(xi3) = 10;

• uπ(xi4) = 11;

• uπ(xi5) = 9; and

• uπ(xi6) = 1/2 + 1/2 + 10 1
4

= 11 1
4
> 11.

Also uπ(ys) = 3×(10 1
4
) = 30 3

4
for all s ∈ S′ and uπ(ys) =

0 for all s ∈ S \ S′. We see that for each player, his util-
ity is non-negative. Therefore there is no incentive for any
player to deviate and form a singleton coalition. From Ex-
ample 1 we also know that the only possible strongly block-
ing (and weakly blocking) coalition is {xi1 xi5, xi6} for any
i ∈ R. However, xi6 has no incentive to be part {xi1, xi5, xi6}
because uπ(xi6) = 11 and vxi6

(xi5) + vxi6
(xi1) = 6 + 5 = 11.

Also xi1 and xi5 have no incentive to join π(xi6) because their
new utility will become negative because of the presence of
the ys player. Assume for the sake of contradiction that π
is not core stable and xi6 can deviate with a lot of xj6s. But,
xi6 can only deviate with a maximum of six other players
of type xj6 because i ∈ R is present in a maximum of three
elements in S. In this case xi6 gets a maximum utility of
only 1. Therefore π is in the strict core (and thereby the
core).

We now assume that there exists a partition which is core
stable. Then we prove that there exists an S′ ⊆ S such
that S′ is a partition of R. For any s = {k, l,m} ∈ S, the
new utilities created due to the reduction gadget are only
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beneficial to ys, xk6 , xl6, and xm6 . We already know that the
only way the partition is core stable is if xi6 can be provided
disincentive to deviate with xi5 and xi1. The claim is that
each xi6 needs to be in a coalition with exactly one ys such
that i ∈ s ∈ S and exactly two other players xj6 and xk6
such that {i, j, k} = s ∈ S. We first show that xi6 needs to
be with exactly one ys such that i ∈ s ∈ S. Player needs
to be with at least one such ys. If xi6 is only with other
xj6s, then we know that xi6 gets a maximum utility of only
6 × 1/2 = 3. Also, player xi6 cannot be in a coalition with

ys and ys
′

such that i ∈ s and i ∈ s′ because both ys and

ys
′

then get negative utility. Each xi6 also needs to be with
at least 2 other players xj6 and xk6 where j and k are also

members of s. If xi6 is with at least three players xj6, xk6
and xk6 , then there is one element among a ∈ {j, k, l} such
that a /∈ s. Therefore ys and xa6 hate each other and the
coalition {ys, xi6, xj6, xk6 , xk6} is not even individually rational.
Therefore for the partition to be core stable each xi6 has to
be with exactly one ys such that i ∈ s and and least 2 other
players xj6 and xk6 where j and k are also members of s.
This implies that there exists an S′ ⊆ S such that S′ is a
partition of R.

5. CONTRACTUAL STRICT CORE AND
PARETO OPTIMALITY

In this section, we prove that verifying whether a
partition is CSC stable is coNP-complete. Interestingly,
coNP-completeness holds even if the partition in question
consists of the grand coalition. The proof of Theorem 3
is by a reduction from the following weakly NP-complete
problem.

Name: Partition
Instance: A set of k positive integer weights
A = {a1, . . . , ak} such that

∑
ai∈A ai = W .

Question: Is it possible to partition A, into two subsets
A1 ⊆ A, A2 ⊆ A so that A1 ∩A2 = ∅ and A1 ∪A2 = A and∑
ai∈A1

ai =
∑
ai∈A2

ai = W/2?

Theorem 3. Verifying whether the partition consisting
of the grand coalition is CSC stable is weakly coNP-complete.

Proof. The problem is clearly in coNP because a par-
tition π′ resulting by a CSC deviation from {N} is a suc-
cinct certificate that {N} is not CSC stable. We prove NP-
hardness of deciding whether the grand coalition is not CSC
stable by a reduction from Partition. We can reduce an
instance of I of Partition to an instance I ′ = ((N,P), π)
where (N,P) is an ASHG defined in the following way:

• N = {x1, x2, y1, y2, z1, . . . , zk},
• vx1(y1) = vx1(y2) = vx2(y1) = vx2(y2) = W/2,

• vx1(zi) = vx2(zi) = ai, for all i ∈ {1, . . . , k}
• vx1(x2) = vx2(x1) = −W ,

• vy1(y2) = vy2(y1) = −W ,

• va(b) = 0 for any a, b ∈ N for which va(b) is not already
defined, and

• π = {N}.

We see that uπ(x1) = uπ(x1) = W , uπ(y1) = uπ(y2) =
−W , uπ(zi) = 0 for all i ∈ {1, . . . , k}. We show that π is not
CSC stable if and only if I is a ‘yes’ instance of Partition.
Assume I is a ‘yes’ instance of Partition and there exists
an A1 ⊆ A such that

∑
ai∈A1

ai = W/2. Then, form the
partition

π′ = {{x1, y1}∪{zi | ai ∈ A1}, {x2, y2}∪{zi | ai ∈ N \A1}}.
Then,

• uπ′(x1) = uπ′(x1) = W ;

• uπ′(y1) = uπ′(y2) = 0; and

• uπ(zi) = 0 for all i ∈ {1, . . . , k}.

The coalition C1 = {x1, y1}∪{zi | ai ∈ A1} can be consid-
ered as a coalition which leaves the grand coalition so that
all players in N do as well as before and at least one player
in C1, i.e., y1 gets strictly more utility. Also, the departure
of C1 does not make any player in N \ C1 worse off.

Assume that I is a ‘no’ instance of Partition and there
exists no A1 ⊆ A such that

∑
ai∈A1

ai = W/2. We show that
no CSC deviation is possible from π. We consider different
possibilities for a CSC blocking coalition C:

1. x1, x2, y1, y2 /∈ C,

2. x1, x2 /∈ C and there exists y ∈ {y1, y2} such that
y ∈ C,

3. x1, x2, y1, y2 ∈ C,

4. x1, x2 ∈ C and |C ∩ {y1, y2}| ≤ 1,

5. there exists x ∈ {x1, x2} and y ∈ {y1, y2} such that
x, y ∈ C, {x1, x2} \ x * C, and {y1, y2} \ y * C

We show that in each of the cases, C is a not a valid CSC
blocking coalition.

1. If C is empty, then there exists no CSC blocking coali-
tion. If C is not empty, then x1 and x2 gets strictly
less utility when a subset of {z1, . . . , zk} deviates.

2. In this case, both x1 and x2 gets strictly less utility
when y ∈ {y1, y2} leaves N .

3. If {z1, . . . , zk} ⊂ C, then there is no deviation as C =
N . If there exists a zi ∈ {z1, . . . , zk} such that zi /∈ C,
then x1 and x2 get strictly less utility than in N .

4. If |C ∩ {y1, y2}| = 0, then the utility of no player in-
creases. If |C ∩{y1, y2}| = 1, then the utility of y1 and
y2 increases but the utility of x1 and x2 decreases.

5. Consider C = {x, y}∪S where S ⊆ {z1, . . . , zk}. With-
out loss of generality, we can assume that x = x1

and y = y1. We know that y1 and y2 gets strictly
more utility because they are now in different coali-
tions. Since I is a ‘no’ instance of Partition, we
know that there exists no S such that

∑
a∈S vx1(a) =

W/2. If
∑
a∈S vx1(a) > W/2, then uπ(x2) < W . If∑

a∈S vx1(a) < W/2, then uπ(x1) < W .

Thus, if I ′ is a ‘no’ instance of Partition, then there
exists no CSC deviation.
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Figure 5: Graphical representation of the ASHG in the proof of Theorem 3. For all i ∈ {1, . . . , k}, an edge
from x1 and x2 to zi has weight ai. All other edges not shown in the figure have weight zero.

From the proof of Theorem 3, it can be seen that π is
not Pareto optimal if and only if I is a ‘yes’ instance of
Partition.

Theorem 4. Verifying whether the partition consisting
of the grand coalition is Pareto optimal is coNP-complete.

6. CONCLUSION AND DISCUSSION
We presented a number of new computational results con-

cerning stable partitions of ASHGs. First, we proposed a
polynomial-time algorithm for computing a contractually in-
dividually stable (CIS) partition. Secondly, we showed that
checking whether the core or strict core exists is NP-hard
in the strong sense, even if the preferences of the players
are symmetric. Finally, we presented the first complexity
result concerning the contractual strict core (CSC), namely
that verifying whether a partition is in the CSC is coNP-
complete. We saw that considering CSC deviations helps
reason about the more complex Pareto optimal improve-
ments. As a result, we established that checking whether
the partition consisting of the grand coalition is Pareto op-
timal is also coNP-complete.

We note that Algorithm 1 may very well return a partition
that fails to satisfy individual rationality, i.e., players may
get negative utility. It is an open question how to efficiently
compute a CIS partition that is guaranteed to satisfy indi-
vidual rationality. We also note that Theorem 3 may not
imply anything about the complexity of computing a CSC
partition. Studying the complexity of computing a CSC sta-
ble partition is left as future work.
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