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ABSTRACT
A possible winner of an election is a candidate that has, in
some kind of incomplete-information election, the possibility
to win in a complete extension of the election. The first type
of problem we study is the Possible co-Winner with re-
spect to the Addition of New Candidates (PcWNA)
problem, which asks, given an election with strict prefer-
ences over the candidates, is it possible to make a designated
candidate win the election by adding a limited number of
new candidates to the election? In the case of unweighted
voters we show NP-completeness of PcWNA for a broad
class of pure scoring rules. We will also briefly study the case
of weighted voters. The second type of possible winner prob-
lem we study is Possible Winner/co-Winner under Un-
certain Voting System (PWUVS and PcWUVS). Here,
uncertainty is present not in the votes but in the election rule
itself. For example, PcWUVS is the problem of whether,
given a set C of candidates, a list of votes over C, a distin-
guished candidate c ∈ C, and a class of election rules, there
is at least one election rule from this class under which c
wins the election. We study these two problems for a class of
systems based on approval voting, the family of Copelandα

elections, and a certain class of scoring rules. Our main re-
sult is that it is NP-complete to determine whether there is
a scoring vector that makes c win the election, if we restrict
the set of possible scoring vectors for an m-candidate elec-
tion to those of the form (α1, . . . , αm−4, x1, x2, x3, 0), with
xi = 1 for at least one i ∈ {1, 2, 3}.
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1. INTRODUCTION
A central task in computational social choice is the study

of the algorithmic and computational properties of voting
systems (see, e.g., the bookchapters [15, 4]). One of the
classical problems in this field is the Manipulation prob-
lem, which deals with the question of whether a voter can
benefit from strategic behavior. The celebrated Gibbard–
Satterthwaite theorem [18, 23] says that in every nondicta-
torial voting system a strategic voter can alter the outcome
of an election to his or her advantage by voting insincerely.
Bartholdi et al. [2, 1] were the first to show that computa-
tional complexity can be used as a barrier to protect elec-
tions from manipulation attempts: In some voting systems,
though manipulable in principle, it is computationally hard
to compute successful manipulative preferences to cast.

Conitzer, Sandholm, and Lang [11] defined a more gen-
eral version of this problem, called Coalitional Weighted
Manipulation, where voters have weights and a whole group
of voters can coordinate their strategic efforts. The com-
plexity of this problem has been studied for many voting
systems, including plurality, Borda, veto, Copeland, STV,
maximin, plurality with run-off, regular cup, randomized
cup, and including a dichotomy result for the class of pure
scoring rules [11, 19]. In the case of unweighted voters the
complexity of coalitional manipulation is still unknown for
most pure scoring rules.

Another generalization of Manipulation is the Possible
Winner (PW) problem, which was first introduced by Kon-
czak and Lang [21]. Here the voters do not provide linear
orders over the candidates, but partial orders. The question
is whether there is an extension of the partial orders into lin-
ear ones such that a distinguished candidate wins the elec-
tion. Manipulation is the special case of PW in which all
voters but one report linear orders and one voter reports no
preference at all. This implies that NP-hardness results for
the Manipulation problem carry over to the PW problem.
For the important class of pure scoring rules and the case
of unweighted voters, the computational complexity of this
problem is also settled by a full dichotomy result (see [6, 5]):
It is solvable in polynomial time for plurality and veto, and
NP-complete for all other pure scoring rules. These results
also hold for PcW, the corresponding co-winner problem.

One variant of the PW problem was defined by Chevaleyre
et al. [9] and also studied by Xia et al. [25]: Possible co-
Winner with respect to the Addition of New Can-
didates (PcWNA). In this setting the voters report linear
orders over an initial set of candidates and after reporting
their preferences some new candidates are introduced. The
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problem is to determine whether one distinguished candidate
among the initial ones can be a winner if the voters’ prefer-
ences are extended to linear orders over the initial and the
new candidates. PcWNA is a special case of PcW and is in
some sense dual to the coalitional manipulation problem [9,
25]. In particular, the NP-hardness results for the PcW
problem are not inherited by PcWNA. Note that PcWNA
is also closely related to—but different from—the problem
of control via adding candidates [3, 20] and to the cloning
problem in elections [13].

We study the problem PcWNA in the case of unweighted
voters and pure scoring rules, giving a deeper insight into a
question raised by Chevaleyre et al. [9]. They showed that
if one new candidate is added in the case of unweighted vot-
ers, PcWNA is polynomial-time solvable for a certain class
of pure scoring rules but is NP-complete for one specific
pure scoring rule (see Table 1), and they asked if that re-
sult can be extended to other pure scoring rules. Our main
result in Section 3 establishes NP-completeness of PcWNA
for a whole class of pure scoring rules if one new candidate
is added. This result is obtained even for the case of un-
weighted voters. In addition, we briefly study the complex-
ity of the PcWNA problem in the case of weighted voters.

In the second setting we consider, the possible winner
problem is related to uncertainty about the election rule
used. A similar setting has been previously studied by sev-
eral authors. Conitzer, Sandholm, and Lang [11] showed
that the computational complexity of manipulation can be
increased by using a random instantiation for the cup pro-
tocol. Pini et al. [22] studied the problem of determining
winners by sequential majority voting if preferences may be
incomplete and the agenda is uncertain.

In general, we study the problem Possible Winner/co-
Winner under Uncertain Voting System (PWUVS and
PcWUVS), which asks whether a distinguished candidate,
after all votes have been cast, can be made a winner of the
election by choosing one election rule from a given class of
rules. Specifically we will consider this problem with respect
to a class of systems based on approval voting, the family
of Copelandα elections [14], and a certain class of scoring
rules. Walsh [24] proposed to investigate PWUVS for the
class of scoring rules, but to the best of our knowledge this
issue has not been studied before. As a main result in Sec-
tion 4, we show that PcWUVS and PWUVS are NP-hard
for scoring rules if we restrict the set of possible scoring vec-
tors for an m-candidate election, m ≥ 4, to those of the
form (α1, . . . , αm−4, x1, x2, x3, 0), with xi = 1 for at least
one i ∈ {1, 2, 3}. Note that some important scoring rules,
such as Borda and veto for m ≥ 4 candidates, are contained
in this restricted set of scoring vectors.

A motivation for uncertainty about the voting system used
is that this may prevent the voters from attempting to ma-
nipulate the election, since reporting an insincere preference
might result in a worse outcome for them. For example,
consider an election with three candidates (a, b, and c), nine
sincere voters (six cast the vote c > a > b, two b > a > c,
and one b > c > a), and three strategic voters (whose true
preferences are a > b > c). If the strategic voters would
know for sure that the election is held under the plurality
rule (which values a first position by one point and all other
positions by zero points), they might have an incentive to
not waste their votes by voting sincerely (a > b > c) but
rather to help their second preferred candidate, b, to tie for

winner with c by casting the three votes b > a > c. However,
if the election is held under the Borda rule (which, for three
candidates, values a first position by two points, a second
position by one point, and a last position by zero points),
casting the three insincere votes b > a > c would make
their most despised candidate c win with 13 points in total
(leaving b second with 12 points and a last with 11 points),
whereas the three sincere votes a > b > c would make their
favorite candidate a win with 14 points in total (leaving c
second with 13 points and b last with 9 points). This means
that uncertainty about the scoring rule may give the voters
a strong incentive to reveal their true preferences.

2. DEFINITIONS AND NOTATION
An election (C, V ) is given by a set C of candidates and a

list V of votes over C. In preference-based voting systems,
each vote in V is a (strict) linear ordering of the candidates
in C, where the underlying binary relation > on C is total
(either c > d or d > c for all c, d ∈ C, c 6= d), transitive (for
all c, d, e ∈ C, if c > d and d > e then c > e), and asym-
metric (for all c, d ∈ C, if c > d then d > c does not hold).
Here, c > d means that candidate c is (strictly) preferred to
candidate d. A voting system is a rule to determine the win-
ner(s) of an election. We will consider three different types
of voting systems: (pure) scoring rules, Copelandα elections,
and (variants of) approval voting.

Scoring rules (a.k.a. scoring protocols): Each scor-
ing rule with m candidates is specified by an m-dimensional
scoring vector ~α = (α1, α2, . . . , αm) satisfying that

α1 ≥ α2 ≥ · · · ≥ αm, (1)

where each weight αj is a nonnegative integer. For an elec-
tion (C, V ), a candidate c ∈ C ranked at jth position in a
vote v ∈ V receives αj points from v. The score of c in
(C, V ), denoted by score(C,V )(c), is the sum of all points c
receives from all voters in V , and the winners of (C, V ) are
the candidates with maximum score. We may assume that
the last weight, αm, in the scoring vector is always zero, since
each scoring rule not satisfying this condition can easily be
transformed into one that satisfies it (see [19]). Adopting a
notion introduced by Betzler and Dorn [6], we say a scor-
ing rule is pure if for each m ≥ 2, the scoring vector for
m candidates can be obtained from the scoring vector for
m− 1 candidates by inserting one additional weight at any
position subject to satisfying (1). One class of pure scoring
rules is k-approval. Here the scoring vector has a one in
the first k positions and a zero in all remaining positions.
1-approval—which may be better known under the name
plurality—has the vector (1, 0, . . . , 0), and (m− 1)-approval
for m candidates—which may be better known under the
name antiplurality or veto—has the vector (1, . . . , 1, 0). An-
other prominent scoring rule is the Borda rule, which has
the scoring vector (m− 1, m− 2, . . . , 1, 0) for m candidates.

Copelandα, for a rational number α, 0 ≤ α ≤ 1:
The winners are determined by pairwise comparisons of the
candidates. For each c ∈ C, let win(c) denote the num-
ber of candidates c beats in a pairwise comparison, and let
tie(c) denote the number of candidates c ties with in a pair-
wise comparison. The Copelandα score of a candidate c is
win(c) + α · tie(c), and the candidates with maximum score
win the election.

Approval voting: Every voter either approves or disap-
proves of each candidate, and the approval score of a candi-
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date is the sum of his or her approvals. The candidates with
the highest approval score win the election.

In the above voting systems, if there is only one candidate
with maximum score, he or she is the unique winner.

The Possible co-Winner with respect to the Ad-
dition of New Candidates problem for a given voting
system E is defined as follows:

Name: E-Possible co-Winner with respect to the
Addition of New Candidates (E-PcWNA).

Given: A set of candidates C = {c1, . . . , cm}, a list of votes
V = {v1, . . . , vn} that are linear orders over C, a set
C′ with |C′| = k, k ∈ N, of new candidates, and a
distinguished candidate c ∈ C.

Question: Is there an extension of the votes in V to linear
orders over C∪C′ such that c is a winner of the election
held under voting system E .

In contrast to the above-defined problem where uncer-
tainty is in the preferences, in Section 4.1 we will study
another possible winner problem where uncertainty is in the
voting system itself. This is the Possible co-Winner un-
der Uncertain Voting System problem for a given class
V of voting systems, which formally is defined as follows:

Name: V-Possible co-Winner under Uncertain Vot-
ing System (PcWUVS).

Given: An election E = (C, V ), with the set of candidates
C, a list of voters V consisting of linear orders over C,
and a distinguished candidate c ∈ C.

Question: Is there a voting system E in V such that c is a
winner of the election held under E?

The problem is stated for the co-winner case. The unique-
winner variant, PWUVS, is defined analogously by replac-
ing “a winner” by “the unique winner” in the Question field
above.

For the study of the computational complexity of the
problems defined above, we will always assume that vot-
ers are unweighted and that the number of both voters and
candidates is unbounded, unless stated otherwise.

3. POSSIBLE WINNER WRT. THE ADDI-
TION OF NEW CANDIDATES

3.1 Unweighted Voters
In this section we study the problem PcWNA for pure

scoring rules in the case of unweighted voters. Table 1 shows
the results about the complexity of PcWNA for pure scor-
ing rules that are already known from earlier work [9, 10,
25], where it is always assumed that voters are unweighted
and that the number of initial candidates is unbounded.
In particular, PcWNA is in P for the Borda rule for any
fixed number of candidates, yet is NP-complete for the scor-
ing vector (3, 2, 1, 0, . . . , 0) when the number of candidates
is unbounded. Thus, this NP-completeness result is about
a more general problem and does not contradict with the
polynomial-time solvability of Borda in the restricted case
of four candidates.

We now extend the result of Chevaleyre et al. [9] that
PcWNA is NP-complete for pure scoring rules with vector
(3, 2, 1, 0, . . . , 0) when one new candidate is added by show-
ing that NP-completeness of PcWNA holds even for the
class of pure scoring rules of the form (α1, α2, 1, 0, . . . , 0)
with α1 > α2 > 1.

Scoring rule PcWNA

Plurality in P (see [9])
Veto in P (see [9])
Borda in P (see [9])
2-Approval in P (see [10])
k-Approval, |C′| ≤ 2 in P (see [9, 10])
k-Approval, k ≥ 3, |C′| ≥ 3 NP-complete (see [9, 10])
(αi − αi+1) ≤ (αi+1 − αi+2), in P (see [9])

1 ≤ i ≤ m− 2
(3, 2, 1, 0, . . . , 0), |C′| = 1 NP-complete (see [9])

Table 1: Previous results on the complexity of
PcWNA for pure scoring rules.

Theorem 3.1. PcWNA is NP-complete for pure scoring
rules of the form (α1, α2, 1, 0, . . . , 0) with α1 > α2 > 1, if
one new candidate is added.

Proof. Membership in NP is obvious, and the proof of
NP-hardness is by a reduction from the NP-complete 3-DM
problem, which is defined as follows (see [17]):

Name: Three-Dimensional Matching (3-DM).
Given: A set M ⊆ W × X × Y , with W = {w1, . . . , wq},

X = {x1, . . . , xq}, and Y = {y1, . . . , yq}.
Question: Is there a subset M ′ ⊆ M with |M ′| = q, such

that no two elements of M ′ agree in any coordinate?

Let M ⊆ W ′×X ′×Y ′ be an instance of 3-DM with W ′ =
{w′

1, . . . , w
′
q}, X ′ = {x′1, . . . , x′q}, and Y ′ = {y′1, . . . , y′q},

where m = |M |. Let p(s) be the number of elements in M
in which s ∈ W ′ ∪X ′ ∪ Y ′ occurs.

Construct an instance of the PcWNA problem with the
election (C, V ) having the set C = W ∪X ∪ Y ∪ {b, c} ∪D
of candidates, with W = {w1, . . . , wq}, X = {x1, . . . , xq},
and Y = {y1, . . . , yq}. The new candidate to be added is a,
so C′ = {a}. D contains only dummy candidates, needed
to pad the votes so as to make the reduction work. Table 2
shows the list V = V1∪V2 ∪V3∪V4 of votes. Note that only
the first three candidates of each vote will be specified, since
all other candidates do not receive any points. The numbers
behind each vote denote their multiplicity. All places that
need to be filled by a dummy candidate will be indicated
by d (with no explicit subscript specified). Note that it is
possible to substitute the d’s by a polynomial number of
dummy candidates such that none of them receives more
than qα1 points.

V1 wi>xj>yk 1, ∀(w′
i, x

′
j , y

′
k) ∈ M

wi> d > d q + m + 1− p(w′
i), ∀wi ∈ W

V2 d > d >xi (q + m)α1 + (2− p(x′i))α2 − 1, ∀xi ∈ X
d > d >yi (q + m)α1 + α2 + 1− p(y′i), ∀yi ∈ Y

V3
c > d > d q + m
d > c > d 1

V4 d > d > b (q + 2m)α1 + 2α2

Table 2: Construction for the proof of Theorem 3.1.
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The scores of the single candidates in election (C, V ) are:

score(C,V )(c) = (q + m)α1 + α2,

score(C,V )(wi) = (q + m + 1)α1, 1 ≤ i ≤ q,

score(C,V )(xi) = (q + m)α1 + 2α2 − 1, 1 ≤ i ≤ q,

score(C,V )(yi) = (q + m)α1 + α2 + 1, 1 ≤ i ≤ q,

score(C,V )(b) = (q + 2m)α1 + 2α2,

score(C,V )(d) < (q + m)α1 + α2, ∀d ∈ D.

Note that score(C,V )(d) < score(C,V )(c) for all dummy
candidates d ∈ D.

We claim that c is a possible winner (i.e., a can be inserted
such that c wins in the election held over the candidates
C ∪C′) if and only if there is a matching M ′ for the 3-DM
instance M .

(⇐) Assume that there exists a matching M ′ for M . Ex-
tend the votes in V to V ′, where a is inserted at a position
with zero points in all votes of V2 and V3, and the votes in
V1 and V4 are extended as shown in Table 3:

V1
a > wi > xj > yk 1, ∀(w′

i, x
′
j , y

′
k) ∈ M ′

wi > xj > yk > a 1, ∀(w′
i, x

′
j , y

′
k) ∈ M \M ′

V4
d > d > a > b mα1 + α2

d > d > b > a (q + m)α1 + α2

Table 3: Showing (⇐) in the proof of Theorem 3.1.

Then all candidates except the dummy candidates have
exactly (q+m)α1 +α2 points. Hence c has the highest score
and is a winner of the election.

(⇒) Assume that c is a winner of the election (C∪C′, V ′),
where V ′ is an extension of the linear votes in V . This
implies that the score of all other candidates in this election
is less than or equal to the score of c. The score of c will
always be (q+m)α1 +α2, since c gets all of his or her points
from the voters in V3, where he or she is placed at the top
position in m + q votes and at second position in one vote.

Since score(C,V )(wi) = (q + m + 1)α1 points, each of the
candidates wi, 1 ≤ i ≤ q, must lose at least α1 − α2 points
when inserting a. Due to the requirement that α1 > α2, each
wi has to take at least one second position in a vote where
he or she was ranked first originally. For the candidates xi,
1 ≤ i ≤ q, we have score(C,V )(xi) = (q + m)α1 + 2α2 − 1.
Again, since α2 > 1, each xi must lose at least α2−1 points,
and since score(C,V )(yi) = (q +m)α1 +α2 +1, each yi must
lose at least one point so as to not beat c.

The new candidate a can get at most (q + m)α1 + α2

points, since otherwise a would beat c.
To prevent wi, 1 ≤ i ≤ q, from beating c, a must be

placed in a first position in q votes of V1 or V2. Then a
can get at most mα1 + α2 points from the remaining votes
without beating c. In the current situation, b would beat c
by mα1+α2 points. So a must take mα1+α2 third positions
in these votes such that b has a score of (q+m)α1+α2. Then
the score of a is (q + m)α1 + α2. Since we assumed that c
is a winner of the election, every xi, 1 ≤ i ≤ q, must end
up having α2 − 1 points less, and every yi, 1 ≤ i ≤ q, must
end up having one point less. This is possible only if a is
at the first position in some vote from V1. Hence the q first
positions of a must shift every candidate xi and yi by one
position to the right. Then the triples corresponding to the
three elements wi, xj , and yk corresponding to these q votes
must form a matching for the 3-DM instance M . ❑

3.2 Weighted Voters
In this section we study the case of weighted voters for

the PcWNA problem. Obviously, all NP-hardness results
obtained for PcWNA in the case of unweighted voters also
hold in the case of weighted voters. However, the polynomial-
time algorithms for the case of unweighted voters cannot di-
rectly be transferred to the weighted-voters case. In fact,
we will show NP-hardness of PcWNA in the weighted case
for some voting rules where this problem is known to be
polynomial-time solvable in the unweighted case. Specifi-
cally, we will consider the plurality rule for weighted voters
in this section. For plurality, polynomial-time algorithms
are known for PW in the case of unweighted voters, and
for Manipulation both in the unweighted-voters and in
the weighted-voters case. In contrast, we now show that
PcWNA is NP-complete for plurality in the case of weighted
voters, even if there are only two initial candidates and one
new candidate to be added.

Theorem 3.2. PcWNA is NP-complete for plurality in
the case of weighted voters, even if there are only two initial
candidates and one new candidate to be added.

Proof. Membership in NP is obvious. To show NP-hardness
of PcWNA for plurality in the case of weighted voters,
we now give a reduction from the NP-complete Partition
problem, which is defined as follows (see [17]):

Name: Partition.
Given: A nonempty, finite sequence (s1, s2, . . . , sn) of pos-

itive integers.
Question: Is there a subset A′ ⊂ A = {1, 2, . . . , n} such

that X
i∈A′

si =
X

i∈A\A′
si ?

For a given Partition instance (s1, . . . , sn), let
P
i∈A

si =

2K, where A = {1, 2, . . . , n}. We construct an election
(C, V ) with the set of candidates C = {c, d}, where c is the
distinguished candidate, and the list of votes V = V1 ∪ V2

with the corresponding weights as shown in Table 4.

V1 c > d one vote of weight K
V2 d > c one vote of weight si for each i ∈ A

Table 4: Construction for the proof of Theorem 3.2.

The new candidate to be added is a, so C′ = {a}. In the
initial situation, the score of candidate c is K, and candidate
d receives 2K points and hence wins the election. We now
show that c can be made a winner by introducing candidate
a into the election if and only if there is a partition for the
given Partition instance.

(⇐) Assume that there is a subset A′ ⊂ A such thatP
i∈A′

si =
P

i∈A\A′
si. If the new candidate a is placed at the

first position in each of those votes from V2 that correspond
to the i ∈ A′, and at the last position in all remaining votes,
then the score of all three candidates is exactly K, and c is
a co-winner of the election.

(⇒) Assume that c is a winner of the election, after can-
didate a has been introduced. It must hold that candidates
a and d receive at most K points. Hence candidate d must
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lose K points due to inserting candidate a. This is possible
only if a is placed at the first position in some votes from V2

with a total weight of K. These votes now correspond to a
valid partition. ❑

Next, we study 2-approval and give in Theorem 3.3 a re-
sult for the case of weighted voters and an unbounded num-
ber of candidates.

Theorem 3.3. PcWNA is NP-complete for 2-approval
in the case of weighted voters, where the number of candi-
dates is unbounded and one new candidate is to be added.

Proof. To prove the problem NP-hard, we again give a
reduction from Partition, which was defined in the proof of
Theorem 3.2. Let (s1, . . . , sn) be an instance of Partition
with

P
i∈A

si = 2K, where A = {1, 2, . . . , n}.
We introduce a set C of n + 3 candidates:

• c (the candidate we want to win),

• b (the candidate who wins the original election), and

• a set {d0, d1, . . . , dn} of dummy candidates.

The votes are specified as follows:

• For each sj , we define a vote dj > b > C with weight
sj , where C denotes the set of candidates not yet
mentioned in the vote, so in this case we have C =
C \ {b, dj}. Note that the ranking of the candidates C
cannot influence the outcome of the election, since we
deal with 2-approval.

• There is one vote c > d0 > C with weight K.

Since
P

j∈A

sj = 2K, candidate b has a score of 2K and wins

the election.
We now prove that c can be made a winner by adding one

new candidate, a, if and only if there is a subset A′ ⊂ A
that induces a valid partition for the given instance.

(⇐) Suppose we have a partition A′ ⊂ A. By putting a
in the first position of each vote having a weight of si and
for which i ∈ A′, a will get exactly K points. Furthermore,
b loses these K points, since he or she moves to the third
position in these votes. Now there is a tie between a, b, c,
and d0, each having K points. Since sj ≤ K, 1 ≤ j ≤ n, no
candidate dj , 1 ≤ j ≤ n, has a higher score. Thus, c is a
co-winner of the election.

(⇒) Suppose that c can be made a winner by adding can-
didate a. It follows that b has to lose at least K points.
Hence, a has to be added in the votes of the form dj > b > C
at first or second position. Thus, a gets each point that b
loses. But since c is made a winner by inserting a, the new
candidate a can get no more than K points. Therefore, we
have to insert a in a subset of votes such that the weights of
these votes sum up to exactly K. Consequently, there exists
a partition.

Since Partition is NP-complete, this proves NP-hardness.
Membership in NP is straightforward. Thus PcWNA is NP-
complete for 2-approval. ❑

It is easy to see that the proof of Theorem 3.3 can be
transferred to k-approval: In each vote k − 2 dummy can-
didates are added in the first k − 2 positions, which gives a
total number of (k− 1)(n+1)+2 initial candidates and one
new candidate. Thus we can state the following corollary.

Corollary 3.4. PcWNA is NP-complete for k-approval
in the case of weighted voters where the number of candidates
is unbounded and one new candidate is to be added.

Note that, in Corollary 3.4, the k in k-approval cannot
depend on the number of candidates, since the proof is for
an unbounded number of candidates. Table 5 summarizes
the results of this section.

Scoring rule PcWNA

Plurality, |C| = 2, |C′| = 1 NP-complete
k-Approval, |C′| = 1 NP-complete

Table 5: New results on the complexity of PcWNA
in the case of weighted voters.

4. UNCERTAINTY ABOUT THE VOTING
SYSTEM

4.1 Scoring Rules
In this section we study the Possible Winner under

Uncertain Voting System problem with respect to the
class of scoring rules. Recall that c is the distinguished can-
didate we want to make a winner in the given m-candidate
election, by specifying the values αi of the scoring vector
(α1, . . . , αm) appropriately. In the proof of Theorem 4.3 be-
low we will need the following notions.

Definition 4.1. For an election E = (C, V ), let posi(x)
denote the total number of times candidate x ∈ C is at po-
sition i, 1 ≤ i ≤ |C|, in the list V of votes, and for all
a ∈ C \ {c}, let plus(c,i)(a) = posi(a)− posi(c).

If the election is held under scoring vector (α1, . . . , αm),
candidate c wins if and only if for each a ∈ C \ {c}, we haveP|C|

i=1 plus(c,i)(a) · αi ≤ 0 in the co-winner case. For the
unique-winner case, replace the zero on the right-hand side
of the inequality by one.

In the following lemma we will show how to construct a list
of votes for given values plus(c,i)(a) under some conditions.
Let M(d,i) denote a circular block of |C|−1 votes, where can-
didate d is always at position i and all other candidates take
all the remaining positions exactly once, by shifting them in
a circular way. For example, for the set C = {d, c1, . . . , cm}
of candidates the circular block M(d,1) looks as follows:

d > c1 > c2 > . . . > cm−1 > cm

d > c2 > c3 > . . . > cm > c1

...
...

...
...

...
...

d > cm > c1 > . . . > cm−2 > cm−1

Lemma 4.2. Let C be a set of m candidates, c ∈ C be a
distinguished candidate, d ∈ C be a dummy candidate, and
let the values plus(c,i)(a) ∈ Z, 1 ≤ i ≤ m− 1, for all candi-
dates a in C \ {c, d} be given. Let ~α = (α1, α2, . . . , αm) be
an arbitrary scoring vector with αm = 0. One can construct
in time polynomial in m a list V of votes satisfying that:

1. Every candidate a ∈ C \ {c, d} has the given values
plus(c,i)(a), 1 ≤ i ≤ m− 1, in election (C, V ), and

2. candidate d cannot beat candidate c in election (C,V ).
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Proof. Let m = |C| be the number of candidates. For each
positive value plus(c,i)(a), 1 ≤ i ≤ m − q, a ∈ C \ {c, d},
we construct two types of circular blocks of votes. The first
block is of type M(d,i), except that in the vote in which
candidate a is at position m, the positions of a and d are
swapped. For this block it holds that plus(c,i)(a) = 1, and
all other values plus(c,j)(b) and plus(c,j)(a), b ∈ C \{c, d, a},
1 ≤ j ≤ m − 1, remain unchanged. These blocks will be
added with multiplicity plus(c,i)(a). To ensure that candi-
date d has no chance to beat candidate c, we add the votes of
the circular block M(d,m) with multiplicity m · plus(c,i)(a).
Clearly, this block does not affect the values plus(c,j)(b),
1 ≤ j ≤ m− 1, b ∈ C \ {c, d}.

If plus(c,i)(a) is negative, we add the block of type M(d,m),
where the places of a and d are swapped in the vote in
which a is at position i, with multiplicity −plus(c,i)(a). The
effect is that plus(c,i)(a) is decreased by 1 for each of these
blocks. Again, to ensure that candidate d will not be able
to beat candidate c, we add the circular block M(d,m) with
multiplicity −plus(c,i)(a) + 1.

By construction, the values plus(c,i)(d), 1 ≤ i ≤ n, are
never positive, so obviously d has no chance to beat or to
tie with c in the election whatever scoring rule will be used.
Since the votes can be stored as a list of binary integers
representing their corresponding multiplicities, these votes
can be constructed in time polynomial in m. ❑

To make use of Lemma 4.2, we assume succinct represen-
tation of the election (see [16]) in the following theorem. As
mentioned in the above proof, this means that the votes are
not stored ballot by ballot for all voters, but as a list of
binary integers giving their corresponding multiplicities.

Theorem 4.3. Let S be the class of scoring rules with
m ≥ 4 candidates that are defined by a scoring vector of
the form α = (α1, . . . , αm−4, x1, x2, x3, 0), with xi = 1 for
at least one i ∈ {1, 2, 3}. S-PcWUVS and S-PWUVS are
NP-complete (assuming succinct representation).

Proof. Membership in NP is obvious, and the proof of
NP-hardness will be by a reduction from the NP-complete
problem Integer Knapsack (see, e.g., [17]):

Name: Integer Knapsack
Instance: A finite set of elements U = {u1, . . . , un}, two

mappings s, v : U → Z+, and two positive integers, b
and k.

Question: Is there a mapping c : U → Z+ such that

nX
i=1

c(ui)s(ui) ≤ b and
nX

i=1

c(ui)v(ui) ≥ k ?

We first focus on the co-winner case and then show how to
transfer the proof to the unique-winner case. Let (U, s, v, b, k)
be an instance of Integer Knapsack with U = {u1, . . . un}
and let c : U → Z+ be a mapping. Then it holds that

nP
i=1

c(ui) · s(ui) ≤ b

nP
i=1

c(ui) · v(ui) ≥ k
(2)

⇔
„

s(u1) s(u2) . . . s(un)
−v(u1) −v(u2) . . . −v(un)

«0BBB@
c(u1)
c(u2)

...
c(un)

1CCCA ≤
„

b
−k

«

⇔

0BBBBBBB@

−b′

k′

nb
A (n− 1)b

...
b

1CCCCCCCA

0BBBBB@
c′(u1)
c′(u2)

...
c′(un)

1

1CCCCCA ≤

0BBBBBBB@

0
0
0
0
...
0

1CCCCCCCA
(3)

with A =

0BBBBBBB@

s(u1) s(u2) . . . s(un)
−v(u1) −v(u2) . . . −v(un)
−1 0 . . . 0
0 −1 . . . 0
...
0 . . . 0 −1

1CCCCCCCA
, where

c′(ui) = c(ui) + (n− i + 1)b, 1 ≤ i ≤ n,

b′ = b +
nX

i=1

b · s(ui) · (n− i + 1), and

k′ = k +

nX
i=1

k · v(ui) · (n− i + 1).

The last n rows of the matrix ensure that

c′(ui) ≥ (n− i + 1)b, 1 ≤ i ≤ n,

and so there are no new solutions added for which the values
c(ui) may be negative. Furthermore, since c(ui) ≤ b, it
is now ensured that c′(u1) ≥ c′(u2) ≥ · · · ≥ c(un) ≥ b.
Hence it still holds that c is a solution for the given Integer
Knapsack instance if and only if c′ is a solution for (3).

We will now build an election E = (C, V ) with candidate
set C = {c, d, e, f, g1, . . . , gn}, where c is the distinguished
candidate and d is a dummy candidate who cannot beat c in
the election whatever scoring rule will be used. The list of
votes will be built using Lemma 4.2 according to the matrix
in (3). The n + 2 rows in the matrix correspond to the
candidates e, f , and g1, . . . , gn. Since the matrix has only
n + 1 columns, the positions n + 2 and n + 3 in the votes
will have no effect on the outcome of the election, and thus
the corresponding plus(c,i)(a) values, n + 2 ≤ i ≤ n + 3,
can be set to zero for all candidates a ∈ {e, f, g1, . . . , gn}.
The corresponding values in the scoring vector can be set
to either zero or one, respecting the conditions for a valid
scoring vector. Hence, the votes in V have to fulfill the
following properties:

plus(c,i)(e) =

8><>:
s(ui) for 1 ≤ i ≤ n

−b′ for i = n + 1

0 for n + 2 ≤ i ≤ n + 3,

plus(c,i)(f) =

8><>:
−v(ui) for 1 ≤ i ≤ n

k′ for i = n + 1

0 for n + 2 ≤ i ≤ n = n + 3,
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plus(c,i)(gj) =

8>>><>>>:
−1 for 1 ≤ i ≤ n, i = j

(n− i + 1)b for i = n + 1, 1 ≤ j ≤ n

0 for 1 ≤ i ≤ n + 3,

1 ≤ j ≤ n, i 6= j.

According to Lemma 4.2, these votes can be constructed
in polynomial time such that the dummy candidate d has
no influence on c being a winner of the election, whatever
scoring rule of type α = (α1, . . . , αn, 1, αn+2, αn+3, 0) will
be used.

Since the plus(c,i)(a) values assigned to the candidates
a ∈ C \{c, d} are set according to the matrix in (3), it holds
that c can be a winner in election E = (C, V ) by choosing a
scoring rule of the form α = (α1, . . . , αn, 1, αn+2, αn+3, 0) if
and only if for each a ∈ C \ {c}, we have

nX
i=1

plus(c,i)(a) · c(ui) + plus(c,n+1)(a) ≤ 0.

As described above, the values in the scoring vector for po-
sitions n + 2 and n + 3, have no effect on the outcome of
the election. Hence, by switching rows in the matrix we can
extend the set of possible scoring rules to scoring rules of
the form α = (c(u1), . . . , c(un), x1, x2, x3, 0), with xi = 1 for
at least one i ∈ {1, 2, 3}. Hence, c can be made a winner
of the election E = (C, V ) if and only if there is a solution
to (3). Since we have shown above that there is a solution
to (2) if and only if there is a solution to (3), it holds that
there is a solution c to our Integer Knapsack instance if
and only if there is a scoring rule α, of the form described
above, under which c wins the election E = (C, V ).

To see that this reduction also settles the unique-winner
case, note that (3) is equivalent to the following inequality:0BBBBBBB@

−b′ + 1
k′ + 1
nb + 1

A (n− 1)b + 1
...

b + 1

1CCCCCCCA

0BBBBB@
c′(u1)
c′(u2)

...
c′(un)

1

1CCCCCA ≤

0BBBBBBB@

1
1
1
1
...
1

1CCCCCCCA
. (4)

The election we need to construct has the same candidate
set as above and the voters are constructed according to the
values plus(c,n+1)(a) for a ∈ C \ {c, d} in the matrix of (4).
Thus, c is the unique winner of the modified election if and
only if for each a ∈ C \ {c}, we have

nX
i=1

plus(c,i)(a) · c(ui) + plus(c,n+1)(a) ≤ 1.

By a similar argument as above, there is a scoring rule
of the form α = (α1, . . . , αn, x1, x2, x3, 0) with xi = 1 for
at least one i ∈ {1, 2, 3} in which c wins the election if and
only if there is a solution c for the given Integer Knapsack
instance. ❑

4.2 Copelandα Elections
In Copelandα elections [14], the parameter α is a rational

number from the interval [0, 1] that specifies how ties are
rewarded in the pairwise comparisons between candidates.

Theorem 4.4. C-PcWUVS and C-PWUVS are polyno-
mial-time solvable for the family of Copelandα elections:

C = {Copelandα | α is a rational number in [0, 1]}.

Proof. To decide whether a distinguished candidate c can
be made a winner of the election by choosing the parameter
α after all the votes have been cast, we do the following. In
the co-winner case, for each ci ∈ C \ {c}, compute

f(ci) =

(
win(c)−win(ci)
tie(c)−tie(ci)

if tie(c) 6= tie(ci)

win(c) − win(ci) otherwise.

If f(ci) ≥ 0 for all ci ∈ C, c can be made a winner of
the election by setting α = min

ci∈C
{f(ci), 1}, and otherwise c

cannot be made a winner. So C-PcWUVS is in P.
In the unique-winner case, for c to be the unique winner

winner of the election, it must hold that f(ci) > 0 and α is
set to a value greater than min

ci∈C
{f(ci)} if this value is less

than one, or else to one. Otherwise, c cannot be made the
unique winner of the election. So C-PWUVS is in P. ❑

4.3 Preference-Based Approval Voting
In approval voting the situation is a bit different, since ap-

proval voting is not a class of voting systems, and the voters
usually do not report linear preferences but approval vectors.
Brams and Sanver [7, 8] proposed various voting systems
that combine preference-based voting and approval voting.
Here the voters report a strict preference order, along with
an approval line indicating that the voter approves of all
candidates to the left of this line and disapproves of all can-
didates to the right of this line. They require votes to be
admissible [7], which means that each voter approves of his
or her first ranked candidate and disapproves of his or her
last ranked candidate. If we assume that the approval lines
are not set by the voters (who thus only report their linear
orders) but are set by the voting system itself (after all votes
have been cast), we obtain (for m candidates and n voters)
a class Am,n of (m− 1)n voting systems. For each such sys-
tem, the candidates with the highest number of approvals
win. Note that these voting systems are not very natu-
ral (as they do not let the voters themselves choose their
approval strategies) and do not possess generally desirable
social-choice properties (e.g., the systems in Am,n are not
even anonymous, as changing the order of votes may result
in a different outcome).

In this setting, given an election where voters report their
preference orders, setting the approval lines afterwards cor-
responds to choosing a system from Am,n. It is easy to see
that PcWUVS and PWUVS are polynomial-time solvable
for this class. To make the distinguished candidate c win
the election, choose the system that sets the approval line in
each vote that does not rank c at the last position right be-
hind c, and in the votes that do rank c last right behind the
top candidate. If c is not a winner (unique winner) of this
election, c cannot win (be a unique winner of) the election
whatever system from the class is chosen. Thus, PcWUVS
and PWUVS are polynomial-time solvable for this class of
preference-based approval voting systems.

In contrast to this result, Elkind et al. [12] show NP-
hardness for a related bribery problem, even if the briber
is only allowed to move the approval line.
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5. CONCLUSIONS AND FUTURE WORK
For the Possible Winner problem, a full dichotomy re-

sult for the class of pure scoring rules is known [6, 5]. In
contrast, the complexity of the related problem PcWNA
has not yet been completely settled and the question raised
by Chevaleyre et al. [9] remains open. Our result stated in
Theorem 3.1 makes a further step towards this goal by show-
ing NP-completeness of PcWNA for a whole class of pure
scoring rules. An interesting task for future work would
be to characterize this problem for all pure scoring rules
in terms of a dichotomy result. Moreover, our initial work
on weighted voters for PcWNA might be extended, and
for both the weighted and the unweighted case the unique-
winner variant PWNA should be further explored (see also [9,
25]). Another problem also stated in [9] concerns the number
of new candidates to be added. Up to now NP-hardness re-
sults for pure scoring rules are known only for the case where
one new candidate is added. What about adding more than
one candidate? Note that the problem becomes easy if an
unbounded number of new candidates is to be added.

For the PcWUVS and PWUVS problems, the next ob-
vious step would be to extend Theorem 4.3 to unrestricted
scoring rules, ideally with the goal of obtaining a complete
dichotomy result. It would also be interesting to study these
problems for other natural classes of voting systems, for ex-
ample, for all voting systems sharing some important social-
choice property (e.g., for all Condorcet systems).
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